首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.  相似文献   

2.
The oxygen-18/oxygen-16 ratio of molecular oxygen trapped in ice cores provides a time-stratigraphic marker for transferring the absolute chronology for the Greenland Ice Sheet Project (GISP) II ice core to the Vostok and Byrd ice cores in Antarctica. Comparison of the climate records from these cores suggests that, near the beginning of the last deglaciation, warming in Antarctica began approximately 3000 years before the onset of the warm B?lling period in Greenland. Atmospheric carbon dioxide and methane concentrations began to rise 2000 to 3000 years before the warming began in Greenland and must have contributed to deglaciation and warming of temperate and boreal regions in the Northern Hemisphere.  相似文献   

3.
Continuous Global Positioning System observations reveal rapid and large ice velocity fluctuations in the western ablation zone of the Greenland Ice Sheet. Within days, ice velocity reacts to increased meltwater production and increases by a factor of 4. Such a response is much stronger and much faster than previously reported. Over a longer period of 17 years, annual ice velocities have decreased slightly, which suggests that the englacial hydraulic system adjusts constantly to the variable meltwater input, which results in a more or less constant ice flux over the years. The positive-feedback mechanism between melt rate and ice velocity appears to be a seasonal process that may have only a limited effect on the response of the ice sheet to climate warming over the next decades.  相似文献   

4.
Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.  相似文献   

5.
Simulations with a synchronously coupled atmosphere-ocean-vegetation model show that changes in vegetation cover during the mid-Holocene, some 6000 years ago, modify and amplify the climate system response to an enhanced seasonal cycle of solar insolation in the Northern Hemisphere both directly (primarily through the changes in surface albedo) and indirectly (through changes in oceanic temperature, sea-ice cover, and oceanic circulation). The model results indicate strong synergistic effects of changes in vegetation cover, ocean temperature, and sea ice at boreal latitudes, but in the subtropics, the atmosphere-vegetation feedback is most important. Moreover, a reduction of the thermohaline circulation in the Atlantic Ocean leads to a warming of the Southern Hemisphere.  相似文献   

6.
Zwally HJ 《Science (New York, N.Y.)》1989,246(4937):1589-1591
An observed 0.23 m/year thickening of the Greenland ice sheet indicates a 25% to 45% excess ice accumulation over the amount required to balance the outward ice flow. The implied global sea-level depletion is 0.2 to 0.4 mm/year, depending on whether the thickening is only recent (5 to 10 years) or longer term (< 100 years). If there is a similar imbalance in the northern 60% of the ice-sheet area, the depletion is 0.35 to 0.7 mm/year. Increasing ice thickness suggests that the precipitation is higher than the long-term average; higher precipitation may be a characteristic of warmer climates in polar regions.  相似文献   

7.
One explanation for the abrupt increases in atmospheric CH4, that occurred repeatedly during the last glacial cycle involves clathrate destabalization events. Because marine clathrates have a distinct deuterium/hydrogen (D/H) isotope ratio, any such destabilization event should cause the D/H ratio of atmospheric CH4 (deltaD(CH4)) to increase. Analyses of air trapped in the ice from the second Greenland ice sheet project show stable and/or decreasing deltaD(CH4) values during the end of the Younger and Older Dryas periods and one stadial period, suggesting that marine clathrates were stable during these abrupt warming episodes. Elevated glacial deltaD(CH4) values may be the result of a lower ratio of net to gross wetland CH4 emissions and an increase in petroleum-based emissions.  相似文献   

8.
Seasat and Geosat satellite altimeter measurements for the Greenland ice sheet (south of 72 degreesN latitude) show that surface elevations above 2000 meters increased at an average rate of only 1. 5 +/- 0.5 centimeters per year from 1978 to 1988. In contrast, elevation changes varied regionally from -15 to +18 centimeters per year, seasonally by +/-15 centimeters, and interannually by +/-8 centimeters. The average growth rate is too small to determine if the Greenland ice sheet is undergoing a long-term change due to a warmer polar climate.  相似文献   

9.
We propose that from approximately 3 to 1 million years ago, ice volume changes occurred in both the Northern and Southern Hemispheres, each controlled by local summer insolation. Because Earth's orbital precession is out of phase between hemispheres, 23,000-year changes in ice volume in each hemisphere cancel out in globally integrated proxies such as ocean delta18O or sea level, leaving the in-phase obliquity (41,000 years) component of insolation to dominate those records. Only a modest ice mass change in Antarctica is required to effectively cancel out a much larger northern ice volume signal. At the mid-Pleistocene transition, we propose that marine-based ice sheet margins replaced terrestrial ice margins around the perimeter of East Antarctica, resulting in a shift to in-phase behavior of northern and southern ice sheets as well as the strengthening of 23,000-year cyclicity in the marine delta18O record.  相似文献   

10.
The Greenland Ice Sheet holds a substantial part of Earth's fresh water, and melting of the sheet contributes to sea level rise. Dahl-Jensen discusses the reports by Krabill et al. and Thomas et al., which shed light on short- and long-term surface elevation changes of the ice sheet. Low-altitude areas are melting, but high-altitude areas show no net reduction over both the short and the long term.  相似文献   

11.
Bond GC  Lotti R 《Science (New York, N.Y.)》1995,267(5200):1005-1010
High-resolution studies of North Atlantic deep sea cores demonstrate that prominent increases in iceberg calving recurred at intervals of 2000 to 3000 years, much more frequently than the 7000-to 10,000-year pacing of massive ice discharges associated with Heinrich events. The calving cycles correlate with warm-cold oscillations, called Dansgaard-Oeschger events, in Greenland ice cores. Each cycle records synchronous discharges of ice from different sources, and the cycles are decoupled from sea-surface temperatures. These findings point to a mechanism operating within the atmosphere that caused rapid oscillations in air temperatures above Greenland and in calving from more than one ice sheet.  相似文献   

12.
During the last interglacial period, ~125,000 years ago, sea level was at least several meters higher than at present, with substantial variability observed for peak sea level at geographically diverse sites. Speculation that the West Antarctic ice sheet collapsed during the last interglacial period has drawn particular interest to understanding climate and ice-sheet dynamics during this time interval. We provide an internally consistent database of coral U-Th ages to assess last interglacial sea-level observations in the context of isostatic modeling and stratigraphic evidence. These data indicate that global (eustatic) sea level peaked 5.5 to 9 meters above present sea level, requiring smaller ice sheets in both Greenland and Antarctica relative to today and indicating strong sea-level sensitivity to small changes in radiative forcing.  相似文献   

13.
We present a sea-ice record from northern Greenland covering the past 10,000 years. Multiyear sea ice reached a minimum between ~8500 and 6000 years ago, when the limit of year-round sea ice at the coast of Greenland was located ~1000 kilometers to the north of its present position. The subsequent increase in multiyear sea ice culminated during the past 2500 years and is linked to an increase in ice export from the western Arctic and higher variability of ice-drift routes. When the ice was at its minimum in northern Greenland, it greatly increased at Ellesmere Island to the west. The lack of uniformity in past sea-ice changes, which is probably related to large-scale atmospheric anomalies such as the Arctic Oscillation, is not well reproduced in models. This needs to be further explored, as it is likely to have an impact on predictions of future sea-ice distribution.  相似文献   

14.
A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.  相似文献   

15.
Climate Change During the Last Deglaciation in Antarctica   总被引:1,自引:0,他引:1  
Greenland ice core records provide clear evidence of rapid changes in climate in a variety of climate indicators. In this work, rapid climate change events in the Northern and Southern hemispheres are compared on the basis of an examination of changes in atmospheric circulation developed from two ice cores. High-resolution glaciochemical series, covering the period 10,000 to 16,000 years ago, from a central Greenland ice core and a new site in east Antarctica display similar variability. These findings suggest that rapid climate change events occur more frequently in Antarctica than previously demonstrated.  相似文献   

16.
New data support the contention that the mercury content of Greenland glacial ices has not increased dramatically in recent years but rather is distributed nonhomogeneously through the ice sheet.  相似文献   

17.
It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west-an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Tr?ndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free And?ya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.  相似文献   

18.
Using time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, we estimate ice mass changes over Greenland during the period April 2002 to November 2005. After correcting for the effects of spatial filtering and limited resolution of GRACE data, the estimated total ice melting rate over Greenland is -239 +/- 23 cubic kilometers per year, mostly from East Greenland. This estimate agrees remarkably well with a recent assessment of -224 +/- 41 cubic kilometers per year, based on satellite radar interferometry data. GRACE estimates in southeast Greenland suggest accelerated melting since the summer of 2004, consistent with the latest remote sensing measurements.  相似文献   

19.
The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.  相似文献   

20.
C-band synthetic aperture radar (SAR) imagery from the European Space Agency's ERS-1 satellite reveals the basic zonation of the surface of the Greenland Ice Sheet. The zones have backscatter signatures related to the structure of the snowpack, which varies with the balance of accumulation and melt at various elevations. The boundaries of zones can be accurately located with the use of this high-resolution imagery. The images also reveal a large flow feature in northeast Greenland that is similar to ice streams in Antarctica and may play a major role in the discharge of ice from the ice sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号