首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmentally specific expression of Rhizobium spp. genes involved in symbiotic N2 fixation is known to operate through cascade regulation of various nif and fix operons. Fusion constructs of lacZ under symbiotic promoters P1 (for nifHDK operon) and P2 (for fixABCX operon) of Rhizobium meliloti were mobilized into Rhizobium spp. (Cicer) strains Rcd301 and RCR13. The assays for -galactosidase activity to monitor the expression of lacZ under these promoters was performed in host backgrounds of Escherichia coli, R. meliloti, and Rhizobium spp. (Cicer). The enzyme assays indicated significant levels of expression from P1 and P2 promoters in chickpea rhizobia, specifically in symbiotic cells from nodules. However, as in R. meliloti, these promoters did not induce strong expression in free-living cells of Rhizobium spp. (Cicer). This indicates functional homology of R. meliloti promoters in rhizobium spp. (Cicer). Functional cross-reactivity of trans regulatory factors like NtrA, NtrC, and NifA between these rhizobia seems evident from the nodule-specific expression of P1 and P2 cis elements.  相似文献   

2.
Summary Fifty-six isolates of Rhizobium and Bradyrhizobium spp. (Cajanus) were studied for their plasmid profile and N2-fixation efficacy. One to three plasmids were reproducibly detected in all the Rhizobium spp. strains but no plasmid was detected in the Bradyrhizobium spp. strains. Rhizobium sp. strain P-1 was mutagenized by Tn5 and three nod and six nod+fix were screened for symbiotic parameters. Neomycin-sensitive mutants were isolated by elevated temperatrue (40°C) from tranconjugants carrying Tn5 insertions. The high temperature cured these mutants from the single large plasmid present in the parent strain P-1. All these cured mutants were nod, indicating that the genes for nodulation were present on this plasmid, which is readily cured at a high temperature (40°C). The high temperature in the semi-arid zones of Haryana could be responsible for the low nodulation of pigeonpea because the plasmid carrying the nodulation genes is cured at 40°–45°C giving rise to non-nodulating mutants.  相似文献   

3.
Summary There were significant differences among pigeonpea [Cajanus cajan (L.) Millsp] Rhizobium sp. strains (IC 3506, IC 3484, IC 3195, and IC 3087) in their ability to nodulate and fix N2 under saline conditions. Pigeonpea plants inoculated with IC 3087 and IC 3506 were less affected in growth by salinity levels of 6 and 8 dS m-1 than plants inoculated with the other strains. For IC 3506, IC 3484, and IC 3195, there was a decrease in the number of nodules with increasing salinity, while the average nodule dry weight and the specific nitrogenase activity remained unaffected. However, in IC 3087, the number of nodules increased slightly with increasing salinity. Leaf-P concentrations increased with salinity in the inoculated plants irrespective of the Rhizobium sp. strain, and leaf-N concentrations decreased with increasing salinity in IC 3484 and IC 3195 only. Shoot-Na and-Cl levels were further increased in these salt-sensitive strains only at 8 dS m-1. Therefore there may be scope for selecting pigeonpea Rhizobium sp. symbioses better adapted to saline conditions. The Rhizobium sp. strains best able to form effective symbioses at high salinity levels are not necessarily derived from saline soils.Submitted as JA No. 919 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

4.
Summary Variation in nodulation and N2 fixation by the Gliricidia sepium/Rhizobium spp. symbiosis was studied in two greenhouse experiments. The first included 25 provenances of G. sepium inoculated with a mixture of three strains of Rhizobium spp. N2 fixation was measured using the 15N isotope dilution method 12 weeks after planting. On average, G. sepium derived 45% of its total N from atmospheric N2. Significant differences in fixation were observed between provenances. The percentage of N derived from atmospheric N2 ranged from 26 to 68% (equivalent to 18–62 mg N plant-1) and was correlated with total N in the plant (r=0.70; P=0.05). The second experiment included six strains of Rhizobium spp. and two methods of inoculation and the plants were harvested 14,35 and 53 weeks after planting. In the first harvest significant differences were found between the number of nodules and the percentage and amount of N2 fixed. There was also a significant correlation between the number of nodules and the amount of N2 fixed (r=0.92; P=0.05). In the final harvest no correlation was observed, although there were significant differences between the number of nodules and the percentage of N derived from the atmosphere. The amount of N2 fixed increased with time (from an average of 27% at the first harvest to 58% at the final harvest) and was influenced by the Rhizobium spp. strain and the method of inoculation. It ranged from 36% for Rhizobium sp. strain SP 14 to 71% for Rhizobium SP 44 at the last harvest. Values for the percentage of atmosphere derived N2 obtained by soil inoculation were slightly higher than those obtained by seed inoculation.  相似文献   

5.
Summary There was no correlation between the quantity of exopolysaccharide produced and acetylene reduction activity by Rhizobium spp. or by Bradyrhizobium spp. (Cajanus). The exopolysaccharide-defective mutants of Rhizobium sp. strain P 116 either failed to nodulate or showed a decrease in effectiveness. The deficiency in exopolysaccharide production was corrected by the addition of purified exopolysaccharide from the parent strain, or from Bradyrhizobium sp. strain P 149 or S24 isolated from pigeonpea (Cajanus cajan) and mungbean (Vigna radiata), respectively. However, the nodules so formed were not fully effective compared to those formed by the parent strain.  相似文献   

6.
H2 uptake activity was well distributed in Rhizobium sp. strains isolated from nodules of mung-bean (Vigna radiata L.). Two effective strains, RMP1 und RMP2, exhibiting significantly higher H2 uptake activity were subjected to mutagenesis with nitrosoguanidine. The respective mutation frequencies were 0.18 and 0.19%. Three Hup- mutants each of RMP1 und RMP2 were compared with the wild-type parent strains under pot culture experiments to evaluate the significance of the H2 uptake system in biological N2 fixation. Nodulation capabilities, plant growth characteristics, and the chlorophyll content of the leaves were significantly reduced in the plants treated with Hup- mutants. Nitrogenase activity in Hup- nodules was reduced by 8–41%. Similarly, N accumulation was also reduced singificantly.  相似文献   

7.
Summary Chickpea cultivars (Cicer arietinum L.) and their symbiosis with specific strains of Rhizobium spp. were examined under salt stress. The growth of rhizobia declined with NaCl concentrations increasing from 0.01 to 2% (w : v). Two Rhizobium spp. strains (F-75 and KG 31) tolerated 1.5% NaCl. Of the 10 chickpea cultivars examined, only three (Pusa 312, Pusa 212, and Pusa 240) germinated at 1.5% NaCl. The chickpea — Rhizobium spp. symbiosis was examined in the field, with soil varying in salinity from electrical conductivity (EC) 4.5 to EC 5.2 dSm-1, to identify combinations giving satisfactory yields. Significant interactions between strains and cultivars caused differential yields of nodules, dry matter, and grain. Four chickpea — Rhizobium spp. combinations, Pusa 240 and F-75 (660 kg ha-1), Pusa 240 and IC 76 (440 kg ha-1), Pusa 240 and KG 31 (390 kg ha-1), and Pusa 312 and KG 31 (380 kg ha-1), produced significantly higher grain yields in saline soil.  相似文献   

8.
Summary We studied the dominant diazotrophs associated with maize roots and rhizosphere soil originating from three different locations in France. An aseptically grown maize plantlet, the spermosphere model, was used to isolate N2-fixing (acetylene-reducing) bacteria. Bacillus circulans was the dominant N2-fixing bacterium in the rhizosphere of maize-growing soils from Ramonville and Trogny, but was not found in maize-growing sandy soil from Pissos. In the latter soil, Enterobacter cloacae, Klebsiella terrigena, and Pseudomonas sp. were the most abundant diazotrophs. Azospirillum sp., which has been frequently reported as an important diazotroph accociated with the maize rhizosphere, was not isolated from any of these soils. The strains were compared for their acetylene-reducing activity in the spermosphere model. The Bacillus circulans strains, which were more frequently isolated, also exhibited significantly greater acetylene-reducing activity (3100 nmol ethylene day-1 plant-1) than the Enterobacteriaceae strains (180 nmol ethylene day-1 plant-1). This work indicates for the first time that Bacillus circulans is an important maizerhizosphere-associated bacterium and a potential plant growth-promoting rhizobacterium.  相似文献   

9.
Summary Data on the use of a biological containment system in microcosms are presented. The system is based on a transposon Tn5-cassette containing a fusion of the lac promoter and gef controlled by lacIQ. The suicide function was inserted into different bacterial hosts and its induction by isopropyl--d-thiogalactoside (IPTG) was tested in sterile and non-sterile soil microcosms. The results suggest that the killing effect of this gef-based suicide mechanism is insufficient under soil conditions.  相似文献   

10.
Summary The competitive ability of inoculated and indigenous Rhizobium/Bradyrhizobium spp. to nodulate and fix N2 in grain legumes (Glycine max, Vigna unguiculata, Phaseolus vulgaris) and fodder legumes (Vicia sativa, Medicago sativa, and Trifolium subterraneum) was studied in pots with two local soils collected from two different fields on the basis of cropping history. The native population was estimated by a most-probable-number plant infectivity test in growth pouches and culture tubes. The indigenous rhizobial/bradyrhizobial population ranged from 3 to 2×104 and 0 to 4.4×103 cells g-1 in the two soils (the first with, the second without a history of legume cropping). Inoculated G. max, P. vulgaris, and T. subterraneum plants had significantly more nodules with a greater nodule mass than uninoculated plants, but N2 fixation was increased only in G. max and P. vulgaris. A significant response to inoculation was observed in the grain legume P. vulgaris in the soil not previously used to grow legumes, even in the presence of higher indigenous population (>103 cells g-1 soil of Rhizobium leguminosarum bv phaseoli). No difference in yield was observed with the fodder legumes in response to inoculation, even with the indigenous Rhizobium sp. as low as <14 cells g-1 soil and although the number and weight of nodules were significantly increased by the inoculation in T. subterraneum. Overall recovery of the inoculated strains was 38–100%, as determined by a fluorescent antibody technique. In general, the inoculation increased N2 fixation only in 3 out of 12 legume species-soil combinations in the presence of an indigenous population of rhizobial/bradyrhizobial strains.  相似文献   

11.
Summary Soil solarization greatly reduced the native chickpea Rhizobium population. With inoculation, it was possible to increase the population of the Rhizobium in solarized plots. In the 1st year, 47% nodulation was obtained with chickpea inoculant strain IC 59 when introduced with a cereal crop 2 weeks after the soil solarization and having a native Rhizobium count of <10 g-1 soil, and only 13% when introduced 16 weeks after solarization at the time the chickpeas were sown, with 2.0×102 native rhizobia g-1 soil. In the non-solarized plots inoculated with 5.6×103 native rhizobia g-1 soil, only 6% nodulation was obtained with the inoculant. In the succeeding year, non-inoculated chickpea was grown on the same plots without any solarization or Rhizobium inoculation. The treatment that showed good establishment of the inoculant strain in year 1 formed 68% inoculant nodules. Other treatments indicated a further reduction in inoculant success, from 1%–13% to 1%–9%. Soil solarization thus allowed an inoculant strain to successfully displace the high native population in the field and can serve as a research tool to compare strains in the field, irrespective of competitive ability. In year 1, Rhizobium inoculation of chickpea gave increased nodulation and increased plant growth 20 and 51 days after sowing, and increased dry matter, grain yield, and grain protein yield at maturity. These beneficial effects of inoculation on plant growth and yield were not measured in the 2nd year.Submitted as Journal Article No. JA 945 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India  相似文献   

12.
Summary Once symbiosis between the pigeonpea cultivar ICPL 227 and the Rhizobium sp. strain IC 3024 is established, it is efficient in fixing N2 under saline conditions and can support growth comparable to N-fed plants in growth media with up to 6 dS m-1 salinity. However, the early stages of establishment of the pigeonpea-IC 3024 symbiotic system have proved sensitive to salinity. The present study showed that the number of nodules was markedly reduced at 8 dS m-1 salinity; however, nodule development and functioning were not affected by salinity in the pigeonpea-IC 3024 symbiosis. The symbiotic system of Atylosia platycarpa and Rhizobium sp. strain IC 3087 was established successfully even at 12 dS m-1 and supported growth comparable to that of N-fed plants. P levels in leaves were increased under saline conditions in N-fed and N2-fixing pigeonpea and A. platycarpa. There were no consistent differences in the leaf Na and chloride levels between N-fed and N2-fixing plants of pigeonpea and A. platycarpa. The present study suggests that the rhizobial symbiosis may not be a necessary factor for initial screening of pigeonpea and related wild species for salinity tolerance.Submitted as JA No. 964 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

13.
In this study we found that Penicillium spp. exhibiting P-solubilizing activity are common both on and in the roots of wheat plants grown in southern Australian agricultural soils. From 2,500 segments of washed and surface-disinfested root pieces, 608 and 223 fungi were isolated on a selective medium, respectively. All isolates were screened for P solubilization on solid medium containing hydroxyapatite (HA); 47 isolates (5.7%) solubilized HA and were identified as isolates of Penicillium or its teleomorphs. These isolates were evaluated for solubilization of Idaho rock phosphate (RP) in liquid culture. Penicillium bilaiae strain RS7B-SD1 was the most effective, mobilizing 101.7 mg P l–1 after 7 days. Other effective isolates included Penicillium simplicissimum (58.8 mg P l–1), five strains of Penicillium griseofulvum (56.1–47.6 mg P l–1), Talaromyces flavus (48.6 mg P l–1) and two unidentified Penicillium spp. (50.7 and 50 mg P l–1). A newly isolated strain of Penicillium radicum (KC1-SD1) mobilized 43.3 mg P l–1. RP solubilization, biomass production and solution pH for P. bilaiae RS7B-SD1, P. radicum FRR4718 or Penicillium sp. 1 KC6-W2 was determined over time. P. bilaiae RS7B-SD1 solubilized the greatest amount of RP (112.7 mg P l–1) and had the highest RP-solubilizing activity per unit of biomass produced (up to 603.2 g P l–1 mg biomass–1 at 7 days growth). This study has identified new isolates of Penicillium fungi with high mineral phosphate solubilizing activity. These fungi are being investigated for the ability to increase crop production on strong P-retaining soils in Australia.  相似文献   

14.
[目的]探究不同改良剂对融雪剂盐害土壤的修复效果及其对矮牵牛生长的影响,为改良剂的大田推广提供理论依据。[方法]采用香菇菌糠、平菇菌糠和脱硫石膏3种改良剂,通过土柱室内模拟试验,对改良后土壤的pH值,土壤电导率(EC),K+,Na+,Cl-、容重和孔隙度进行测定。[结果]改良处理后,pH值均有不同程度的降低;香菇菌糠施用量为24g/kg时,降低土壤EC值效果最显著;平菇菌糠改良可以有效提高土壤中K+离子含量;对于降低土壤中Na+离子含量而言,表现为:平菇菌糠香菇菌糠脱硫石膏;香菇菌糠处理(24g/kg)对于降低土壤中Cl-离子含量、土壤容重和提高孔隙度等方面效果最显著,土壤容重比CK减少了57.3%,孔隙度增加了24.6%,使矮牵牛单株鲜重较CK增加了244.64%。[结论]当香菇菌糠施用量达到24g/kg时,改良融雪剂盐害土壤的效果最显著。  相似文献   

15.
Summary Using microcosms containing decomposing Pinus nigra litter, the effects of introducing two species of soil arthropods, the fungivorous collembolan Tomocerus minor and the detritivorous isopod Philoscia muscorum, have been studied. The effects of these animals on microbial respiration, on dehydrogenase and cellulase activity, and on the concentration of exchangeable macronutrients (Ca2+, Mg2+, K+, NO inf3 sup- , NH inf4 sup+ , PO inf4 sup3- ) were measured. Both species enhanced microbial activity and the concentration of exchangeable nitrate, ammonium, and phosphate. Ca2+ and Mg2+ concentrations were lowered in the microcosms with animals. The differences between the two species were mainly quantitative, and it appears that the effect of isopods is direct, whereas the collembolans show direct and indirect effects. Positive effects of the presence of animals were found when microbial activities or concentrations of exchangeable nutrients in microcosms without animals were low; negative effects were found when they were relatively high. Thus, soil arthropods have a buffering role in soil processes. These results ae discussed against a background of a supposed succession of sugar fungi/bacteria to more slowly growing decomposing fungi.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

16.
Summary In three field trials conducted during the summer season of 1986, 1987 and 1989 in an alkaline soil, 17 accessions of annual Sesbania spp. were evaluated for nodulation, N2 fixation (acetylene reduction assay), dry weight of roots and shoots, woody biomass production, and nutrient uptake. At 50 days after sowing all the accessions were effectively nodulated (average 36.4 root nodules plant-1) with a high nodule score (3.4). There was a lot of variation in nodule volume and mass and in acetylene reduction activity but not in N content (5.2%). N uptake in shoots, roots and nodules averaged 639, 31, and 13 mg plant-1, respectively, and much of the fixed N remained in shoots. Accessions of S. cannabina complex performed better than others. S. rostrata had poor root nodulation but exhibited excellent stem nodulation (300 nodules plant-1) even though not inoculated with Azorhizobium sp. Average concentrations of N, P, K, S, Ca, and Mg in the shoots were high, at 3.2, 0.28, 1.5, 0.28, 1.5, and 0.4% respectively, and Na was low (0.15%), reflecting the usefulness of Sesbania spp. as an integrated biofertilizer source. Green matter production was 26.0 Mg ha-1 (5.9 Mg dry matter) and N uptake was 158 kg ha-1, 54 days after sowing. Average woody biomass of six accessions at maturity, 200 days after sowing, was high (19.9 Mg ha-1), showing its potential for shortterm firewood production. Total nutrient uptake for production of woody biomass (200 days of growth) was no more demanding than growing the plant to the green-manuring stage of 50–60 days' growth.  相似文献   

17.
Denitrification losses from puddled rice soils in the tropics   总被引:4,自引:0,他引:4  
Summary Although denitrification has long been considered a major loss mechanism for N fertilizer applied to lowland rice (Oryza sativa L.) soils, direct field measurements of denitrification losses from puddled rice soils in the tropics have only been made recently. This paper summarizes the results of direct measurement and indirect estimation of denitrification losses from puddled rice fields and reviews the status of research methodology for measurement of denitrification in rice fields. The direct recovery of (N2+N2O)-15N from 15N-enriched urea has recently been measured at sites in the Philippines, Thailand, and Indonesia. In all 12 studies, recoveries of (N2+N2O)-15N ranged from less than 0.1 to 2.2% of the applied N. Total gaseous N losses, estimated by the 15N-balance technique, were much greater, ranging from 10 to 56% of the applied urea-N. Denitrification was limited by the nitrate supply rather than by available C, as indicated by the values for water-soluble soil organic C, floodwater (nitrate+nitrite)-N, and evolved (N2+N2O)-15N from added nitrate. In the absence of runoff and leaching losses, the amount of (N2+N2O)-15N evolved from 15N-labeled nitrate was consistently less than the unrecovered 15N in 15N balances with labeled nitrate, which presumably represented total denitrification losses. This finding indicates that the measured recoveries of (N2+N2O)-15N had underestimated the denitrification losses from urea. Even with a probable two-or threefold underestimation, direct measurements of (N2+N2O)-15N failed to confirm the appreciable denitrification losses often estimated by the indirect difference method. This method, which determines denitrification losses by the difference between total 15N loss and determined ammonia loss, is prone to high variability. Measurements of nitrate disappearance and 15N-balance studies suggest that nitrification-denitrification occurs under alternate soil drying and wetting conditions both during the rice cropping period and between rice crops. Research is needed to determine the magnitude of denitrification losses when soils are flooded and puddled for production of rice.  相似文献   

18.
Naturally growing Sesbania species with tolerance to unfavourable habitats are widely distributed in non-cultivated seasonally wetland areas in Uruguay. We investigated the relative abundance, diversity and symbiotic efficiency of Sesbania punicea and S. virgata rhizobia in three ecologically different undisturbed and water-logged sites in Uruguay. Numbers of native-soil rhizobia infective on S. punicea or S. virgata were low, with higher numbers associated with the presence of S. virgata. Plants of S. virgata inoculated with soil suspension showed aerial and nodule biomass greater than that obtained with S. punicea. The rhizobia nodulating Sesbania species in water-logged lands in different regions of Uruguay were diverse differing in growth rates, acid production, growth at 39°C and in LB medium, host range and symbiotic efficiency. Seventeen representative strains clustered into four groups on the basis of phenotypic characteristics, ARDRA and DNA fingerprinting (GTG5-PCR). Partial sequence of 16S rRNA from eight of these strains classified them into at least two genera with four species: Azorhizobium doebereinerae, Rhizobium sp. related to R. etli and two different Rhizobium sp.-Agrobacterium. Our results confirm the presence of the specie Azorhizobium doebereinerae as microsymbionts of S. virgata in South America. No strain of Rhizobium etli has previously been reported as a microsymbiont of Sesbania, though R. etli like organisms have also been recovered from Dalea purpurea and Desmanthus illinoensis. Significant increases in dry matter production were obtained with S. virgata plants inoculated with selected rhizobial strains under growth chamber conditions.  相似文献   

19.
Summary Field experiments were carried out to determine the effects of single and mixed inoculations with Rhizobium and vesicular-arbuscular mycorrhiza (VAM) on nodulation, symbiotic N2 fixation and yield of soybeans in six Taiwan subtropical-tropical sites. Inoculation with Rhizobium alone significantly increased nodulation, nodule weight and nitrogenase activity of nodules in three out of six experimental fields, and affected soybean yields in the range –13% to + 134%. Inoculation with VAM fungi alone did not have a significant effect on nodulation and nitrogenase activity. Mycorrhiza inoculation affected soybean yields in the range –13% to + 65%, but only the yield increases at one out of six sites with N application were statistically significant. Mixed inoculation with Rhizobium and mycorrhiza affected yields in the range –8% to + 145% A synergistic effect from mixed inoculation of Rhizobium-mycorrhiza on soybean yields was found in one out of six experimental fields. The yield response to N application (40 kg N ha–1) in these six paddy-field trials was not significant. These results suggest that single or mixed inoculation of rhizobia can greatly assist soybean grain yields and can replace N fertilizers.  相似文献   

20.
Information on the compatibility of Rhizobium sp. with seed-protectant chemicals is controversial because of variations in the methods used and the lack of quantitative data. The present study was conducted to determine the influence of the fungicide mancozeb (ethylenebis-dithiocarbamate), at recommended doses, on the growth, survival and symbiotic properties of Rhizobium sp. infecting peanut plants (Arachis hypogaea) under laboratory and field conditions. The results indicated that mancozeb decreased growth in pure culture by 50% of both Rhizobium sp. USDA 3187 and a strain isolated from peanut nodules. However, no differences were found in peanut seed yields under field conditions. These results suggest that the soil environment could reduce the probability of the direct, harmful effects of mancozeb on bacterial growth. Received: 21 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号