首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

The beneficial effect to the environment of nitrate (NO3 ?) removal by denitrification depends on the partitioning of its end products into nitrous oxide (N2O), nitric oxide (NO), and dinitrogen (N2). However, in subtropical China, acidic forest mineral soils are characterized by negligible denitrification capacity and thus reactive forms of N could not be effectively converted to inert N2, resulting in a negative environmental consequence. In this study, the influences of C input from litter decomposition on denitrification rate and its gaseous products under anoxic conditions in the acidic coniferous and broad-leaved forest soils in subtropical China were investigated using the acetylene (C2H2) blockage technique in the laboratory.

Materials and methods

The coniferous and broad-leaved forest soils with and without litter addition were incubated under anaerobic conditions for 244 h. There were three treatments for each forest soil including addition of 0.5 and 1% corresponding litter (gram of litter per gram of soil) and the control without addition of litter.

Results and discussion

The results showed that litter addition into the broad-leaved forest soil had no effect on average rates of denitrification (calculated as the sum of NO, N2O, and N2), whereas in the coniferous forest soil, the addition resulted in a significant increase in average denitrification rate. In the broad-leaved forest soil, both rates of litter addition decreased the production of NO but increased the production of N2, and high rates of litter addition into the coniferous forest soil promoted the reduction of N2O to N2.

Conclusions

Increased decomposition of litter in the forest soils could effectively reduce N2O and NO production through denitrification under anaerobic conditions.  相似文献   

2.

Purpose

Few studies have examined the effects of biochar on nitrification of ammonium-based fertilizer in acidic arable soils, which contributes to NO3 ? leaching and soil acidification.

Materials and methods

We conducted a 42-day aerobic incubation and a 119-day weekly leaching experiment to investigate nitrification, N leaching, and soil acidification in two subtropical soils to which 300 mg N kg?1 ammonium sulfate or urea and 1 or 5 wt% rice straw biochar were applied.

Results and discussion

During aerobic incubation, NO3 ? accumulation was enhanced by applying biochar in increasing amounts from 1 to 5 wt%. As a result, pH decreased in the two soils from the original levels. Under leaching conditions, biochar did not increase NO3 ?, but 5 wt% biochar addition did reduce N leaching compared to that in soils treated with only N. Consistently, lower amounts of added N were recovered from the incubation (KCl-extractable N) and leaching (leaching plus KCl-extractable N) experiments following 5 wt% biochar application compared to soils treated with only N.

Conclusions

Incorporating biochar into acidic arable soils accelerates nitrification and thus weakens the liming effects of biochar. The enhanced nitrification does not necessarily increase NO3 ? leaching. Rather, biochar reduces overall N leaching due to both improved N adsorption and increased unaccounted-for N (immobilization and possible gaseous losses). Further studies are necessary to assess the effects of biochar (when used as an addition to soil) on N.  相似文献   

3.

Purpose

Agricultural practises impact soil properties and N transformation rate, and have a greater effect on N2O production pathways in agricultural soils compared with natural woodland soils. However, whether agricultural land use affects N2O production pathways in acidic soils in subtropical regions remains unknown.

Materials and methods

In this study, we collected natural woodland soil (WD) and three types of agricultural soils, namely upland agricultural (UA), tea plantation (TP) and bamboo plantation (BP) soils. We performed paired 15N-tracing experiment to investigate the effects of land use types on N2O production pathways in acidic soils in subtropical regions in China.

Results and discussion

The results revealed that heterotrophic nitrification is the dominant pathway of N2O production in WD, accounting for 44.6 % of N2O emissions, whereas heterotrophic nitrification contributed less than 2.7 % in all three agricultural soils, due to a lower organic C content and soil C/N ratio. In contrast, denitrification dominated N2O production in agricultural soils, accounting for 54.5, 72.8 and 77.1 % in UA, TP and BP, respectively. Nitrate (NO3 ?) predominantly affected the contribution from denitrification in soils under different land use types. Autotrophic nitrification increased after the conversion of woodland to agricultural lands, peaking at 42.8 % in UA compared with only 21.5 % in WD, and was positively correlated with soil pH. Our data suggest that pH plays a great role in controlling N2O emissions through autotrophic nitrification following conversion of woodland to agricultural lands.

Conclusions

Our results demonstrate the variability in N2O production pathways in soils of different land use types. Soil pH, the quantity and quality of organic C and NO3 ? content primarily determined N2O emissions. These results will likely assist modelling and mitigation of N2O emissions from different land use types in subtropical acidic soils in China and elsewhere.
  相似文献   

4.

Purpose

Nitrous oxide (N2O) production and reduction rates are dependent on the interactions with each other and it is therefore important to evaluate them within the context of simultaneously operating N2O emission and reduction. The objective of this study was to quantify the simultaneously occurring N2O emission and reduction across a range of subtropical soils in China, to gain a mechanistic understanding of potential N2O dynamics under the denitrification condition and their important drivers, and to evaluate the potential role of the subtropical soils as either sources or sinks of N2O through denitrification.

Materials and methods

Soils (45, from a range of different land uses and soil parent materials) were collected from the subtropical region of Jiangxi Province, China, and tested for their potential capacity for N2O emission and N2O reduction to N2 during denitrification. N2O emission and reduction were determined in a closed system under N2 headspace after the soils were treated with 200?mg?kg?1 NO 3 ? -N and incubation at 30?°C for 28?days. The soil physical and chemical properties, the temporal variations in headspace N2O concentration, and NO 3 ? -N and NH 4 + -N concentrations in the soil slurry were measured.

Results and discussion

Variations in N2O concentration (N) over incubation time (t) were consistent with an equation in which average R 2?=?0.84?±?0.11 (p?<?0.05): $ N = A \times \left( {1 - \exp \left( { - {k_1} \times t} \right)} \right) - B \times \exp \left( {{k_2} \times t} \right) $ , where A is the total N2O emission during the incubation, B is a constant, and k 1 and k 2 are the N2O emission constant and reduction constants, respectively. The results of the simulation showed that k 1 was greater than k 2. The reduced amount of NO 3 ? -N in the first 7?days of incubation and the N2O emission rate (the percentage of A value relative to the amount of NO 3 ? -N reduced during the 28-day incubation, R n) were able to explain 82.9?% (p?<?0.01) of the variation in total N2O emission (A) during the incubation for the soil samples studied, indicating that the total amount of N2O emitted was determined predominately by denitrification capacity. Soil organic carbon content and soil nitrogen mineralization are the key factors that determine differences in the amounts of reduced NO 3 ? -N among the soil samples. The R n value decreased with increasing k 2 (p?<?0.01), indicating that soils with higher N2O reduction capacity under these incubation conditions would emit less N2O per unit of denitrified NO 3 ? -N than the other soils. Results are valuable in the evaluation of net N2O emissions in the subtropical soils and the global N budget.

Conclusions

In a closed, anaerobic system, variations in N2O concentration in the headspace over the incubation time were found to be compatible with a nonlinear equation. Soil organic carbon and the amount of NH 4 + -N mineralized from the organic N during the first 7?days of incubation are the key factors that determine differences in the N2O emission constant (k 1), the N2O reduction constant (k 2), the total N2O emission during the incubation (A) and the N2O emission rate (R n).  相似文献   

5.

Purpose

Nitrogen (N) is one of the most important elements that can limit plant growth in forest ecosystems. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are considered as the key drivers of global N biogeochemical cycling. Soil ammonia-oxidizing microbial communities associated with subtropical vegetation remain poorly characterized. The aim of this study was to determine how AOA and AOB abundance and community structure shift in response to four typical forest vegetations in subtropical region.

Materials and methods

Broad-leaved forest (BF), Chinese fir forest (CF), Pinus massoniana forest (PF), and moso bamboo forest (MB) were widely distributed in the subtropical area of southern China and represented typical vegetation types. Four types of forest stands of more than 30 years grew adjacent to each other on the same soil type, slope, and elevation, were chosen for this experiment. The abundance and community structure of AOA and AOB were characterized by using real-time PCR and denaturing gradient gel electrophoresis (DGGE). The impact of soil properties on communities of AOA and AOB was tested by canonical correspondence analysis (CCA).

Results and discussion

The results indicated that AOB dominated in numbers over AOA in both BF and MB soils, while the AOA/AOB ratio shifted with different forest stands. The highest archaeal and bacterial amoA gene copy numbers were detected in CF and BF soils, respectively. The AOA abundance showed a negative correlation with soil pH and organic C but a positive correlation with NO3 ??N concentration. The structures of AOA communities changed with vegetation types, but vegetation types alone would not suffice for shaping AOB community structure among four forest soils. CCA results revealed that NO3 ??N concentration and soil pH were the most important environmental gradients on the distribution of AOA community except vegetation type, while NO3 ??N concentration, soil pH, and organic C significantly affected the distribution of the AOB communities.

Conclusions

These results revealed the differences in the abundance and structure of AOA and AOB community associated with different tree species, and AOA was more sensitive to vegetation and soil chemical properties than AOB. N bioavailability could be directly linked to AOA and AOB community, and these results are useful for management activities, including forest tree species selection in areas managed to minimize N export to aquatic systems.  相似文献   

6.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

7.

Purpose

Nitrification and denitrification processes dominate nitrous oxide (N2O) emission in grassland ecosystems, but their relative contribution as well as the abiotic factors are still not well understood.

Materials and methods

Two grassland soils from Duolun in Inner Mongolia, China, and Canterbury in New Zealand were used to quantitatively compare N2O production and the abundance of bacterial and archaeal amoA, denitrifying nirK and nirS genes in response to N additions (0 and 100 μg NH4 +–N g?1 dry soil) and two soil moisture levels (40 and 80 % water holding capacity) using microcosms.

Results and discussion

Soil moisture rather than N availability significantly increased the nitrification rate in the Duolun soil but not in the Canterbury soil. Moreover, N addition promoted denitrification enzyme activities in the Canterbury soil but not in the Duolun soil. The abundance of bacterial and archaeal amoA genes significantly increased as soil moisture increased in the Duolun soil, whereas in the Canterbury soil, only the abundance of bacterial amoA gene increased. The increase in N2O flux induced by N addition was significantly greater in the Duolun soil than in the Canterbury soil, suggesting that nitrification may have a dominant role in N2O emission for the Duolun soil, while denitrification for the Canterbury soil.

Conclusions

Microbial processes controlling N2O emission differed in grassland soils, thus providing important baseline data in terms of global change.
  相似文献   

8.

Purpose

Hydroxyl ion release by maize (Zea mays L.) roots under acidic conditions was investigated with a view to develop a bioremediation method for ameliorating acid soils in tropical and subtropical regions.

Materials and methods

Two hydroponic culture experiments and one pot experiment were conducted: pH, nitrogen state, and rhizobox condition, which investigated the effects of different nitrogen forms on hydroxyl release by maize roots under acidic conditions.

Results and discussion

The pH of the culture solution increased as culture time rose. The gradient of change increased with rising NO3 ?/NH4 + molar ratios. Maize roots released more hydroxyl ions at pH 4.0 than at pH 5.0. The amount of hydroxyl ions released by maize roots at a constant pH was greater than those at a nonconstant pH. Application of calcium nitrate reduced exchangeable acidity and increased the pH in an Ultisol rhizosphere, compared with bulk soil. The increasing magnitude of soil pH was greater at higher doses of N. The absorption of NO3 ?–N increased as the NO3 ?/NH4 + molar ratios rose, which was responsible for hydroxyl ion release and pH increases in culture solutions and rhizosphere.

Conclusions

Root-induced alkalization in the rhizosphere resulting from nitrate absorption by maize plants can be used to ameliorate acidic Ultisols.  相似文献   

9.

Purpose

Nitrous oxide (N2O) is produced naturally in soils through microbial processes of nitrification and denitrification. In recent years, the long-term application of nitrogen-heavy fertilizers has led to the acidification of tea orchard soils with high N2O emission. The present research aimed at finding out which process (nitrification or denitrification) dominates in N2O production, whether certain fertilizer managements could reduce N2O emission, and the effects of fertilizer management on the abundance of functional genes.

Materials and methods

Two nitrification inhibitors, 3, 4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD), combined with different N fertilizers (ammonium sulfate and potassium nitrate) were applied to highly acidic tea orchard soil in an aerobic incubation experiment. Both amoA and nosZ gene abundances from different treatments were determined by quantitative PCR. An anaerobic nitrate effect test was carried out using C2H2 inhibition method.

Results and discussion

The application of nitrate fertilizers significantly (P?<?0.05) enhanced total N2O emission. A linear regression analysis between total N2O emission and average nitrate contents indicated that denitrification is the dominant source of N2O in this tea orchard soil. In the anaerobic incubation, no significant difference of N2O emission was observed between KNO3 and no KNO3 treatments before 96 h. Quantitative PCR revealed lower copy numbers of nosZ in nitrate-associated fertilizer-treated soils than the soils from other treatments. Compared with the control, ammonium fertilizers with DCD or DMPP significantly (P?<?0.05) inhibited nitrate production as well as N2O.

Conclusions

These results showed that denitrification is the dominant source of N2O in this highly acidic soil. Nitrate addition could significantly inhibit the abundance of nitrous oxide reductase, therefore causing high N2O emission. The application of ammonium fertilizers with DCD or DMPP could significantly reduce N2O emission, possibly due to the effective inhibition of nitrate production.  相似文献   

10.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

11.
Upland soils are the most important terrestrial sink for the greenhouse gas CH4. The oxidation of CH4 is highly influenced by reactive N which is increasingly added to many ecosystems by atmospheric deposition and thereby also alters the labile C pool in the soils. The interacting effects of soil N availability and the labile C pool on CH4 oxidation are not well understood. We conducted a laboratory experiment with soil columns consisting of homogenised topsoil material from a temperate broad-leaved forest to study the net CH4 flux under the combined or isolated addition of NO 3 ? and glucose as a labile C source. Addition of NO 3 ? and glucose reduced the net CH4 uptake of the soil by 86% and 83%, respectively. The combined addition of both agents led to a nearly complete inhibition of CH4 uptake (reduction by 99.4%). Our study demonstrates a close link between the availability of C and N and the rate of CH4 oxidation in temperate forest soils. Continued deposition of NO 3 ? has the potential to reduce the sink strength of temperate forest soils for CH4.  相似文献   

12.

Purpose

Alpine ecosystems on the Qinghai-Tibetan Plateau are sensitive to global climatic changes. However, the effects of temperature change resulting from global warming or seasonal variation on soil N availability in those ecosystems are largely unknown.

Materials and methods

We therefore conducted a 15N tracing study to investigate the effects of various temperatures (5–35 °C) on soil gross N transformation rates in an alpine meadow (AM) soil on the Qinghai-Tibetan Plateau. A natural secondary coniferous forest (CF) soil from the subtropical region was chosen as a reference to compare the temperature sensitivity of soil gross N transformation rates between alpine meadow and coniferous forest.

Results and discussion

Our results showed that increasing temperature increased gross N mineralization and NH4 + immobilization rates and overall enhanced N availability for plants in both soils. However, both rates in the CF soil were less sensitive to a temperature change from 5 to 15 °C compared to the AM soil. In both soils, different N retention mechanisms could have been operating with respect to changing temperatures in the different climatic regions. In the CF soil, the absence of NO3 ? production at all incubation temperatures suggests that in the subtropical soil which is characterized by high rainfall, an increase in N availability due to increasing temperature could be completely retained in soils. In contrast, the AM soil may be vulnerable to N losses with respect to temperature changes, in particular at 35 °C, in which higher nitrification rates were coupled with lower NH4 + and NO3 ? immobilization rates.

Conclusions

Our results suggest that increased soil temperature arising from global warming and seasonal variations will most likely enhance soil N availability for plants and probably increase the risk of N losses in the alpine meadow on the Qinghai-Tibetan Plateau.
  相似文献   

13.

Purpose

Nitrous oxide (N2O) is a potent greenhouse gas which is mainly produced from agricultural soils through the processes of nitrification and denitrification. Although denitrification is usually the major process responsible for N2O emissions, N2O production from nitrification can increase under some soil conditions. Soil pH can affect N2O emissions by altering N transformations and microbial communities. Bacterial (AOB) and archaeal (AOA) ammonia oxidisers are important for N2O production as they carry out the rate-limiting step of the nitrification process.

Material and methods

A field study was conducted to investigate the effect of soil pH changes on N2O emissions, AOB and AOA community abundance, and the efficacy of a nitrification inhibitor, dicyandiamide (DCD), at reducing N2O emissions from animal urine applied to soil. The effect of three pH treatments, namely alkaline treatment (CaO/NaOH), acid treatment (HCl) and native (water) and four urine and DCD treatments as control (no urine or DCD), urine-only, DCD-only and urine + DCD were assessed in terms of their effect on N2O emissions and ammonia oxidiser community growth.

Results and discussion

Results showed that total N2O emissions were increased when the soil was acidified by the acid treatment. This was probably due to incomplete denitrification caused by the inhibition of the assembly of the N2O reductase enzyme under acidic conditions. AOB population abundance increased when the pH was increased in the alkaline treatment, particularly when animal urine was applied. In contrast, AOA grew in the acid treatment, once the initial inhibitory effect of the urine had subsided. The addition of DCD decreased total N2O emissions significantly in the acid treatment and decreased peak N2O emissions in all pH treatments. DCD also inhibited AOB growth in both the alkaline and native pH treatments and inhibited AOA growth in the acid treatment.

Conclusions

These results show that N2O emissions increase when soil pH decreases. AOB and AOA prefer different soil pH environments to grow: AOB growth is favoured in an alkaline pH and AOA growth favoured in more acidic soils. DCD was effective in inhibiting AOB and AOA when they were actively growing under the different soil pH conditions.  相似文献   

14.

Purpose

Hoop pine (Araucaria cunninghamii) is a nitrogen (N)-demanding native Australian softwood plantation species. Litter quality and its effects on soil mineral N and 15N transformations have not been well studied in the hoop pine plantation and adjacent native forest. The present study was conducted to determine the impact of 15N injection depth and litter additions on the dynamics and fate of mineral 15N and also to compare the difference in litter quality, 15N dynamics, and fate between the hoop pine plantation (HP) and the adjacent native forest (NF).

Materials and methods

The experiments were done in the Yarraman State Forest (26°52′ S, 151°51′ E), southeastern Queensland. Materials of litter addition were prepared on the basis of ten random samples of litters taken from the NF and HP sites using a 1?×?1-m quadrat. Litter additions were defined as: SL represented the average condition of forest floor in the forest ecosystems and DL represented the double average amount of litters in the forest ecosystem. Experiment 1 covered 2 forest types (NF and HP)?×?3 litter rates (nil litter, SL, and DL)?×?3 15N injection depths (0, 2.5, and 5.0 cm). Experiment 2 included 2 forest types (NF and HP)?×?2 litter rates (nil litter and SL)?×?3 injection depths (0, 2.5, and 5.0 cm) of distilled water. The in situ core incubation method was used with an incubation period of 28 days. The isotope ratio of mineral N or/and total N (soil and litter) were analyzed using an isotope ratio mass spectrometer with a Eurovector elemental analyzer (Isoprime-EuroEA 3000).

Results

Total N and δ 15N were significantly higher, and C/N ratios and δ 13C were significantly lower in the NF litters than in the HP litters. The NF litters had significantly lower total 15N and total 15N recovery than the HP litters after 15N addition. Litter addition had no significant effect on mineral 15N transformations and δ 15N in the NF soil, but decreased 15NO 3 ? –N, mineral 15N, and δ 15N and increased immobilized 15N in the HP soil. The depth of added 15NH 4 + significantly altered total 15N, δ 15N, and total 15N recovery in the litters, whereas it did not influence 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, or immobilized 15N in soils in the two forest ecosystems.

Discussion

The NF litters had significantly higher δ 15N than the HP litters, indicating that the NF soil had a higher rate of nitrification than the HP soil. Higher litter quality in the NF was an important driving force for N cycling to promote strong N dynamics in the NF soil over the HP soil. The HP litters had significantly higher total 15N than the NF litters after 15N addition, implying that soil mineral N was relatively deficient in the HP in comparison with the NF. Litters decreased nitrification and increased immobilization in the HP soil, showing forest litters resulted in more N immobilization to prevent the loss of substantial quantities of NO 3 ? through leaching or denitrification. The depth of 15N injection did not significantly alter concentrations of 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, and immobilized 15N in the NF and HP soils, suggesting that the depth of 15N injection had no significant influence on the evaluation of soil N transformations.

Conclusions

The NF litters had significantly higher total N and δ 15N and lower C/N ratios and δ 13C than the HP litters. Mineral N was relatively insufficient in the HP soil relative to the NF soil. The HP litters facilitated more N immobilization in the soil to reduce the loss of substantial quantities of NO 3 ? through leaching or denitrification. The depth of 15N added did not significantly alter concentrations of 15NH 4 + –N, 15NO 3 ? –N, mineral 15N, and immobilized 15N in the NF and HP soils. The application of 15N solution by uniform sprinkling onto the soil surface can be used to study in situ field N (including mineral 15N) transformations in the 10-cm depth soils of both forest ecosystems.  相似文献   

15.

Purpose

The aim of the research was to explore the effect of Chinese milk vetch (CM vetch) addition and different water management practices on soil pH change, C and N mineralization in acid paddy soils.

Materials and methods

Psammaquent and Plinthudult paddy soils amended with Chinese milk vetch at a rate of 12 g?kg?1 soil were incubated at 25 °C under three different water treatments (45 % field capacity, CW; alternating 1-week wetting and 2-week drying cycles, drying rewetting (DRW) and waterlogging (WL). Soil pH, dissolved organic carbon, dissolved organic nitrogen (DON), CO2 escaped, microbial biomass carbon, ammonium (NH4 +) and nitrate (NO3 ?) during the incubation period were dynamically determined.

Results and discussion

The addition of CM vetch increased soil microbial biomass concentrations in all treatments. The CM vetch addition also enhanced dissolved organic N concentrations in all treatments. The NO3–N concentrations were lower than NH4–N concentrations in DRW and WL. The pH increase after CM vetch addition was 0.2 units greater during WL than DRW, and greater in the low pH Plinthudult (4.59) than higher pH Paleudalfs (6.11) soil. Nitrogen mineralization was higher in the DRW than WL treatment, and frequent DRW cycles favored N mineralization in the Plinthudult soil.

Conclusions

The addition of CM vetch increased soil pH, both under waterlogging and alternating wet–dry conditions. Waterlogging decreased C mineralization in both soils amended with CM vetch. Nitrogen mineralization increased in the soils subjected to DRW, which was associated with the higher DON concentrations in DRW than in WL in the acid soil. Frequent drying–wetting cycles increase N mineralization in acid paddy soils.  相似文献   

16.

Purpose

The key factors influencing pH buffering capacity of acid soils from tropical and subtropical regions, and effects of soil evolution and incorporation of biochars on pH buffering capacity were investigated to develop suitable methods to increase pH buffering capacity of acid soils.

Materials and methods

A total of 24 acid soils collected from southern China were used. The pH buffering capacity was determined using acid–base titration. The values of pH buffering capacity were obtained from the slope of titration curves of acid or alkali additions plotted against pH in the pH range 4.0–7.0. Two biochars were prepared from straws of peanut and canola using a low temperature pyrolysis method. After incubation of three acid soils, pH buffering capacity was then determined.

Results and discussion

pH buffering capacity had a range of 9.1–32.1 mmol kg–1 pH–1 for 18 acid soils from tropical and subtropical regions of China. The pH buffering capacity was highly correlated (R 2?=?0.707) with soil cation exchange capacity (CEC) measured with ammonium acetate method at pH 7.0 and decreased with soil evolution due to the decreased CEC. Incorporation of biochars at rates equivalent to 72 and 120 t ha?1 increased soil pH buffering capacity due to the CEC contained in the biochars. Incorporation of peanut straw char which itself contained more CEC and alkalinity induced more increase in soil CEC, and thus greater increase in pH buffering capacity compared with canola straw char. At 5% of peanut straw char added, soil CEC increased by 80.2%, 51.3%, and 82.8% for Ultisol from Liuzhou, Oxisol from Chengmai and Ultisol from Kunlun, respectively, and by 19.8%, 19.6%, and 32.8% with 5% of canola straw char added, respectively; and correspondingly for these soils, the pH buffering capacity increased by 73.6%, 92.0%, and 123.2% with peanut straw char added; and by 31.3%, 25.6%, and 52.3% with canola straw char added, respectively. Protonation/deprotonation of oxygen-containing functional groups of biochars was the main mechanism for the increase of pH buffering capacity of acid soils with the incorporation of biochars.

Conclusions

CEC was a key factor determining pH buffering capacity of acid soils from tropical and subtropical regions of China. Decreased CEC and content of 2:1-type clay minerals during evolution of tropical soils led to decreased pH buffering capacity. Incorporation of biochars generated from crop straws did not only ameliorate soil acidity, but also increased soil pH buffering capacity.
  相似文献   

17.
Denitrification represents one of the main microbial processes producing the primary and secondary greenhouse gases nitrous oxide (N2O) and nitric oxide (NO) in soils. It is well established that abiotic factors like the soil water content and the availability of nitrogen (N) are key parameters determining the activity of denitrifiers in soils. However, soils differing regarding their characteristics such as the content of Corg, the soil texture or the pH value may respond in specific manners to equivalent changes in soil moisture and N input. Thus, short-term incubation experiments were performed to test and compare the capacity of two contrasting Austrian forest soils to respond to mineral N application at increased soil water contents. Soils from the pristine Rothwald forest (rich in Corg) and the more acidic Schottenwald forest (poor in Corg) were amended with either NH 4 + -N or NO 3 ? -N and were incubated at 40% and 70% water-filled pore space for 4 days. Changes in mineral N pools, nitrite reductase activity and NO and N2O emission rates were measured, and the abundance and structural community composition of the functional group involved in nitrite reduction were analysed via quantitative real-time polymerase chain reaction and terminal restriction fragment length polymorphism analysis of the nirK gene. Rapid and distinct activity responses to increased soil moisture and altered mineral nitrogen availability were observed in two contrasting forest soils. In both soils, nitrogen oxide emission rates were stimulated by N inputs and, depending on the soil moisture status, either NO or N2O emission was prevailing. However, different N cycling processes appeared to predominate in either soil under equivalent treatment. Nitrogen oxide emissions peaked following NO 3 ? application in Schottenwald soils but were the highest after NH 4 + application in Rothwald soils. Denitrifying (nirK) communities differed significantly in Rothwald and Schottenwald soils; however, changes in the community structure were marginal during the short-term incubation. Abundances of nirK genes remained unaffected by N application in either soil. The soil water content affected nirK gene abundances only in Rothwald soil, indicating a distinct reaction of nitrite reducing communities in the two soils.  相似文献   

18.

Purpose

The effect of Fe oxides on the natural acidification of highly weathered soils was investigated to explore the natural acidification process in variable charge soils

Materials and methods

A variety of highly weathered soils with different Fe oxide contents were collected from the tropical and subtropical regions of southern China to investigate the soil acidity status. Electrodialysis experiments were conducted to simulate natural acidification process and promote accelerated acidification in a variety of systems such as relatively less weathered soils, mixtures of goethite with montmorillonite or kaolinite, an Alfisol, a limed Ultisol, and Fe oxides coated montmorillonite. The objective was to gather evidence for the occurrence of Fe oxide inhibited natural acidification in highly weathered soils.

Results and discussion

Highly weathered soils with free Fe2O3?<?100?g/kg (17 soils) had an average pH?=?4.64?±?0.06, while the soils with free Fe2O3?>?100?g/kg (49 soils) had an average pH?=?5.25?±?0.04. A significant linear relationship was found between the soil pH and Fe oxide content of these soils. Similar results were obtained in electrodialysis experiments, i.e., in soils that underwent accelerated acidification. A negative correlation was found between the Fe oxide content and exchangeable acidity or effective cation exchange capacity, respectively. In another set of experiments, goethite slowed down acidification in experiments conducted with this Fe oxide and montmorillonite, or kaolinite, or an Alfisol, or a limed Ultisol. The overlapping of the electrical double layers on the positively charged Fe oxide particles and negatively charged minerals may have caused the release and subsequent leaching of the base cations, but inhibited the production of exchangeable acidity cations. In addition, when montmorillonite or Fe oxide-coated montmorillonite were electrodialyzed in another set of experiments, exchangeable acidity of the former was much greater than that of the latter, suggesting that the positively charged Fe oxide coatings on montmorillonite have partially neutralized the permanent negative charge on montmorillonite surfaces, decreasing exchangeable acidity.

Conclusions

Fe oxides may function as natural ??anti-acidification?? agents through electric double-layer overlapping and coating of phylliosilicates in highly weathered soils.  相似文献   

19.

Purpose

Initial soil pH determines the direction and magnitude of pH change after residue addition. This study aimed to evaluate the relative importance of initial soil pH and rate of residue application in determining subsequent pH change, nitrogen (N) mineralization, and soil-exchangeable aluminum (Al).

Materials and methods

An incubation experiment was conducted for 102 days on a Plinthudult soil and a Paleudalf soil, where pH gradients were produced after application of direct current (DC). Rates of vetch applications were 0, 5, 15, 30, and 50 g kg?1 soil.

Results and discussion

Increasing rates of vetch application caused greater increases in soil pH, but no consistent increase in soil pH at higher initial pH range (4.40~6.74), because of nitrification. There was a positive correlation between alkalinity production and the initial soil pH at day 14, while correlations became negative at days 56 and 102. Mineral N accumulated as NH4 +–N in low pH soils, due to limited nitrification, while NO3 ?–N dominated in higher pH soils. Application of vetch decreased KCl-extractable Al, probably because of complexation of Al by organic matter and precipitation of Al as a result of increased pH, reductions in Al concentration increased with increasing rates of vetch application. However, this amelioration effect on Al concentration weakened with time in higher pH soils.

Conclusions

Application of vetch residue can significantly increase soil pH and concentrations of mineral N and reduce exchangeable Al. These amelioration effects are enhanced with increased rate of vetch addition and vary with time depending on the initial pH of the soil.  相似文献   

20.

Purpose

Soil labile carbon (C) and nitrogen (N) pools are considered to be sensitive indicators of changes in soil C and N pools. In this study, we examined possible factors affecting spatial and seasonal variations in soil labile C and N pools in the riparian zones in Southeast Queensland, Australia.

Materials and methods

Soil and sediment samples were collected from two sites in the riparian areas. The spatial and seasonal variabilities of soil moisture, hot-water extractable organic C and total N (HWEOC and HWETN), microbial biomass C and N (MBC and MBN), and the relationships among them were examined.

Results and discussion

Soil labile C and N pools decreased along the transects in both soil depths of the two soil types, with the peak or bottom of values detected between upland slope and the riparian zone. Other factors rather than soil moisture were more important in regulating seasonal changes of soil HWEOC and HWETN except the dry-rewetting influence in November 2013. Soil moisture played a significant role in the seasonal variations of MBC and MBN. Soil labile C (HWEOC and MBC) and N (HWETN and MBN) pools at Site 1 (S1; heavy texture), which were significantly higher than those at Site 2 (S2; light texture).

Conclusions

Soil moisture would be an important driving factor for the spatial and seasonal distributions of soil labile C and N pools. Our study highlighted the importance of riparian zones as the hot spot of soil C and N dynamics, especially at the onset of rewetting dry soil in subtropical Australia.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号