首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of zucchini yellow mosaic virus (ZYMV) infection and pretreatments with salicylic acid (SA) on biomass accumulation of pumpkin (Cucurbita pepo cv. Eskandarani) were investigated. The response of photosynthesis, transpiration and the activities of antioxidant enzymes in leaves was also considered. Significant reductions in growth parameters (i.e. leaf area, biomass and shoot height), photosynthesis and chlorophyll a and b content were detected in ZYMV-infected leaves in comparison to healthy controls. Antioxidant enzyme activities were increased up to 3-fold for peroxidase (POD), 2-fold for ascorbate peroxidase (APX) and catalase (CAT) activities and 1.3-fold for SOD activity by virus infection. ZYMV infection also caused increases in H2O2 and malondialdehyde (MDA) contents. These results suggest that ZYMV infection causes oxidative stress in pumpkin leaves leading to the development of epidemiological symptoms. Interestingly, spraying pumpkin leaves with SA led to recovery from the undesirable effects of ZYMV infection. Leaves treated with 100 μM SA three days before inoculation had the appearance of healthy leaves. No distinct disease symptoms were observed on the leaves treated with 100 μM SA followed by inoculation with ZYMV. In non-infected plants, SA application increased activities of POD and superoxide dismutase (SOD) and inhibited APX and CAT activities.In contrast, SA treatment followed by ZYMV inoculation stimulated SOD activity and inhibited activities of POD, APX and CAT. In addition, MDA displayed an inverse relation, indicating inhibition of lipid peroxidation in cells under SA treatment. It is suggested that the role of SA in inducing plant defense mechanisms against ZYMV infection might have occurred through the SA-antioxidant system. Such interference might occur through inhibition or activation of some antioxidant enzymes, reduction of lipid peroxidation and induction of H2O2 accumulation following SA application.  相似文献   

2.
Salicylic acid is used for regulation of oxidative stress in plants subjected to unfavorable environmental conditions. Application of herbicides for the purpose of weed killing can affect not only the weeds but also the main crop as well. Many herbicides have the ability to cause oxidative stress and further degradation of cell components. In this work, SA was used to alleviate the oxidative stress caused in response to clethodim herbicide in maize leaves. The results demonstrated that, spraying of clethodim caused yellowing of leaves and sometimes browning or drying of leaf tips with high clethodim doses. Contrary, leaves showed no injuries when treated with 1 mM SA 3 days prior clethodim application. Elevated amounts of H2O2 and MDA were detected in clethodim treated leaves compared with control indicating ROS formation and lipid peroxidation. Excessive ROS formation led to oxidative stress which followed by degradation of membranous structures. In SA treated leaves, the contents of H2O2 and MDA were more or less similar to the corresponding controls. A change in the antioxidant enzymes activities due to clethodim and SA treatment was noticed. For example, the activities of POD and APX were induced while SOD and CAT were more or less reduced in response to clethodim. SA treatment prior clethodim application could induce POD but inhibit CAT. Moreover, SOD and APX activities were adjusted to be similar to those of the control. Another mechanism of SA regulation of the oxidative stress occurred through the formation of antioxidants in the form of phenolic compounds. For that, spraying SA with or without clethodim could accumulate phenolic compounds greatly. The DPPH free radical scavenging assay for leaf extracts had confirmed a change in antioxidant status. Furthermore, SA could enhance accumulation of total proteins and free amino acids in clethodim and SA treated leaves compared with the control. This work was to provide evidence for the ability of SA to regulate clethodim herbicide detoxification through regulation of the antioxidant status of maize leaf cells.  相似文献   

3.
To ascertain if active oxygen species play a role in fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris, the degree of lipid peroxidation (malondialdehyde formation) and the activity levels of diamine oxidase (DAO), an apoplastic H2O2-forming oxidase, and several antioxidant enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol-dependent peroxidase (GPX) and superoxide dismutase (SOD), were determined spectrophotometrically in roots and stems of ‘WR315’ (resistant) and ‘JG62’ (susceptible) chickpea cultivars inoculated with the highly virulent race 5 of the pathogen. Moreover, APX, CAT, GPX and SOD were also analysed in roots and stems by gel electrophoresis and activity staining; and the protein levels of APX and SOD in roots were determined by Western blotting. In roots, infection by the pathogen increased lipid peroxidation and CAT and SOD activities, although such responses occurred earlier in the incompatible compared with the compatible interactions. APX, GPX and GR activities were also increased in infected roots, but only in the compatible interaction. In stems, infection by the pathogen increased lipid peroxidation and APX, CAT, SOD and GPX activities only in the compatible interaction, and DAO activity only in the incompatible one. In general, electrophoregrams agreed with the activity levels determined spectrophotometrically and did not reveal any differences in isoenzyme patterns between cultivars or between infected and non-infected plants. Further, Western blots revealed an increase in the root protein levels of APX in the compatible interaction and in those of SOD in both compatible and incompatible interactions. In conclusion, whereas enhanced DAO activity in stems, and earlier increases in lipid peroxidation and CAT and SOD activities in roots, can be associated with resistance to fusarium wilt in chickpea, the induction of the latter three parameters in roots and stems along with that of APX, GR (only in roots) and GPX (only in stems) activities are rather more associated with the establishment of the compatible interaction.  相似文献   

4.
Shoe-string disease caused by Cucumber mosaic virus (CMV) is one of the major threats to tomato production worldwide. The alteration in some biochemical parameters in leaves of the susceptible tomato genotype (Nagina) associated with CMV infection and the effect of exogenous application of salicylic acid (SA) and benzothiadiazole (BTH) were studied in this paper. Results showed that exogenous treatment with SA and BTH not only led to plants which gave significantly more yield than diseased controls (DC), but also delayed symptom expression and reduced disease severity. Analysis of biochemical parameters indicated that exogenous application of elicitors and viral infection, significantly affected the activity of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Compared to the DC plants, minimum disease severity and maximum number of fruit were recorded after a single dose of SA + BTH. Maximum plant height was recorded after weekly application of SA and maximum fruit yield per plant was gained with single dose of SA. Moreover, the activity of POD was significantly elicited many-fold after weekly application of SA + BTH, while higher amount of SOD was recorded with single dose of SA. The activity of CAT was also significantly accelerated after weekly application of SA + BTH while increased level of APX was noticed with single dose of BTH. In conclusion, the combined application of SA and BTH played an important role in induction of defense mechanism against CMV infection and can be useful in tomato disease management programs.  相似文献   

5.
Sunflower chlorotic mottle virus (SuCMoV) is a recently described potyvirus that causes systemic infections in sunflower plants leading to chlorotic mottling and important growth reductions and yield losses. Oxidative damage is expressed after symptom development in this host-pathogen combination. The involvement of antioxidant enzyme activities in disease susceptibility was studied in two sunflower lines differing in the intensity and rate of development of SuCMoV infections: L2 is more susceptible than L33. A transient superoxide production peak was detected in leaves of both lines before symptom development. H2O2 accumulation increased before symptom expression in infected plants of L33 but in L2 such increase was registered only after symptoms became evident. In healthy plants of both lines, superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) showed similar activity levels. In inoculated plants of line L2, but not in L33, SOD and CAT activities increased significantly before the appearance of symptoms, and APX increases were detected later. A 1 mM SA treatment effectively decreased SuCMoV accumulation in plants of L2 but it did not affect it in L33. This treatment increased H2O2 accumulation and prevented the increase in antioxidant enzyme activities in infected plants of L2. It is suggested that increases in antioxidant enzyme activities interrupted the signals generated by the increase in ROS, which may have otherwise triggered defence reactions in the host and thus, resulted in a compatible interaction.  相似文献   

6.
This study investigated whether the increase in wheat resistance to blast, caused by Pyricularia oryzae, potentiated by silicon (Si) is linked to changes in the activity of antioxidative enzymes. Wheat plants (cv. BR 18) were grown in hydroponic culture with either 0 (–Si) or 2 mm (+Si) Si and half of the plants in each group were inoculated with P. oryzae. Blast severity in the +Si plants was 70% lower compared to the ?Si plants at 96 h after inoculation (hai). Superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione‐S‐transferase (GST) activities were higher in the leaves of the ?Si plants compared with the +Si plants at 96 hai. This indicates that other mechanisms may have limited P. oryzae infection in the +Si plants restricting the generation of reactive oxygen species, obviating the need for increased antioxidative enzyme activity. In contrast, glutathione reductase (GR) activity at 96 hai was higher in the +Si plants than in the ?Si plants. Although the inoculated plants showed significantly higher concentration of malondialdehyde (MDA) than the non‐inoculated plants, lower MDA concentrations were observed in the +Si plants compared with the ?Si plants. The lower MDA concentration associated with decreased activities of SOD, CAT, POX, APX and GST, suggest that the amount of reactive oxygen species was lower in the +Si plants. However, GR appears to play a pivotal role in limiting oxidative stress caused by P. oryzae infection in +Si plants.  相似文献   

7.
为明确烟粉虱Bemisia tabaci(Gennadius)在大气CO2浓度和温度双因子胁迫下的生理响应,以CO2浓度和温度为作用因子,研究了4种不同组合处理下烟粉虱成虫体内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽转移酶(GST)、乙酰胆碱酯酶(Ach E)活性的变化。结果表明:常温处理下,CO2浓度升高烟粉虱体内POD和GST活性分别增加87.6%和295%,SOD和CAT活性分别降低22.4%和28.2%;高温处理下,CO2浓度升高烟粉虱体内Ach E和GST活性分别增加103.6%和167.5%,CAT活性降低31.6%;常CO2浓度处理下,温度升高烟粉虱体内POD和SOD活性分别增加46.2%和18.2%,CAT活性降低35.8%;高CO2浓度处理下,温度升高烟粉虱体内Ach E和SOD活性分别增加75.3%和40.3%,CAT活性降低38.9%。表明CO2浓度和温度升高是导致烟粉虱体内SOD、POD、GST和Ach E活性升高的主要原因,并且SOD和POD活性变化受到CO2和温度的交互影响。烟粉虱可能通过改变体内保护酶或解毒酶的活性来适应CO2浓度和温度升高的环境。  相似文献   

8.
PEG胁迫下不同品系藜麦抗旱性评价   总被引:2,自引:0,他引:2  
利用不同浓度PEG溶液模拟干旱胁迫,研究5种品系藜麦幼苗的形态、生理生化及光合特性,并对其进行耐旱性评价。结果表明:15%PEG处理下各品系藜麦株高增量、叶面积及生物量显著(P<0.05)低于对照,其中株高增量、叶面积、生物量下降幅度最小的品系分别是NK1、NK2和NK5,分别比对照下降了44.38%、25.39%和48.23%;随着干旱胁迫加剧, 各藜麦品系叶片内相对含水量显著(P<0.05)下降, 叶片的质膜透性、丙二醛(MDA)含量、脯氨酸(Pro)含量上升,15%PEG胁迫下NK2和NK3的Pro含量分别是对照的2.69和1.93倍, 超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性均先升后降,SOD、CAT和APX活性在5%PEG处理下达到最大值, 而POD活性在10%PEG处理下达到最大; 随干旱胁迫增强,5种品系藜麦幼苗的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)降低,胞间CO2浓度(Ci)先降后升,叶绿素(Chl)先升后降,其中NK5品系Pn下降幅度最小,比对照下降了51.15%。运用隶属函数法对藜麦抗旱能力进行综合评定,不同藜麦品系耐旱性为NK5>NK1>NK2>NK4>NK3。  相似文献   

9.
以抗旱玉米自交系郑58和干旱敏感自交系TS141为材料,研究了5-氨基乙酰丙酸(5-ALA)对15% PEG-6000模拟干旱胁迫下玉米幼苗生长的缓解效应及抗氧化酶基因表达的影响。结果表明:与对照相比,郑58及TS141在干旱胁迫下幼苗的苗长、鲜重、干重明显降低,郑58分别下降18.49%、29.06%和20.00%,TS141分别下降25.66%、23.97%和13.64%;叶片丙二醛(MDA)及过氧化氢(H2O2)含量明显增高,MDA含量分别提高了164.58%、263.53%,H2O2分别提高了134.95%、203.83%;超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化酶(APX)活性增加,郑58分别提高了65.61%、29.48%、68.49%、141.51%,TS141分别提高了63.01%、48.00%、85.68%、204.29%;叶绿素含量降低,分别降低33.46%、 42.26%;光合参数PnGsTr下降,郑58的PnGsTr分别下降48.78%、45.31%、52.39%,TS141的PnGsTr分别下降57.66%、57.46%、65.14%;抗氧化酶基因SOD3、POD3、CAT1相对表达量提高,郑58分别提高54.58%、34.12%、69.70%,TS141分别提高54.95%、21.36%、59.34%。喷施25 mg·L-1的5-ALA能明显缓解干旱胁迫对玉米幼苗造成的损伤,与PEG处理相比,玉米自交系郑58和 TS141的幼苗苗长、鲜重、干重明显增加,苗长分别增加了13.31%和11.21%,幼苗鲜重分别增加了22.29%和18.23%,幼苗干重分别增加了16.67%和10.53%;叶片中MDA含量分别降低了17.85%、25.39%,H2O2含量分别降低了23.26%、19.15%;SOD、POD、CAT和APX活性进一步增加,郑58分别增加16.49%、18.15%、36.98%和28.13%(P<0.05),TS141分别增加16.65%、16.54%、28.49%和26.76%(P<0.05);叶绿素含量和光合参数PnGsTr增加,叶绿素含量分别增加18.29%、19.87%;光合参数Pn分别增加35.87%、42.12%,Gs分别增加36.63%、36.81%,Tr分别增加37.67%、67.88%;玉米幼苗叶片中抗氧化酶基因SOD3、POD3、CAT1相对表达量较干旱胁迫处理都有进一步提高,郑58分别提高20.99%、32.18%和23.51%,TS141分别提高25.97%、23.16%和40.94%。  相似文献   

10.
The physiological responses of sugarcane (Saccharum officinarum L.) to oxidative stress induced by methyl viologen (paraquat) were examined with respect to photochemical activity, chlorophyll content, lipid peroxidation and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. Thirty-day-old sugarcane plants were sprayed with 0, 2, 4, 6 and 8 mM methyl viologen (MV). Chlorophyll fluorescence was measured after 18 h and biochemical analyses were performed after 24 and 48 h. Concentrations of MV above 2 mM caused significant damage to photosystem II (PSII) activity. Potential and effective quantum efficiency of PSII and apparent electron transport rate were greatly reduced or practically abolished. Both chlorophyll and soluble protein contents steadily decreased with MV concentrations above 2 mM after 24 h of exposure, which became more pronounced after 48 h, achieving a 3-fold decrease. Insoluble protein contents were little affected by MV. Oxidative stress induced by MV was evidenced by increases in lipid peroxidation. Specific activity of SOD increased, even after 48 h of exposure to the highest concentrations of MV, but total activity on a fresh weight basis did not change significantly. Nondenaturing PAGE assayed with H2O2 and KCN showed that treatment with MV did not change Cu/Zn-SOD and Mn-SOD isoform activities. In contrast, APX specific activity increased at 2 mM MV but then dropped at higher doses. Oxidative damage induced by MV was inversely related to APX activity. It is suggested that the major MV-induced oxidative damages in sugarcane leaves were related to excess H2O2, probably in chloroplasts, caused by an imbalance between SOD and APX activities, in which APX was a limiting step. Reduced photochemical activity allowed the early detection of the ensuing oxidative stress.  相似文献   

11.
供试玉米品种为‘先玉335’(XY335),供试菌株为NECC11322(Bacillus subtilis)枯草芽胞杆菌、NECC11324(B. megaterium)巨大芽胞杆菌。试验设4组处理:Con(无菌水浸种,干旱胁迫),C1(无菌水浸种,正常供水),C2(NECC11322菌液浸种,干旱胁迫),C3(NECC11324菌液浸种,干旱胁迫),测定了浸种后盆栽玉米幼苗的生长状况、抗性生理指标及植株的N、P、K含量。结果表明:在干旱胁迫下接种NECC11322、NECC11324后,玉米幼苗叶片及根系SOD、POD、CAT、APX活性较Con均不同程度升高,其中接种NECC11322根系POD活性增长最为显著,较Con增长67.78%;植株叶片及根系可溶性蛋白含量、可溶性糖含量较Con均呈上升趋势,其中接种NECC11322叶片可溶性糖含量增长最为显著,较Con增长152.10%;与Con相比,植株叶片及根系全氮、全磷、全钾养分含量均有所提升,接种NECC11322后叶片全氮含量升高最为显著,较Con增长88.47%;干旱胁迫下接种两种芽胞杆菌后,植株叶片及根系丙二醛含量较Con均显著降低,接种NECC11322[JP2]后根系降幅最为显著,较Con降低51.03%。综上可知,干旱胁迫下接种两种芽胞杆菌均可降低干旱胁迫对玉米幼苗生长的抑制,其中NECC11322菌株更具有抗旱性。通过提高保护酶活性、可溶性蛋白、可溶性糖含量、叶绿素含量以及植株养分含量提高玉米幼苗抗旱性,促进玉米幼苗生长。  相似文献   

12.
采用以甘肃省境内某地区化肥厂、造纸厂的工业废水以及此两厂的混合废水作溶剂的培养液(分别记作废液1、废液2和废液3)培养黄瓜幼苗,研究了其对黄瓜幼苗的生长及其叶组织中活性氧清除系统的影响。结果发现,(1)培养5 d后,生长在废液1中的幼苗,叶片组织中的几种抗氧化酶除APX的活性显著增加外(P<0.01),CAT、SOD和GR活性均无明显变化(P>0.05)。生长在废液2中的CAT和GR的活性基本未变,APX和SOD的活性分别在P<0.01和P<0.05的水平上增加。在废液3中,CAT和SOD及APX的活性分别在P<0.05和P<0.01的水平上增加,而GR活性降低(P<0.05)。(2)培养13 d后,无论在哪种废水中,黄瓜幼苗的伸长生长和干物质积累及叶片组织中APX、SOD、CAT和GR活性、GSH和ASA含量均明显降低(P<0.05或P<0.01),H2O2、O2、MDA含量和电解质泄漏率明显增加(P<0.05或P<0.01)。结果表明,化肥厂、造纸厂的工业废水以及此两厂的混合废水对黄瓜幼苗叶组织中的抗氧化系统有明显的破环作用,最终影响幼苗的生长。  相似文献   

13.
The activities of antioxidant enzymes and photosynthetic responses were investigated in tomato (Lycopersicon esculentum L. var.) pre-treated by plant activators and inoculated by Xanthomonas vesicatoria. Plants were sprayed with acibenzolar-S-methyl, ASM [Bion® 50 WG (0.2 g l−1)] and aqueous extract from dry necrotic tissue flour (VLA) of ‘Lobeira’ (Solanum lycocarpum) bush. Four days later, the plants were challenged with a virulent strain of X. vesicatoria, under greenhouse conditions. Tomato leaves were then assessed to determine the activities of the main antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX). A reduction of bacterial leaf spot severity was observed in plants treated by ASM (49.3%) and VLA (31.4%), without any in vitro inhibitory activity over the pathogen. Controls showed decreases in CO2 assimilation, transpiration, photosynthetic rates, and stomatal conductance. Water use efficiency and carboxylation efficiency were strongly affected in ASM- and VLA-treated, in comparison to controls and healthy plants. The tested substances induced increases in SOD and CAT activities in a delayed enzymatic response typical in compatible plant–pathogen interactions. Measured at daily intervals, activities of APX and POX were significantly (ρ0.05) higher in treated plants than in controls, except for APX in ASM-treated plants where no difference was found when compared to controls. Only POX was clearly induced at the earlier stages after spraying the tomato plants with ASM or VLA. Our results suggest that late increases in antioxidant enzyme activities may play a role in mitigating oxidative damage in restoring the photosynthetic imbalance imposed by the expansion of bacterial lesions.  相似文献   

14.
为了研究蚕豆在混合盐碱胁迫下的生理变化,试验采用3种盐碱胁迫方式KCl/NaCl、KCl/Na2CO3、KCl/Na2SO4处理2周,测定蚕豆鲜重、丙二醛和脯氨酸含量、抗氧化酶活性等生理指标。结果表明,随着盐碱胁迫时间的延长,蚕豆鲜重表现为先升高后下降趋势,丙二醛和脯氨酸含量呈上升趋势,其中脯氨酸含量在处理11d时急剧增加;随胁迫时间的延长,4种抗氧化酶SOD、POD、CAT、APX活性增加幅度呈先升高后降低趋势,其中处理11d时,酶活性增加幅度顺序是SOD> CAT> APX或POD。结论:蚕豆盐碱胁迫中,SOD酶活性发挥首要作用,脯氨酸是一种重要的渗透物质。  相似文献   

15.
We determined the effects of parasitism by Microplitis pallidipes and/or nucleopolyhedrovirus (NPV) infection on protective enzymes in the hemolymph of Spodoptera exigua larvae. We found that concentrations of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were constantly higher within the five observation days after treatment in parasitized/virus-infected than healthy (control) larvae. In parasitized + infected larvae, enzyme levels reduced from day 1 compared to parasitized larvae. Compared to enzyme levels in virus-infected larvae, in parasitized + infected larvae, CAT concentrations were generally lower, while SOD concentrations were significantly lower in the first two days and POD concentrations were lower in the first two days, but higher in following three days. We concluded that joint and separate parasitism and NPV infection promoted the activities of protective enzymes. Our findings also revealed that NPV infection inhibited the activities of protective enzymes induced by parasitism of M. pallidipes and that the parasitism inhibited the CAT activity induced by NPV infection.  相似文献   

16.
拮抗细菌诱导番茄植株抗灰霉病机理研究   总被引:14,自引:0,他引:14  
 拮抗细菌多粘类芽孢杆菌(Paenibacillus polymyxa) W3菌株悬浮液及其滤液可以诱导番茄叶片对灰霉病(Botrytis cinerea)的系统抗性。W3及其滤液诱导处理后,植株叶内苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、多酚氧化酶(PPO)和超氧化物歧化酶(SOD)活性明显增强。诱导后1 d,PAL活性最大,是对照的3.8~3.9倍,6 d后仍为对照的2.5倍;POD和PPO诱导后3 d活性最高,分别比对照增加34.7%~54.1%和78.5%~78.7%,6 d后仍比对照高;SOD活性诱导后2d达高峰,6 d后稍高于对照。活性氧(O2-)产生速率诱导后1 d最大,比对照增加85.6%~88.6%,以后急剧下降,6 d后接近对照。此外,W3诱导后1 d或2 d,处理叶和上一叶位叶片水杨酸含量明显上升,分别是对照的2.6倍和1.6倍,这表明该拮抗细菌诱导的系统抗性可能与水杨酸介导有关。  相似文献   

17.
为探究根结线虫胁迫下丝状真菌Sr18代谢产物对黄瓜的作用机理,采用温室盆栽及人工接种试验,研究了不同浓度的Sr18代谢产物对南方根结线虫胁迫下黄瓜叶片保护酶的影响。结果表明,线虫侵染黄瓜根部以后,黄瓜叶片SOD、POD和CAT活性减弱,PPO和PAL浓度降低。施加不同浓度的Sr18代谢产物,能够使线虫胁迫下的黄瓜叶片SOD、POD和CAT活性增强,使PPO和PAL的含量增加,说明Sr18代谢产物能够提高黄瓜的保护酶活性与含量,增强黄瓜对南方根结线虫的抗性。  相似文献   

18.
赵欣  郝林 《植物保护学报》2020,47(2):273-282
为探讨解淀粉芽胞杆菌Bacillus amyloliquefaciens菌株HRH317对感染串珠镰孢菌Fusarium moniliforme玉米幼苗产生伏马毒素B_1(FB_1)的影响,采用牛津杯法测定菌株HRH317对串珠镰孢菌的抑制活性,并通过浸种处理进行盆栽试验,应用高效液相色谱技术对生长至3叶期后不同时间玉米幼苗叶片中FB_1含量进行测定,同时于室内测定玉米幼苗叶片防御酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)的活性。结果表明:解淀粉芽胞杆菌菌株HRH317能明显抑制串珠镰孢菌生长,抑菌圈直径平均可达33.31 mm;玉米幼苗生长至3叶期后1~6 d,菌株HRH317能有效抑制玉米植株体内FB_1含量,经串珠镰孢菌分生孢子悬浮液与菌株HRH317菌悬液1∶1混合液处理玉米种子后,对幼苗中FB_1的抑制率为59.20%~75.70%;而玉米种子先接种菌株HRH317菌悬液后接种串珠镰孢菌分生孢子悬浮液处理对幼苗中FB_1的抑制率为76.77%~88.10%。且这2种处理中幼苗叶片的SOD、CAT、PAL和POD活性均较对照有不同程度提高,其峰值是对照的1.24~5.45倍。表明解淀粉芽胞杆菌菌株HRH317可通过抑制FB_1产生来降低串珠镰孢菌对玉米幼苗的侵害,同时能诱导玉米植株体内防御酶活性的表达而增强其系统抗性,在防治玉米穗腐病方面具有潜在的应用价值。  相似文献   

19.
以青花菜为试材,采用大田和室内分析相结合的试验方法,研究了0.15 mmol·L-1的水杨酸(SA)对不同灌水下限(相对含水量75%,60%和45%)青花菜根系生长及叶片抗氧化特性的影响。结果表明:(1)随着灌水下限的降低,青花菜主根长、根干鲜重及过氧化氢酶(CAT)活性先升高后降低,根冠比、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)、过氧化物酶(POD)及抗坏血酸过氧化物酶(APX)活性逐渐升高。(2)SA处理改善了青花菜根系生长特性,降低根冠比,提高结球期抗氧化酶活性,其中60%灌水下限经SA处理后,根系及酶活性指标均与75%灌水下限保持相当水平。由此可知:以相对含水量60%作为灌水下限并配合0.15 mmol·L-1SA处理可以为青花菜高效节水灌溉提供理论支撑。  相似文献   

20.
选取耐旱品种陇糜4号和旱敏感品种晋黍7号,利用防雨旱棚与人工控水相结合的方法,研究了水分胁迫对糜子产量、叶片保护酶活性及膜脂过氧化作用的影响。结果表明,与CK处理相比,水分胁迫降低了糜子的穗数、穗粒数和千粒重,重度水分胁迫下差异达显著(P<0.05)水平,且旱敏感品种晋黍7号的降低幅度大于耐旱品种陇糜4号。整个生育时期,糜子叶片的SOD、POD和CAT活性表现为先升高后降低的趋势,在抽穗期达到最大值; 水分胁迫降低了糜子叶片的SOD、POD和CAT活性,与对照相比,重度水分胁迫下达到显著性差异(P<0.05),重度水分胁迫下,耐旱品种陇糜4号SOD活性2年内平均降低22.58%,而旱敏感品种晋黍7号2年内平均降低44.94%。水分胁迫处理增加了糜子叶片的膜脂过氧化产物MDA含量和可溶性糖的含量,随着生育期的推进,糜子叶片可溶性糖含量表现为先升后降的趋势,在灌浆期表现为最大值。相关性分析结果表明,糜子产量与叶绿素含量、SOD活性、POD活性和CAT活性呈正相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号