首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Six wheat genotypes with wide genetic variability for resistance to bacterial leaf streak were crossed in diallel fashion to determine the inheritance of resistance to this disease. Parental genotypes and their F1 hybrids were inoculated at the second leaf stage with an Iranian isolate of Xanthomonas campestris pv. cerealis . Two experiments were undertaken in a controlled environment chamber. Results showed that the genotypes IBPT66, IBPT84 and IBPT34 had a high level of partial resistance to the disease. General and specific combining abilities presented several significant positive or negative values, showing the importance of both additive and dominant genetic control for partial resistance to this bacterial disease. The resistant line IBPT66 could be a good donor of partial resistance to bacterial leaf streak in wheat.  相似文献   

2.
The bacterium Xanthomonas translucens pv. undulosa (Xtu) causes bacterial leaf streak (BLS) on wheat and other small grains. Several triticale accessions were reported to possess high levels of resistance to wheat Xtu strains. In this study, a worldwide collection of triticale accessions as well as the major North Dakota hard red spring and durum wheat cultivars were evaluated for reaction to two local Xtu strains. All wheat cultivars showed a susceptible reaction but a wide range of reactions was observed among triticale accessions. Out of the 502 accessions tested, 45 and 10 accessions were resistant to the two virulent strains BLS‐LB10 and BLS‐P3, respectively, with five accessions, PI 428736, PI 428854, PI 428913, PI 542545 and PI 587229, being highly resistant to both strains. Statistical analysis showed significant difference among the accessions, strains, and the accession by strain interaction (< 0.001). Bacterial population growth in resistant triticale was significantly slower than that in susceptible triticale. Molecular cytogenetic characterization in four representative triticale accessions confirmed the hexaploid level of the species and the presence of 12 or 14 rye chromosomes. The triticale accessions identified are valuable materials for developing wheat germplasm with high levels of BLS resistance.  相似文献   

3.
4.
Fifty-six native isolates collected in 12 farming districts of Trinidad and seven reference strains of Xanthomonas campestris pv. campestris were evaluated for resistance to copper in buffered (pH 7.0) and unbuffered (pH 5.6) nutrient agar media. All isolates and reference strains were pathogenic and elicited typical black rot symptoms on a susceptible variety of Brassica olearceae, ‘Copenhagen Market’. Thirty-four and thirty-three native isolates were highly resistant to copper (growth on?≥?200 ppm copper) in buffered and unbuffered media, respectively; however, all the reference strains were highly susceptible to copper. The mean minimum inhibition concentration for the 56 native isolates was 224.6 ppm copper indicating that high levels of copper resistance are present in X. campestris pv. campestris in Trinidad. The association between growth of the 56 isolates and seven reference stains on buffered and unbuffered media was strong (Pearson’s and Spearman’s r?=?0.93; P?<?0.01) suggesting that either medium can be used to evaluate resistance to copper in X. campestris pv. campestris. There was also a strong association between length of time of continuous applications of copper formulations to treat black rot disease and proportion of the native X. campestris pv. campestris with resistance to copper (Pearson’s r?=?0.96; Spearman’s r?=?0.93); however, there was no association between resistance to copper and aggressiveness at 10 days after inoculation.  相似文献   

5.
Journal of Plant Diseases and Protection - Xanthomonas campestris pv. campestris (Xcc) is one of the most important pathogens of Brassica oleracea vegetables. To develop resistant basic breeding...  相似文献   

6.
A RAPD PCR-based method was used to differentiate between isolates of Xanthomonas campestris pv. phaseoli and Xanthomonas campestris pv. phaseoli var. fuscans. Using random primer OP-G11, a single, high intensity band of 820 bp was amplified from DNAs of all X. c. pv. phaseoli var. fuscans isolates, while multiple amplification products of varying sizes were generated from X. c. pv. phaseoli DNAs. Whereas RAPD PCR differentiation gave an unambiguous result in under 4 h, standard differentiation by recording the production of a brown pigment by X. c. pv. phaseoli var. fuscans isolates took up to 7 days and showed variation both between isolates and between media. The unequivocal nature of the RAPD PCR method was demonstrated when isolate 408, originally classified as X. c. pv. phaseoli var. fuscans, failed to produce the 820 bp band typical of X. c. pv. phaseoli var. fuscans isolates, and after also failing to produce a brown pigment, was re-classified as X. c. pv. phaseoli.  相似文献   

7.
8.
9.
ABSTRACT The inheritance of resistance to three Xanthomonas campestris pv. campestris races was studied in crosses between resistant and susceptible lines of Brassica oleracea (C genome), B. carinata (BC genome), and B. napus (AC genome). Resistance to race 3 in the B. oleracea doubled haploid line BOH 85c and in PI 436606 was controlled by a single dominant locus (Xca3). Resistance to races 1 and 3 in the B. oleracea line Badger Inbred-16 was quantitative and recessive. Strong resistance to races 1 and 4 was controlled by a single dominant locus (Xca1) in the B. carinata line PI 199947. This resistance probably originates from the B genome. Resistance to race 4 in three B. napus lines, cv. Cobra, the rapid cycling line CrGC5, and the doubled haploid line N-o-1, was controlled by a single dominant locus (Xca4). A set of doubled haploid lines, selected from a population used previously to develop a restriction fragment length polymorphism map, was used to map this locus. Xca4 was positioned on linkage group N5 of the B. napus A genome, indicating that this resistance originated from B. rapa. Xca4 is the first major locus to be mapped that controls race-specific resistance to X. campestris pv. campestris in Brassica spp.  相似文献   

10.
11.
Bacterial leaf spot disease of hemp was observed in Tochigi Prefecture, Japan in 1982 and characterized by necrotic lesions ca. 1–2 mm diameter on leaves with a yellow halo 2–3 mm wide. In this report, we describe the pathological, physiological and genetic properties of the causal bacterium. Our results indicated that this bacterium is identical with Xanthomonas campestris pv. cannabis reported in Romania.  相似文献   

12.
Twenty strains of Xanthomonas campestris pv. campestris (Xcc) were isolated from two major crucifer-growing valleys, Chitwan and Kathmandu in Nepal and characterized by biochemical and pathogenicity tests. Strains were homogeneous in bacteriological characteristics. The ability of a strain to induce high or low disease severity index (DSI) on three host plants, broccoli, cabbage, and cauliflower, was interpreted as virulence. Strains that were associated with high or low virulence were significantly different (P>0.05). No relationship between virulence and biochemical characteristics was observed.  相似文献   

13.
Carry-over of inoculum of X.c. pv. campestris in the soil from one cropping season to the next was studied in field experiments over three years. These studies were supported by laboratory and greenhouse experiments on quantitative assessment of bacteria by bioassay using the Most Probable Number technique, and on recovery rates of bacteria from the soil. The mean recovery rate from artificially infested soil was 58%. Extinction of X.c. pv. campestris in soil infested with infected plant debris proceeded exponentially and extinction rates depended on temperature, as did the decomposition of plant debris. In replicated field plots, over three years, infection foci of black rot disease were established. At harvest time, all plants were chopped and resulting plant debris was rotovated into the soil. The resulting soil infestation was sampled and showed clear infestation foci reflecting the original infection foci of the crop. These infestation foci decreased with time and disappeared after the winter. Follow-up crops remained virtually uninfected. The results show that in The Netherlands good crop and soil management impedes survival of inoculum from one year to the next, so that cabbage can be grown continuously. Polyetic carry-over of inoculum by debris in the soil can be avoided in The Netherlands.  相似文献   

14.
ABSTRACT Xanthomonas campestris pv. campestris (X. campestris) infects a large number of cruciferous plants, including weeds. California has one of the largest and most diverse populations of wild cruciferous plants in the world. Although considerable information is available on the genetic diversity of X. campestris in commercial crop plants, nothing is known about the diversity in strains infecting weeds. To assess the genetic diversity among strains of X. campestris in weeds in noncultivated and cultivated areas, strains of the pathogen were isolated from populations of cruciferous weeds growing in coastal valley crop-production sites and from remote nonproduction sites along the California central coast. Results of fingerprinting over 68 strains using amplified fragment length polymorphism along with representative strains by sequence analysis showed the presence of seven genotypes. Genotypes A and B were limited to coastal sites; genotypes C, D, and E were from inland cultivated sites; and genotypes F and G were present in both coastal noncultivated and inland cultivated sites. Crop strains were grouped outside any weed strain group and were separated from the weed strains and other pathovars of X. campestris. These results revealed, for the first time, that strains of X. campestris present in noncultivated coastal weed populations generally were unique to a site and genetically distinct from strains present in populations of weeds in crop-production areas located nearby.  相似文献   

15.
A collection of 26 strains of Xanthomonas campestris pv. mangiferaeindicae isolated from three different host species in eight countries was investigated for variation in isozyme patterns. Three enzyme systems were analysed: esterase (EST), phosphoglucomutase (PGM) and superoxide dismutase (SOD). Four groups of strains were identified: nonpigmented strains isolated from mango and pepper-tree in Australia, Comores, India, Reunion Island, South Africa, and Taiwan; nonpigmented Brazilian strains from mango; nonpigmented strains from ambarella isolated in the French West Indies; heterogeneous yellow pigmented strains from mango (Brazil and Reunion Island). The value of isozyme profiling as markers of the pathogenicity groups in X. c . pv. mangiferaeindicae is discussed.  相似文献   

16.
Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans, the causal agents of the common and fuscous bacterial blight of beans, appear to be phenotypically identical except that the latter can produce a melanin-like pigment in culture. Ten isolates of X. campestris pv. phaseoli and 12 isolates of X. campestris pv. phaseoli var. fuscans were examined using pulsed-field gel electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP). The average genome sizes for X. campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans were 3850.6±48.9 and 3584.3±68.1kb respectively. The genetic relatedness of the isolates was determined from macrorestriction patterns generated using XbaI. Cluster analysis indicated that the non-fuscous and fuscous strains are distinct. RFLP results, based on the highly conserved hrp genes and a pectate lyase gene from Xanthomonas, also indicated that the two bacteria are genetically different. The results obtained in this study suggest that this pathovar can be segregated into two subgroups under a recently proposed reclassification of the Xanthomonas genus.  相似文献   

17.
Northern Iran has one of the largest and most diverse populations of cultivated crucifers in Iran. Symptoms of black rot disease were observed in 40 % of fields. To assess the genetic diversity of Xanthomonas campestris pv. campestris (Xcc) strains, associated with black rot disease, 40 strains were isolated from infected samples of crucifers such as cabbage, radish, cauliflower, turnip and kohlrabi, and were collected from different geographic regions of northern Iran including West and East Azarbayjan and Ardabil provinces. Bacterial strains were characterized by their morphological, biochemical and physiological features and pathogenicity tests. Four races were found in northern Iran (1, 4, 5 and 6) and the majority of the tested strains belonged to either race 4 (45 %) or race 6 (20 %). To examine the distribution of dispersed repetitive DNA, Enterobacterial Repetitive Intergenic Consensus (ERIC), BOX, Repetitive Extragenic Palindromic (REP) and random amplified polymorphic DNA (RAPD) sequences in the genome of Xcc using conserved primers. The different markers produced characteristic banding patterns and the similarity matrices from binary banding data was derived with the similarity for qualitative data program (SIMQUAL). On the basis of the fingerprint patterns generated by the combination data set of both rep-PCR and RAPD, the Xcc strains were differentiated into seven clusters (A–G) at 76 % similarity level. The geographical origin of the Iranian strains does not seem to be correlated with the RAPD and rep-PCR clusters. The clusters seem to be more related to the race of the strains. This is the first study on genetic diversity of Xcc strains inducing black rot disease of crucifers in Iran.  相似文献   

18.
19.
ABSTRACT Two hundred and seventy-six accessions of mainly Brassica spp. were screened for resistance to Xanthomonas campestris pv. campestris races. In Brassica oleracea (C genome), the majority of accessions were susceptible to all races, but 43% showed resistance to one or more of the rare races (2, 3, 5, and 6) and a single accession showed partial resistance to races 1, 3, 5, and 6. Further searches for resistance to races 1 and 4, currently the most important races worldwide, and race 6, the race with the widest host range, were made in accessions representing the A and B genomes. Strong resistance to race 4 was frequent in B. rapa (A genome) and B. napus (AC genome), indicating an A genome origin. Resistance to races 1 and 4 was present in a high proportion of B. nigra (B genome) and B. carinata (BC genome) accessions, indicating a B genome origin. B. juncea (AB genome) was the most resistant species, showing either strong resistance to races 1 and 4 or quantitative resistance to all races. Potentially race-nonspecific resistance was also found, but at a lower frequency, in B. rapa, B. nigra, and B. carinata. The combination of race-specific and race-nonspecific resistance could provide durable control of black rot of crucifers.  相似文献   

20.
Two pigment-protein complexes extracted from the cell membrane of Xanthomonas campestris pv. juglandis with 2% Triton X-100 were separated from other membrane proteins by electrophoresis on a 10%., non-denaturing discontinuous polyacrylamide gel. One pigment-protein complex band was distinct, while the other was diffuse. The apparent Mr of the protein from the distinct pigment-protein band was 16400, while the protein in the diffuse band had an apparent Mr of about 45000. The protein in the distinct band consisted of 13 amino acids of which 10% were aromatic, 12% hydroxy, 16% basic, 16% acidic and 46% non-polar. Polyclonal antibody, against the distinct protein, was used to assay for cross-reactivity with cell wall and membrane proteins of 23 bacterial species by the Ouchterlony double-diffusion assay. Seven of the bacteria, representing seven genera, cross-reacted with the antibody, suggesting that a serologically-related, pigment-associated protein is commonly distributed among bacteria and which, unlike the pigment, may limit its use as a chemotaxonomic marker for Xanthomonas .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号