首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors affecting the levels of tea polyphenols and caffeine in tea leaves   总被引:8,自引:0,他引:8  
An isocratic HPLC procedure was developed for the simultaneous determination of caffeine and six catechins in tea samples. When 31 commercial teas extracted by boiling water or 75% ethanol were analyzed by HPLC, the levels of (-)-epigallocatechin 3-gallate (EGCG), and total catechins in teas were in the order green tea (old leaves) > green tea (young leaves) and oolong tea > black tea and pu-erh tea. Tea samples extracted by 75% ethanol could yield higher levels of EGCG and total catechins. The contents of caffeine and catechins also have been measured in fresh tea leaves from the Tea Experiment Station in Wen-Shan or Taitung; the old tea leaves contain less caffeine but more EGCG and total catechins than young ones. To compare caffeine and catechins in the same tea but manufactured by different fermentation processes, the level of caffeine in different manufactured teas was in the order black tea > oolong tea > green tea > fresh tea leaf, but the levels of EGCG and total catechins were in the order green tea > oolong tea > fresh tea leaf > black tea. In addition, six commercial tea extracts were used to test the biological functions including hydroxyl radical scavenging, nitric oxide suppressing, and apoptotic effects. The pu-erh tea extracts protected the plasmid DNA from damage by the Fenton reaction as well as the control at a concentration of 100 microg/mL. The nitric oxide suppressing effect of tea extracts was in the order pu-erh tea >/= black tea > green tea > oolong tea. The induction of apoptosis by tea extract has been demonstrated by DNA fragmentation ladder and flow cytometry. It appeared that the ability of tea extracts to induce HL-60 cells apoptosis was in the order green tea > oolong > black tea > pu-erh tea. All tea extracts extracted by 75% ethanol have stronger biological functions than those extracted by boiling water.  相似文献   

2.
The four major commercial teas, oolong, black, pu-erh, and green teas, have been manufactured in southeast Asia. In this study, we evaluated the growth suppressive and hypolipidemic effect of these four different tea leaves by oral feeding to male Sprague-Dawley rats for 30 weeks. The results showed that the suppression of body weights of tea leaves-fed groups were in the order: oolong tea > pu-erh tea > black tea > green tea. Pu-erh tea and oolong tea could lower the levels of triglyceride more significantly than that of green tea and black tea, but pu-erh tea and green tea were more efficient than oolong tea and black tea in lowering the level of total cholesterol. In lipoprotein, 4% pu-erh tea could increase the level of HDL-C and decrease the level of LDL-C, but other teas simply decrease the levels of both. The activity of antioxidant enzyme SOD is increased in all tea-fed groups as compared to the basal diet-fed group. Finally, relative weight ratios of liver to epididylmal adipose tissue were lower in feeding oolong tea and pu-erh tea groups. On the basis of these findings, it seemed that the fully fermented pu-erh and black tea leaves and partially fermented oolong tea leaves were more effective on their growth suppressive and hypolipidemic effects as compared to the nonfermented green tea leaves.  相似文献   

3.
Levels of total phenol, catechins, and caffeine in teas commonly consumed in the United Kingdom have been determined using reversed phase high-performance liquid chromatography. Tea bags or tea leaves were purchased from local supermarkets and extracted in boiling water for 5 min. The resulting data showed considerable variability in both total phenols [80.5-134.9 mg/g of dry matter (DM) in black teas and 87-106.2 mg/g of DM in green teas] and catechins (5.6-47.5, 51.5-84.3, and 8.5-13.9 mg/g of DM in black, green, and fruit teas, respectively); this was most probably a result of differing agronomic conditions, leaf age, and storage during and after transport, as well as the degree of fermentation. Caffeine contents of black teas (22-28 mg/g of DM) were significantly higher than in less fermented green teas (11-20 mg/g of DM). The relative concentration of the five major tea catechins ranked EGCG > ECG > EC > EGC > C. The estimated U.K. dietary intakes of total tea catechins, calculated on the basis of an average tea consumption of three cups of tea (200 mL cup, 1% tea leaves w/v), were 61.5, 92.7, and 405.5 mg/day from fruit teas, black teas, and green teas, respectively. The coefficients of variation were 19.4, 88.6, and 17.3%, respectively, indicating the wide variation in these intakes. The calculated caffeine intake ranged between 92 and 146 mg/day. In addition, many individuals will consume much larger quantities of tea, of various strengths (as determined by the brewing conditions employed). This broad spread of U.K. daily intakes further emphasizes the need for additional research to relate intake and effect in various population groups.  相似文献   

4.
It has been reported earlier that when macerated tea leaf is fermented at lower pH, the resultant black tea contains increased levels of theaflavin, an important quality marker in black tea. In an attempt to investigate the biochemistry and chemistry underlying this observation, in vitro oxidation experiments using polyphenol oxidase (PPO) from fresh tea leaves, horseradish peroxidase (POD), and tea catechins, precursors for theaflavins, were carried out. In vitro oxidation experiments using crude tea PPO resulted in higher content of theaflavins at pH 4.5 in comparison with pH 5.5, the normal pH of the macerated tea leaf. When purified PPO was used in the in vitro system, surprisingly a reversal of this trend was observed, with more theaflavins being formed at the higher pH. A combination of pure tea PPO and POD led to an observation similar to that with the crude enzyme preparation, suggesting a possible role for POD in the formation or degradation of theaflavin. POD was observed to oxidize theaflavins in the presence of H(2)O(2), leading to the formation of thearubigin, another black tea pigment. This paper demonstrates that tea PPO, while oxidizing catechins, generates H(2)O(2). The amount of H(2)O(2) produced is greater at pH 5.5, the optimum pH for PPO activity, than at pH 4.5. Hence, an observed increase of theaflavins in black teas fermented at pH 4.5 appears to be due to lower turnover of formed theaflavins into thearubigins.  相似文献   

5.
The content of the biologically active amino acid theanine in 15 commercial black, green, specialty, and herbal tea leaves was determined as the 2,4-dinitrophenyltheanine derivative (DNP-theanine) by a validated HPLC method. To define relative anticarcinogenic potencies of tea compounds and teas, nine green tea catechins, three black tea theaflavins, and theanine as well as aqueous and 80% ethanol/water extracts of the same tea leaves were evaluated for their ability to induce cell death in human cancer and normal cells using a tetrazolium microculture (MTT) assay. Compared to untreated controls, most catechins, theaflavins, theanine, and all tea extracts reduced the numbers of the following human cancer cell lines: breast (MCF-7), colon (HT-29), hepatoma (liver) (HepG2), and prostate (PC-3) as well as normal human liver cells (Chang). The growth of normal human lung (HEL299) cells was not inhibited. The destruction of cancer cells was also observed visually by reverse phase microscopy. Statistical analysis of the data showed that (a) the anticarcinogenic effects of tea compounds and of tea leaf extracts varied widely and were concentration dependent over the ranges from 50 to 400 microg/mL of tea compound and from 50 to 400 microg/g of tea solids; (b) the different cancer cells varied in their susceptibilities to destruction; (c) 80% ethanol/water extracts with higher levels of flavonoids determined by HPLC were in most cases more active than the corresponding water extracts; and (d) flavonoid levels of the teas did not directly correlate with anticarcinogenic activities. The findings extend related observations on the anticarcinogenic potential of tea ingredients and suggest that consumers may benefit more by drinking both green and black teas.  相似文献   

6.
Oolong tea manufactured via a semifermentation process possesses a taste and color somewhere between green and black teas. Alteration of constituents, particularly phenolic compounds, in the infusion of oolong tea resulting from its manufacture, was analyzed by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The identified constituents contained 2 alkaloids, 11 flavan-3-ols, 8 organic acids and esters, 11 proanthocyanidin dimers, 3 theaflavins, and 22 flavonoid glycosides, including 6 novel acylated flavonol glycosides. The tentative structures of these 6 novel compounds were depicted according to their mass fragmentation patterns in MS(n) (n = 1-4). In comparison with caffeine as an internal standard, relative contents of the constituents in the infusions of fresh tea shoot and different oolong tea preparations were examined. Approximately, 30% catechins and 20% proanthocyanidins were oxidized during the manufacture of oolong tea from fresh tea shoots, and 20% of total flavonoids were decomposed in a follow-up drying process. Gallocatechin-3-O-gallate and theaflavins putatively produced in the semifermentation process of oolong tea were not detected in fresh tea shoots, and the majority of theaflavins were presumably transformed into thearubigins after drying.  相似文献   

7.
Determination of tea components with antioxidant activity   总被引:4,自引:0,他引:4  
Levels of essential elements with antioxidant activity, as well as catechins, gallic acid, and caffeine levels, in a total of 45 samples of different teas commercialized in Spain have been evaluated. Chromium, manganese, selenium, and zinc were determined in the samples mineralized with HNO(3) and V(2)O(5), using ETAAS as the analytical technique. The reliability of the procedure was checked by analysis of a certified reference material. Large variations in the trace element composition of teas were observed. The levels ranged from 50.6 to 371.4 ng/g for Cr, from 76.1 to 987.6 microg/g for Mn, from 48.5 to 114.6 ng/g for Se, and from 56.3 to 78.6 ng/g for Zn. The four major catechins [(-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC)], gallic acid (GA), and caffeine were simultaneously determined by a simple and fast HPLC method using a photodiode array detector. In all analyzed samples, EGCG ranged from 1.4 to 103.5 mg/g, EGC from 3.9 to 45.3 mg/g, ECG from 0.2 to 45.6 mg/g, and EC ranged from 0.6 to 21.2 mg/g. These results indicated that green tea has a higher content of catechins than both oolong and fermented teas (red and black teas); the fermentation process during tea manufacturing reduces the levels of catechins significantly. Gallic acid content ranged from 0.039 to 6.7 mg/g; the fermentation process also elevated remarkably gallic acid levels in black teas (mean level of 3.9 +/- 1.5 mg/g). The amount of caffeine in the analyzed samples ranged from 7.5 to 86.6 mg/g, and the lower values were detected in green and oolong teas. This study will be useful for the appraisal of trace elements and antioxidant components in various teas, and it will also be of interest for people who like drinking this beverage.  相似文献   

8.
Profiles of nucleotide levels in two varieties of Japanese green teas (cv. Yabukita and Saemidori), a Chinese green tea (Longjing), and two Japanese black teas (cv. Benifuuki and Benihikari) were determined and compared with that of fresh tea leaves. The concentration of 5'-nucleotides in green tea was much higher than in black tea. Nucleoside diphosphates were present in larger amounts than nucleoside triphosphates in manufactured green and black teas, whereas the triphosphates predominated in fresh tea leaves. Low levels of 3'-nucleotides were found in green and black teas. Inosine 5'-monophosphate, which is utilized as a seasoning component, was found in all manufactured teas in concentrations ranging from 50 to 200 nmol/g of dry weight. The levels of both inosine 5'-monophosphate and guanosine 5'-monophosphate were high in Chinese Longjing green tea. The unique profiles of nucleotides in manufactured teas may be a consequence of the action of degradation enzymes, such as ribonuclease, apyrase, phosphatase, nucleotidase, and adenosine 5'-monophsphate deaminase during the commercial processing of the young leaves.  相似文献   

9.
(-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol of green tea, undergoes substantial biotransformation to species that includes the methylated compounds. Recent studies have demonstrated that the methylated EGCG has many biological activities. In this study, we have investigated the composition of the three O-methylated EGCG derivatives, (-)-epigallocatechin-3-O-(3-O-methyl)gallate (3' '-Me-EGCG), (-)-epigallocatechin-3-O-(4-O-methyl)gallate (4' '-Me-EGCG) and (-)-4'-methyl epigallocatechin-3-O-(4-O-methyl)gallate (4',4' '-di-Me-EGCG) in tea leaves which were picked from various species and at various seasons, ages of leaves, locations, and fermentation levels. Higher levels of 3' '-Me-EGCG and 4' '-Me-EGCG were detected in Chinshin-Kanzai (a species of Camellia sinensis) cultivated in the mountain area of Sansia, Taipei County, Taiwan. Also, these O-methylated EGCG levels were found to be higher in autumn and winter than in spring and summer. The young leaves were found to be richer in the O-methylated compounds than old leaves and the amount of O-methylated EGCG was higher in unfermented longjin green tea than in semifermented oolong tea. However, the fermented black tea and puerh tea did not contain these compounds. 4',4' '-diMe-EGCG could not be detected in either fresh tea leaves or commercial tea leaves. We also found that 3' '-Me-EGCG has a higher inhibitory effect on the nitric oxide generation and inducible nitric oxide synthase (iNOS) expression as compared with EGCG, while 4' '-Me-EGCG and 4',4' '-di-Me-EGCG were less effective.  相似文献   

10.
Tea enhances insulin activity   总被引:9,自引:0,他引:9  
The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.  相似文献   

11.
Dabsyl chloride (dimethylaminoazobenzene sulfonyl chloride), a useful chromophoric labeling reagent for amino acids and amines, was developed in this laboratory in 1975. Although several methods have been developed to determine various types of amino acids, a quick and easy method of determining theanine, GABA, and other amino acids has not been developed in one HPLC system. In this paper are analyzed the free amino acid contents of theanine and GABA in different teas (green tea, black tea, oolong tea, Pu-erh tea, and GABA tea) with a dabsylation and reverse phase high-performance liquid chromatography (HPLC) system coupled with a detector at 425 nm absorbance. Two reverse phase columns, Hypersil GOLD and Zorbax ODS, were used and gave different resolutions of dabsyl amino acids in the gradient elution program. The data suggest that the tea source or the steps of tea-making may contribute to the theanine contents variations. High theanine contents of high-mountain tea were observed in both green tea and oolong tea. Furthermore, the raw (natural fermented) Pu-erh tea contained more theanine than ripe (wet fermented) Pu-erh tea, and the GABA contents in normal teas were generally lower than that in GABA tea.  相似文献   

12.
13.
Black tea, green tea, red wine, and cocoa are high in phenolic phytochemicals, among which theaflavin, epigallocatechin gallate, resveratrol, and procyanidin, respectively, have been extensively investigated due to their possible role as chemopreventive agents based on their antioxidant capacities. The present study compared the phenolic and flavonoid contents and total antioxidant capacities of cocoa, black tea, green tea, and red wine. Cocoa contained much higher levels of total phenolics (611 mg of gallic acid equivalents, GAE) and flavonoids (564 mg of epicatechin equivalents, ECE) per serving than black tea (124 mg of GAE and 34 mg of ECE, respectively), green tea (165 mg of GAE and 47 mg of ECE), and red wine (340 mg of GAE and 163 mg of ECE). Total antioxidant activities were measured using the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays and are expressed as vitamin C equivalent antioxidant capacities (VCEACs). Cocoa exhibited the highest antioxidant activity among the samples in ABTS and DPPH assays, with VCEACs of 1128 and 836 mg/serving, respectively. The relative total antioxidant capacities of the samples in both assays were as follows in decreasing order: cocoa > red wine > green tea > black tea. The total antioxidant capacities from ABTS and DPPH assays were highly correlated with phenolic content (r2 = 0.981 and 0.967, respectively) and flavonoid content (r2 = 0.949 and 0.915). These results suggest that cocoa is more beneficial to health than teas and red wine in terms of its higher antioxidant capacity.  相似文献   

14.
Burrito tea originates from the leaves of Wendita calysina, an indigenous Paraguayan plant, which is commonly consumed in South America and in Western countries. Phytochemical investigation of this species has led to the isolation of 14 constituents, among them 2 new flavanonols, dihydroquercetagetin (1) and 3,5,6,7,4'-pentahydroxyflavanonol (2), in addition to several known methoxyflavones, methoxyflavonols, phenylethanoid glycosides, and benzoic acid derivatives (4-14). All structures were elucidated by ESI-MS and NMR spectroscopic methods. Quantitative determination of phenolic constituents from burrito water infusions has been performed by HPLC-UV-DAD. The total antioxidant activity of the tea was measured by the ABTS(*)(+) radical cation decolorization and chemiluminescence (CL) assays and compared with the values of other commonly used herbal teas (green and black teas, mate, and rooibos).  相似文献   

15.
This study aimed to compare in vitro antioxidant power of different types of tea (Camellia sinensis). The ferric reducing/antioxidant power (FRAP) assay was used to measure the total antioxidant power of freshly prepared infusions of 25 types of teas. Results showed that different teas had widely different in vitro antioxidant power and that the antioxidant capacity was strongly correlated (r = 0. 956) with the total phenolics content of the tea. Expressed as micromol of antioxidant power/g of dried tea leaves, values ranged as 132-654 micromol/g for black ("fermented") teas, 233-532 micromol/g for Oolong ("semifermented") teas, and 272-1144 micromol/g for green ("nonfermented") teas. One cup of tea of usual strength (1-2%), therefore, can provide the same potential for improving antioxidant status as around 150 mg of pure ascorbic acid (vitamin C).  相似文献   

16.
A quantitative method for four theaflavins and two methylated theaflavin derivatives in black tea leaves was developed by solid-phase extraction and a high-performance liquid chromatographic method with photodiode array detection. The theaflavins in black tea leaves were extracted three times with 40 vol 50% aqueous ethanol (mg dry tea powder/mL) containing 2% ascorbic acid. The ethanol extracts were diluted 4-fold with distilled water. All diluted extracts were directly applied to the solid-phase C18 cartridge column without concentration. The fraction of theaflavins was obtained by 40% ethanol extraction after rinsing with water followed with 15% ethanol extraction. An aliquot of theaflavins after concentration was injected onto an ODS C18 reversed-phase column, and four theaflavins and two methylated theaflavins were sufficiently separated by a linear gradient system using distilled water and acetonitrile with 0.5% acetic acid. This analytical method is sensitive for the determination of a small amount of methylated theaflavins, since various interfering substances produced during the fermentation process were eliminated in advance by solid-phase extraction. Using this analytical method, we also demonstrated that methylated theaflavins were easily produced during the manufacture of black tea.  相似文献   

17.
The in vitro antioxidant activity of aqueous extracts prepared from four Cyclopia spp. (unfermented and fermented) was assessed using radical (ABTS *+) scavenging, ferric ion reduction, and inhibition of Fe2+-induced microsomal lipid peroxidation as criteria. Aqueous extracts of unfermented and fermented Aspalathus linearis (rooibos) and Camellia sinensis teas (green, oolong, and black) were included as reference samples. Qualitative and quantitative differences in phenolic composition were demonstrated for the Cyclopia spp. The xanthone glycoside, a.k.a. mangiferin, was the major monomeric polyphenol present in the Cyclopia extracts, with both unfermented and fermented C. genistoides extracts containing the highest quantities. Fermentation resulted in a significant reduction in extract yields and their total polyphenolic and individual polyphenol contents. Unfermented plant material should preferentially be used for preparation of extracts, as fermentation significantly ( P < 0.05) lowered antioxidant activity of all species, except in the case of C. genistoides, where the ability to inhibit lipid peroxidation was not affected. Unfermented plant material also retained the highest concentration of mangiferin. Overall, extracts of unfermented Cyclopia were either of similar or lower antioxidant activity as compared to the other teas. However, the presence of high levels of mangiferin merits the use of Cyclopia spp. and, in particular, C. genistoides, as an alternative herbal tea and potential dietary supplement.  相似文献   

18.
Antioxidative activities of volatile extracts from six teas (one green tea, one oolong tea, one roasted green tea, and three black teas) were investigated using an aldehyde/carboxylic acid assay and a conjugated diene assay. The samples were tested at levels of 20, 50, 100, and 200 micrograms/mL of dichloromethane. The results obtained from the two assays were consistent. All extracts except roasted green tea exhibited dose-dependent inhibitory activity in the aldehyde/carboxylic acid assay. A volatile extract from green tea exhibited the most potent activity in both assays among the six extracts. It inhibited hexanal oxidation by almost 100% over 40 days at the level of 200 micrograms/mL. The extract from oolong tea inhibited hexanal oxidation by 50% in 15 days. In the case of the extract from roasted green tea, the lowest antioxidative activity was obtained at the level of 200 micrograms/mL, suggesting that the extract from roasted green tea contained some pro-oxidants. The extracts from the three black teas showed slight anti- or proactivities in both assays. The major volatile constituents of green tea and roasted green tea extracts, which exhibited significant antioxidative activities, were analyzed using gas chromatography-mass spectrometry. The major volatile chemicals with possible antioxidative activity identified were alkyl compounds with double bond(s), such as 3,7-dimethyl-1,6-octadien-3-ol (8.04 mg/kg), in the extract from green tea and heterocyclic compounds, such as furfural (7.67 mg/kg), in the extract from roasted green tea. Benzyl alcohol, which was proved to be an antioxidant, was identified both in a green tea extract (4.67 mg/kg) and in a roasted tea extract (1.35 mg/kg).  相似文献   

19.
Changes in the specific activities of polyphenol oxidase (PPO), peroxidase (POD), and protease and in the relative amounts of flavan-3-ols for eight genetically derived cultivated teas at various stages of leaf maturity and in four succescive seasons were examined. A series of investigations were carried out to study the cross-reactivity of complex polyphenols and PPO-generated orange-yellow theaflavins, as well as of POD oxidized substrates, producing brown so-called thearubigins during fermented tea processing. From the estimation of five major catechins, PPO activities in young shoots, and theaflavin and thearubigin contents of crushed, torn, and curled (CTC) black teas, the superior variety and flavorful flush characteristics were refined. Notable protein hydrolysis by endogenous protease as measured from free amino acids and formation of tannin-protein complex (browning products) was obtained for cultivar character and product quality. Results showed that process optimization with respect to time, temperature, moisture, and pH maximizes PPO-catalyzed desirable theaflavin pigments, whereas POD-mediated chemical reaction produces dull color.  相似文献   

20.
A total of 15 green tea samples were prepared from fresh tea leaves obtained from three different countries: two from Laos, seven from Myanmar, and six from Vietnam. The volatile aroma constituents of the 15 samples were analyzed by gas chromatography/mass spectroscopy. Eleven aroma constituents were chosen from over 100 chemicals found in the samples to compare differences among various teas. They were hexanal, 1-penten-3-ol, heptanal, 1-pentenal, (Z)-2-penten-1-ol, (Z)-3-penten-1-ol, linalool oxide (trans-furanoid), linalool oxide (cis-furanoid), linalool, linalyl propanoate, and geraniol. Generally, concentrations of linalool and hexanal seem to play an important role in the quality of green teas. Green teas from Laos and Myanmar contained heterocyclic compounds, such as pyridines and pyrazines, formed by high-temperature processing. The presence of these heterocyclic compounds suggested that the temperature used for tea processing plays an important role in the formation of aroma chemicals in green teas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号