首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focuses on the processes occurring during incorporation of inorganic nitrogen into humic substances. Therefore rye grass, wheat straw, beech saw dust, sulphonated lignin and organosolve lignin were incubated together with highly 15N-enriched ammonium sulphate in the laboratory for 600 days. Samples from the incubates were periodically analysed for weight loss, and carbon and nitrogen contents. The samples were also analysed by solid-state 13C- and 15N-CPMAS-NMR-spectroscopy to follow the turnover of the materials during incubation. Most of the detectable N-signals was assigned to amide - peptide structures. The remaining intensities could be ascribed to free and alkylated amino groups, and those on the low field side of the broad amide-peptide signal to indole, pyrrole and nucleotide derivatives. Abiotic reactions of ammonia with suitable precursors and the formation of pyridine, pyrazine or phenyloxazone derivatives were not observed. Signals from ammonia and nitrate occurred only at the end of the incubation.  相似文献   

2.
Two soils differing in ammonium fixation capacity were incubated for 127 days with 15N-ammonium sulphate. In a gley soil with high NH+4-fixing capacity caused by smectites with a charge up to 0.8 per formula unit, the major part of the added ammonium was first fixed by minerals and then released slowly during incubation. The proportion of labelled N in the nitrate fraction increased during the first weeks and then decreased permanently. In contrast, in a histosol with low NH+4-fixing capacity, the exchangeable fraction contained most of the labelled NH+4, this being highly available to microorganisms and therefore subject to nitrification. About 50% of the added 15NH4 was lost from the histosol in 127 days, but only about 20 per cent was lost from the gley soil.  相似文献   

3.
4.
The relations between pH, different fractions of Fe and A1 and Na4P2O7-soluble C and the amount of adsorbed SO2-4 were assessed by analysing 63 soil samples from 14 podsolized soils in Sweden. The amount of adsorbed SO2-4 was significantly better correlated with the calculated amount of the inorganic fraction of Fe and A1 oxides obtained by subtracting Na4P2O7-soluble Fe and A1 from oxalate-soluble Fe and Al than with the oxalate extraction alone. There was a close correlation between C and organically-bound S in the Na4P2O7 extract which shows that the C:S ratio of the extracted fulvic acids is about constant in the soils studied. It was found that, as the proportion of organically-complexed Fe and Al increases, the ability of the soil to adsorb SO2-4 decreases. The amount of adsorbed SO2-4 expressed on the basis of the amounts of oxalate-soluble Fe and Al was generally smaller in areas with low S deposition (< 60 mmol m-2 a-1). The ratio between pyrophosphate-soluble C and oxalate-extractable Fe and Al was negatively correlated with pH in water. It was concluded that Fe and Al associated with organic matter cannot adsorb SO2-4 and that the degree of this association is pH dependent. These observations have important implications regarding the effects of anthropogenic acidification.  相似文献   

5.
The occurrence of greigite (Fe3S4) in soils is reported for the first time. It forms irregularly-shaped aggregations within plant cells in the Gr2 horizon of a gley soil developed from colluvial material. Greigite was identified by X-ray diffraction and magnetic measurements and was investigated by optical and transmission electron microscopy. Biogenic formation is proposed, based on the elongated shape of single greigite crystals, and sulphur isotope analyses, which showed a depletion in 34S relative to the soil-water sulphate. The cell-edge length of 0.98639±0.00003 nm is significantly smaller than values reported for sedimentary greigite. The mean coherence length of 27 nm agrees with TEM observations and indicates that the single greigite crystals lie in the superparamagnetic region. However, the fine aggregates show magnetically single-domain behaviour. Greigite is the only carrier of a stable magnetic remanence in the soil profile studied.  相似文献   

6.
The contribution of bacteria and fungi to NH4+ and organic N (Norg) oxidation was determined in a grassland soil (pH 6.3) by using the general bacterial inhibitor streptomycin or the fungal inhibitor cycloheximide in a laboratory incubation study at 20°C. Each inhibitor was applied at a rate of 3 mg g?1 oven‐dry soil. The size and enrichment of the mineral N pools from differentially (NH415NO3 and 15NH4NO3) and doubly labelled (15NH415NO3) NH4NO3 were measured at 3, 6, 12, 24, 48, 72, 96 and 120 hours after N addition. Labelled N was applied to each treatment, to supply NH4+‐N and NO3?‐N at 3.15 μmol N g?1 oven‐dry soil. The N treatments were enriched to 60 atom % excess in 15N and acetate was added at 100 μmol C g?1 oven‐dry soil, to provide a readily available carbon source. The oxidation rates of NH4+ and Norg were analysed separately for each inhibitor treatment with a 15N tracing model. In the absence of inhibitors, the rates of NH4+ oxidation and organic N oxidation were 0.0045 μmol N g?1 hour?1 and 0.0023 μmol N g?1 hour?1, respectively. Streptomycin had no effect on nitrification but cycloheximide inhibited the oxidation of NH4+ by 89% and the oxidation of organic N by more than 30%. The current study provides evidence to suggest that nitrification in grassland soil is carried out by fungi and that they can simultaneously oxidize NH4+ and organic N.  相似文献   

7.
Greenhouse gas (GHG) emissions from farmed organic soils can have a major impact on national emission budgets. This investigation was conducted to evaluate whether afforestation of such soils could mitigate this problem. Over the period 1994–1997, emissions of methane (CH4) and nitrous oxide (N2O) were recorded from an organic soil site in Sweden, forested with silver birch (Betula pendula Roth), using static field chambers. The site was used for grazing prior to forestation. Soil pH and soil carbon content varied greatly across the site. The soil pH ranged from 3.6 to 5.9 and soil carbon from 34 to 42%. The mean annual N2O emission was 19.4 (± 6.7) kg N2O‐N ha?1 and was strongly correlated with soil pH (r = ?0.93, P < 0.01) and soil carbon content (r = 0.97, P < 0.001). The N2O emissions showed large spatial and temporal variability with greatest emissions during the summer periods. The site was a sink for CH4 (i.e. ?0.8 (± 0.5) kg CH4 ha?1 year?1) and the flux correlated well with the C/N ratio (r = 0.93, P < 0.01), N2O emission (r = 0.92, P < 0.01), soil pH (r = ?0.95, P < 0.01) and soil carbon (r = 0.97, P < 0.001). CH4 flux followed a seasonal pattern, with uptake dominating during the summer, and emission during winter. This study indicates that, because of the large N2O emissions, afforestation may not mitigate the GHG emissions from fertile peat soils with acidic pH, although it can reduce the net GHG because of greater CO2 assimilation by the trees compared with agricultural crops.  相似文献   

8.
9.
The fate of carbon (C) in grassland soils is of particular interest since the vast majority in grassland ecosystems is stored below ground and respiratory C‐release from soils is a major component of the global C balance. The use of 13C‐depleted CO2 in a 10‐year free‐air carbon dioxide enrichment (FACE) experiment, gave a unique opportunity to study the turnover of the C sequestered during this experiment. Soil organic matter (SOM), soil air and plant material were analysed for δ13C and C contents in the last year of the FACE experiment (2002) and in the two following growing seasons. After 10 years of exposure to CO2 enrichment at 600 ppmv, no significant differences in SOM C content could be detected between fumigated and non‐fumigated plots. A 13C depletion of 3.4‰ was found in SOM (0–12 cm) of the fumigated soils in comparison with the control soils and a rapid decrease of this difference was observed after the end of fumigation. Within 2 years, 49% of the C in this SOM (0–12 cm) was exchanged with fresh C, with the limitation that this exchange cannot be further dissected into respiratory decay of old C and freshly sequestered new C. By analysing the mechanistic effects of a drought on the plant‐soil system it was shown that rhizosphere respiration is the dominant factor in soil respiration. Consideration of ecophysiological factors that drive plant activity is therefore important when soil respiration is to be investigated or modelled.  相似文献   

10.
11.
Thirty-one soil solutions were extracted by immiscible displacement with CCl4 under high speed centrifugation from sub-horizons of three podzolic soils from north-eastern Ontario, Canada. The solutions were analysed for major cations and anions and a speciation of dissolved Fe and Al was attempted to distinguish 'free', 'organically bound' and 'inorganically bound' species. Results indicated that the Ae (E) horizon solutions were of low pH and contained mainly organically bound Fe and Al. With depth, pHs increased, ionic strengths decreased and the relative proportion of inorganically bound Fe and Al increased. Although application of phase diagrams permitted only a semi-quantitative interpretation of the data, all horizon solutions, with the exception of some Ae solutions, appeared supersaturated with respect to likely occurring crystalline and amorphous aluminosilicates [kaolinite, halloysite, allophane (Al:Si=l) and imogolite]. Of the phases considered, reactions involving imogolite-allophane, gibbsite-halloysite, gibbsite-allophane and gibbsite-imogolite all appeared reasonable in controlling the content of Al3+ and H4SiO4 in solution, although the presence of gibbsite and imogolite could not be definitely confirmed in these soils.  相似文献   

12.
A gas lysimeter has been designed and used to measure directly the evolution of N2and N2O in a soil profile under field conditions. Concentrations of N2 in the soil atmosphere within the lysimeter as low as 2000–5000 p.p.m. have been achieved by flushing with N-free gas. A flow of gas into the base of the lysimeter forms a barrier against diffusion of soil air into the lysimeter during measurements. After reducing the N2 concentration in the soil core, a low concentration of N2enriched in N-15 is introduced. By monitoring changes in the 8 N value using a high-precision isotope mass spectrometer, rates of N2 evolution down to 6 kg N2-N ha?1 a?1 can be detected. N2O evolution was determined at the same time using the mass spectrometer in the single-beam mode.  相似文献   

13.
The solid phases and the precipitation boundary characterizing the system H+-Al3+-oxalic acid-silicic acid-Na+ are discussed. Model experiments have been used to throw more light on two environmental problems: the formation of sparingly soluble aluminium silicates in oceans and alkaline lakes, which could be determining aluminium and silicate concentrations in pore waters of sediments, and the validity of inorganic and organic mechanisms of podzolization and their significance for soil science. pH and Tyndallometric measurements were performed at constant ionic strength of 0.6 M NaCl at 25°C. Three phases Al(OH)4, H4SiO4 (phase Via), Al2, (OH)6.H4SiO4 (phase VIb) and NaAl(OH)4.(H4SiO4), (phase VIII) determine the precipitation boundary. Phase NaAl(OH)4.H4SiO4 (phase VII precipitates at 0.4pH units above NaAl(OH)4.(H4SiO4)2. Using a set of previously determined binary and ternary complexes, and phases of the subsystems, the following formation constants were deduced: Phases VIa and VIb are described as end-members of the allophane series with Si: Al ratios of 1:1 and 1.2. Phase VIb was identified with protoimogolite allophane. These two phases are good model clays for podzolic soils and are extremely soluble at pH < 4. Sodium phases could be hydrous feldspathoids. These phases are possible in sediments of seawater or saline lakes. It is suggested that organic and inorganic mechanisms of podzolization operate sequentially and that neither of them alone can completely describe the process.  相似文献   

14.
15.
To understand the process and the kinetics of potassium release from the clay interlayer in natural and arable soils in more detail, I tested the hypotheses that large, monovalent cations, especially NH4+ and Cs+, can reduce the release rates of K+ which is exchanged by Ca2+, even if these monovalent cations are present in concentrations of only a few μm . Percolation experiments were carried out with different illitic soil materials, some containing vermiculite, with 5 m m CaCl2 at pH 5.8 and 20°C, in some cases for over 7000 h. NH4+ and Cs+ both caused a large decrease in the rate at which K+ was released, Cs+ especially. Suppression began at 5 μm NH4+ Blocking by 20 μm NH4+ was easily reversible: the release rates readily increased when NH4+ was omitted from the exchange solution. Blocking by 2 μm Cs+ was equal to approximately 90% of that at 10 μm Cs+. Larger concentrations of Cs+ than 10 μm did not further reduce release but rather caused a slight increase, probably because of enhanced exchange of K+ by Cs+ without exfoliation of the interlayer space. Blocking by Cs+ was not reversible within > 7000 h of percolation by 5 m m CaCl2. The blocking effect was reproduced in several different soil materials using 10 μm Cs+ but was most pronounced in vermiculite-rich samples. As NH4+ is present in most arable soils, at least in concentrations of a few μm , I conclude that the observed effects are of significance in the K dynamics processes in soils, for example near the roots of plants. Further, very small concentrations of Cs+ in exchange solutions containing a large background of Ca2+ appear to be useful for suppressing K+ release from the interlayer in laboratory studies, probably without significantly altering the exchange at outer mineral surfaces.  相似文献   

16.
To evaluate the atmospheric load of reactive gaseous nitrogen in the fast-developing Eastern China region, we compiled inventories of nitrous oxide (N2O), nitrogen oxide (NOx) and ammonia (NH3) emissions from a typical rural catchment in Jiangsu province, China, situated at the lower reach of the Yangtze River. We considered emissions from synthetic N fertilizer, human and livestock excreta, decomposition of crop residue returned to cropland and residue burning, soil background and household energy consumption. The results showed that, for the 45.5 km2 catchment, the annual reactive gaseous emission was 279 ton N, of which 7% was N2O, 16% was NOx and 77% was NH3. Synthetic N fertilizer application was the dominant source of N2O and NH3 emissions and crop residue burning was the dominant source of NOx emission. Sixty-seven percent of the total reactive gaseous N was emitted from croplands, but on a per unit area basis, NOx and NH3 emissions in residential areas were higher than in croplands, probably as a result of household crop residue burning and extensive human and livestock excreta management systems. Emission per capita was estimated to be 18.2 kg N year−1 in the rural catchment, and emission per unit area was 56.9 kg N ha−1year−1 for NH3 + NOx, which supports the observed high atmospheric N deposition in the catchment. Apparently, efficient use of N fertilizer and biological utilization of crop straw are important measures to reduce reactive gases emissions in this rural catchment.  相似文献   

17.
Potassium transport was investigated in the root elongation zone of Arabidopsis seedlings during the first minutes of Al3+ exposure, using the non-invasive MIFE microelectrode technique. To prevent pH changes during Al3+ application, and to separate aluminium from acidic stress, plants were pre-treated with 5 mM homoPIPES before addition of AlCl3 (pH 4.2). The 30-min treatment with 50 or 500 μM AlCl3 led to a significant increase in K+ efflux in solutions containing 100 μM CaCl2. This efflux was suppressed by high concentrations of Ca2+ (10 mM) in the bathing solution. Our results suggest that elevated external Ca2+ activities can sustain K+ influx in the root elongation zone during Al3+ exposure either by maintaining [Ca2+]cyt or by affecting Al3+ uptake across the plasma membrane.  相似文献   

18.
WANG Chao  WANG Pei-Fang 《土壤圈》2008,18(5):628-637
The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater. A laboratory-designed large soil tank with periodic and continuous infiltration models, respectively, was used to simulate the migration of the contaminants NH4 and NO3 in a soil and groundwater system, including unsaturated and saturated zones. The unsaturated soil zone had a significant effect on removing NH4 and NO3 infiltrated from the surface water. The patterns of breakthrough curves of NH4 and NO3 in the unsaturated zone were related to the infiltration time. A short infiltration time resulted in a single sharp peak in the breakthrough curve, while a long infiltration time led to a plateau curve. When NH4 and NO3 migrated from the unsaturated zone to the saturated zone, an interracial retardation was formed, resulting in an increased contaminant concentration on the interface. Under the influence of horizontal groundwater movement, the infiltrated contaminants formed a contamination-prone area downstream. As the contaminants migrated downstream, their concentrations were significantly reduced. Under the same infiltration concentration, the concentration of NO3 was greater than that of NH4 at every corresponding cross-section in the soil and groundwater tank, suggesting that the removal efficiency of NH4 was greater than that of NO3 in the soil and groundwater system.  相似文献   

19.
The impact of rising atmospheric carbon dioxide (CO2) may be mitigated, in part, by enhanced rates of net primary production and greater C storage in plant biomass and soil organic matter (SOM). However, C sequestration in forest soils may be offset by other environmental changes such as increasing tropospheric ozone (O3) or vary based on species-specific growth responses to elevated CO2. To understand how projected increases in atmospheric CO2 and O3 alter SOM formation, we used physical fractionation to characterize soil C and N at the Rhinelander Free Air CO2-O3 Enrichment (FACE) experiment. Tracer amounts of 15NH4+ were applied to the forest floor of Populus tremuloides, P. tremuloides-Betula papyrifera and P. tremuloides-Acer saccharum communities exposed to factorial CO2 and O3 treatments. The 15N tracer and strongly depleted 13C-CO2 were traced into SOM fractions over four years. Over time, C and N increased in coarse particulate organic matter (cPOM) and decreased in mineral-associated organic matter (MAOM) under elevated CO2 relative to ambient CO2. As main effects, neither CO2 nor O3 significantly altered 15N recovery in SOM. Elevated CO2 significantly increased new C in all SOM fractions, and significantly decreased old C in fine POM (fPOM) and MAOM over the duration of our study. Overall, our observations indicate that elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Elevated O3 had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response.  相似文献   

20.
Colorimetric and ion exchange methods are commonly used to distinguish and measure Al species in natural waters. Unfortunately they also include weakly complexed Al species in their ‘reactive' or ‘labile' Al fractions and thus are of limited value for the estimation of free Al3+. Capillary electrophoresis (CE) has the potential for direct measurement of Al3+, and its performance has been verified experimentally. The method also detected the stable and positively charged AlOx+ complex formed with oxalic acid. It was compared with a colorimetric and an ion exchange method by analysing artificial solutions containing low molecular weight organic acids as well as soil extracts and seepage waters and was found to be the only method closely matching the theoretically calculated values of free Al3+. In samples from the upper soil horizons of an acid forest soil less than 14% of total Al was present as free Al3+, whereas the colorimetric method found more than 65%, and the ion exchange method more than 80% of total Al in a ‘reactive' or ‘labile' form. The latter methods thus would seriously overestimate Al toxicity, whereas using CE Al toxicity is likely to be only slightly underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号