首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

2.
 In a cropping systems experiment in southeastern Norway, ecological (ECO), integrated (INT) and conventional (CON) forage (FORAGE) and arable (ARABLE) model farms were compared. After 5 experimental years, topsoil was sampled in spring from spring grain plots and incubated for 449 days at controlled temperature (15  °C) and moisture content (50% water-holding capacity). There were no detectable differences between model farms in terms of total soil C or N. For INT and CON, however, values of microbial biomass C and N, microbial quotient (Cmic/Corg), and C and N mineralization were, or tended to be, higher for FORAGE than for ARABLE. For the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. For INT and CON, the metabolic quotient (qCO2) was lower for FORAGE than for ARABLE. Again, for the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. We estimated the sizes of conceptual soil organic matter pools by fitting a decomposition model to biomass and mineralization data. This resulted in a 48% larger estimate for CON-FORAGE than for CON-ARABLE of physically protected biomass C. For physically protected organic C the difference was 42%. Moreover, the stability of soil aggregates against artificial rainfall was substantially greater for CON-FORAGE than for CON-ARABLE. On this basis, we hypothesized that the lower qCO2 values in the FORAGE soils were mainly caused by a smaller proportion of active biomass due to enclosure of microorganisms within aggregates. Altogether, our results indicated a poorer inherent soil fertility in ARABLE than in FORAGE rotations, but the difference was small or absent in the ECO system, probably owing to the use of animal and green manures and reduced tillage intensity in the ECO-ARABLE rotation. Received: 28 October 1998  相似文献   

3.
 Net mineralization was measured in free-draining and poorly drained pasture soils using three different field incubation methodologies. Two involved the use of enclosed incubation vessels (jar or box) containing C2H2 as a nitrification inhibitor. The third method confined soil cores in situ in an open tube in the ground, with an anion-exchange resin at the base to retain leached NO3 (resin-core technique, RCT). Measurements were made on three occasions on three free-draining pastures of different ages and contrasting organic matter contents. In general, rates of net mineralization increased with pasture age and organic matter content (range: 0.5–1.5 kg N ha–1 day–1) and similar rates were obtained between the three techniques for a particular pasture. Coefficients of variation (CVs) were generally high (range: 10.4–98.5%), but the enclosed incubation methods were rather less variable than the RCT and were considered overall to be the more reliable. The RCT did not include C2H2 and, therefore, newly formed NO3 may have been lost through denitrification. In a poorly drained pasture soil, there were discrepancies between the two enclosed methods, especially when the soil water content approached field capacity. The interpretation of the incubation measurements in relation to the flux of N through the soil inorganic N pool is discussed and the drawbacks of the various methodologies are evaluated. Received: 18 November 1999  相似文献   

4.
We investigated C management index (CMI; an indicator of sustainability of a management system and is based on total and labile C) and soil aggregation in medium-textured soils (silt loam and silty clay loam) under different cropping systems as follows: maize-wheat (M-W), rice-wheat (R-W), soybean-wheat (S-W), Guinea grass, and Setaria grass. Field experiments were 6–32 years long and were located in the wet-temperate zone of northwest Himalayas. The plant nutrients were applied through chemical fertilizers (urea, superphosphate, and muriate of potash) with or without organic materials (FYM, wheat straw, and Lantana spp.). The content of total C (CT), labile C (CL), CMI, mean weight diameter (MWD), and aggregate porosity varied significantly under different cropping systems. The range was 1.59 (R-W)–4.29% (Setaria) for CT, 1.23 (R-W)–3.89 mg/kg (Guinea grass) for CL, 52.09 (R-W)–129.77 (Guinea grass) for CMI, 0.90 (R-W)–5.09 (Guinea grass) for MWD, and 41.5 (R-W)–56.8% (S-W) for aggregate porosity. Aggregate porosity was highest (56.8%) under S-W, followed by grasses (50.1–51.2%), and M/R-W (41.5–50.0%). As per these data, (a) continuous use of N alone as urea lowered soil sustainability over control (no fertilizers); (b) use of NPK at recommended rates improved soil productivity over control; (c) the NPK + organic amendments further improved soil sustainability; and (d) the sustainability under different cropping systems followed the order: perennial grasses > soybean-wheat > maize-wheat > rice-wheat.  相似文献   

5.
Soluble organic nitrogen in agricultural soils   总被引:36,自引:0,他引:36  
 The existence of soluble organic forms of N in rain and drainage waters has been known for many years, but these have not been generally regarded as significant pools of N in agricultural soils. We review the size and function of both soluble organic N extracted from soils (SON) and dissolved organic N present in soil solution and drainage waters (DON) in arable agricultural soils. SON is of the same order of magnitude as mineral N and of equal size in many cases; 20–30 kg SON-N ha–1 is present in a wide range of arable agricultural soils from England. Its dynamics are affected by mineralisation, immobilisation, leaching and plant uptake in the same way as those of mineral N, but its pool size is more constant than that of mineral N. DON can be sampled from soil solution using suction cups and collected in drainage waters. Significant amounts of DON are leached, but this comprises only about one-tenth of the SON extracted from the same soil. Leached DON may take with it nutrients, chelated or complexed metals and pesticides. SON/DON is clearly an important pool in N transformations and plant uptake, but there are still many gaps in our understanding. Received: 10 June 1999  相似文献   

6.
Soil microbial biomass carbon and nitrogen as affected by cropping systems   总被引:12,自引:0,他引:12  
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively. The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively). Received: 9 February 1999  相似文献   

7.
Short-term effects of tillage systems on active soil microbial biomass   总被引:5,自引:0,他引:5  
 Conservation tillage, and especially no-tillage, induce changes in the distribution of organic pools in the soil profile. In long-term field experiments, marked stratification of the total soil microbial biomass and its activity have been observed as consequence of the application of no-tillage to previously tilled soils. Our objective was to study the evolution of the total and active soil microbial biomass and mineralized C in vitro during the first crop after the introduction of no-tillage to an agricultural soil. The experiment was performed on a Typic Hapludoll from the Argentinean Pampa. Remaining plant residues, total and active microbial biomass and mineralized C were determined at 0–5 cm and 5–15 cm depths, at three sampling times: wheat tilling, silking and maturity. The introduction of no-tillage produced an accumulation of plant residues in the soil surface layer (0–5 cm), showing stratification with depth at all sampling dates. Active microbial biomass and C mineralization were higher under no-tillage than under conventional tillage in the top 5 cm of the profile. The total soil microbial biomass did not differ between treatments. The active soil biomass was highly and positive correlated with plant residues (r 2=0.617;P<0.01) and with mineralized C (r 2=0.732;P<0.01). Consequently, the active microbial biomass and mineralized C reflected immediately the changes in residue management, whereas the total microbial biomass seemed not to be an early indicator of the introduction of a new form of soil management in our experiment. Received: 23 February 1999  相似文献   

8.
 The impacts of crop rotations and N fertilization on different pools of arylsulfatase activity (total, intracellular, and extracellular) were studied in soils of two long-term field experiments in Iowa to assess the contibution of the microbial biomass to the activity of this enzyme. Surface-soil samples were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg N ha–1 before corn, and an annual application of 20 kg P ha–1 and 56 kg K ha–1. The arylsulfatase activity in the soils was assayed at optimal pH (acetate buffer, pH 5.8) before and after chloroform fumigation; microbial biomass C (Cmic) and N (Nmic) were determined by chloroform-fumigation methods. All pools of arylsulfatase activity in soils were significantly affected by crop rotation and plant cover at sampling time, but not by N fertilization. Generally, the highest total, intracellular, and extracellular arylsulfatase activities were obtained in soils under cereal-meadow rotations, taken under oats or meadow, and the lowest under continuous cropping systems.Total, intracellular, and extracellular arylsulfatase activities were significantly correlated with Cmic (r>0.41, P<0.01) and Nmic (r>0.38, P<0.01) in soils. The averages of specific activity values, i.e., of arylsulfatase activity of the microbial biomass, expressed per milligram Cmic, ranged from 315 to 407 μg p-nitrophenol h–1. The total arylsulfatase activity was significantly correlated with the intracellular activity, with r values >0.79 (P<0.001). In general, about 45% of the total arylsulfatase activity was extracellular, and 55% was associated with the microbial biomass in soils, indicating the importance of the microflora as an enzyme source in soils. Received: 23 April 1998  相似文献   

9.
 Oregon soils from various management and genetic histories were used in a greenhouse study to determine the relationships between soil chemical and biological parameters and the uptake of soil mineralized nitrogen (N) by ryegrass (Lolium perenne L.). The soils were tested for asparaginase, amidase, urease, β-glucosidase, and dipeptidase activities and fluorescein diacetate hydrolysis. Microbial biomass carbon (C) and N as well as metabolic diversity using Biolog GN plates were measured, as were total soil N and C, pH, and absorbance of soil extracts at 270 nm and 210 nm. Potentially mineralizable N (N0) and the mineralization rate constant (k) were calculated using a first order nonlinear regression model and these coefficients were used to calculate the initial potential rate of N mineralization (N0 k). Except for Biolog GN plates, the other parameters were highly correlated to mineralized N uptake and each other. A model using total soil N and β-glucosidase as parameters provided the best predictor of mineralized N uptake by ryegrass (R 2 =0.83). Chemical and biological parameters of soils with the same history of formation but under different management systems differed significantly from each other in most cases. The calculated values of the initial potential rate of mineralization in some cases revealed management differences within the same soil types. The results showed that management of soils is readily reflected in certain soil chemical and biological indicators and that some biological tests may be useful in predicting N mineralization in soils. Received: 31 January 1997  相似文献   

10.
The effects of up to 23 years of agricultural cropping of a boreal forest soil on soil organic carbon (SOC) and N, P, and K pools were studied. The cropping systems studied were: (a) continuous barley, (b) continuous forage bromegrass, (c) continuous forage legume, and (d) barley/grass-legume forage rotation. Continuous bromegrass increased while other cropping systems decreased SOC in the surface soil. Kjeldahl N in soil approximately followed the trend in SOC. The net gain in N under continuous grass was attributed mostly to nonsymbiotic N fixation. Changes in SOC content appeared to be also influenced by cropping and tillage frequencies. Changes in fixed (intercalary) ammonium were small. There was no measurable change in total P, in part, because input was only slightly higher than crop offtake. Organic P increased under continuous bromegrass, and tended to decrease under continuous legume. The C/N and C/P ratios of soil organic matter decreased slightly with cropping. Exchangeable K (Kex) was decreased by cropping systems containing a legume crop to a greater extent than those without a legume crop. Most of the decrease occurred in the 0–15 cm depth. Nitric acid extractable K was not affected by cropping. Since net loss of Kex to 30 cm depth was substantially less than crop offtake, it is suggested that subsoil K reserves and matrix K were supplying a major portion of the crops' K requirement. It is concluded that the effects of cropping systems on SOC, N, P and K are influenced by crop type, and cropping and tillage frequencies.  相似文献   

11.
 The total N content in the acid forest soils studied ranged between 0.41% and 1.43%, and in more than 98% was composed of organic N. Total hydrolysable organic N, hydrolysable unknown N (HUN) and α-aminoacidic N represented around 70%, 34% and 20% of the organic N, respectively, and varied in wide ranges. The percentages of amidic N and of the organic N compounds solubilised to NH4 + were approximately 6% and 5%, respectively, and ranged in narrow intervals. Aminoglucidic N reached a maximum of 3.8% of the organic N and was undetectable in some of the samples analysed. Most of the hydrolysable N, HUN and α-aminoacidic N was solubilised with 1 N and 3 N HCl, while a high amount of the compounds recovered as NH4 + (60%) was obtained with 6 N HCl. The distribution of aminoglucidic N in the four fractions of increasing hydrolytic intensity was very irregular. The organic N composition in the 0 to 5-cm and 5 to 10-cm layers was not significantly different. The variation among samples was determined mainly by the organic N compounds less resistant to acid hydrolysis (hydrolysable N and HUN less resistant to acid hydrolysis, amidic N and labile ammoniacal N) and by all α-aminoacidic N fractions. Aminoacidic N was positively correlated with electrical conductivity and negatively correlated with exchangeable Al. The net N mineralisation over 10 weeks of incubation was positive in all the soil samples analysed. The inorganic N content after the incubation and the microbial N content were positively correlated with other variables – mainly with amidic N and α-aminoacidic N, as well as with HUN and the hydrolysable N less resistant to hydrolysis. Received: 13 July 1999  相似文献   

12.
Dissolved organic nitrogen (DON) is a significant nitrogen (N) pool in most soils and is considered to be important for N cycling. The present study focused on paired sites of native remnant woodland and managed pasture at three locations in south-eastern Australia. Improved understanding of N cycling is important for assessing the impact of agriculture on soil processes and can guide conservation and restoration soil management strategies to maintain remnant native woodland systems, which currently exist as small pockets of woodland within extensive managed pasture landscapes. Organic and inorganic N pools were quantified, as well as the rates of amino acid and peptide mineralisation in the paired native woodland and managed pasture systems. Soil DON dominated the soil N pool in both land uses, and the proportion of DON to other N pools was greatest at the most N-limited site (up to ∼70% of extractable N). In both land uses soil ammonium and free amino acid concentrations were similar (∼20% of extractable N), and soil nitrate formed the smallest N pool (<∼5% of extractable N). Mineralisation of 14C-labelled amino acid and peptide substrates was rapid (<3 h), and more amino acid was respired than peptide in both the native woodland and managed pasture soils. Soil C:N ratio was important in separating site and land use differences, and contrasting relationships between soil physico-chemical properties and organic N uptake rates were identified across sites and land uses.  相似文献   

13.
Abstract

Seven agricultural soils and eight forest soils from Washington state were tested for mineralizable nitrogen using both anaerobic and aerobic incubation procedures. Each procedure had been used previously to. develop nitrogen indices for agricultural and forested ecosystems. Forest soils mineralized less nitrogen under anaerobic than aerobic conditions, while the opposite was true for agricultural soils. There were statistically significant correlations between the two methods for each of the time periods tested. Experimental variations were consistently lower than previously reported.  相似文献   

14.
不同种植年限水田与旱地土壤有机氮组分变化   总被引:7,自引:0,他引:7  
王晋  庄舜尧  朱兆良 《土壤学报》2014,51(2):286-294
在浙江慈溪地区,由于不同时期围海造田形成了具有长时间尺度序列的典型水稻土和旱地土壤,为研究长期的土壤氮素生物地球化学循环过程提供了很好的对象。本研究运用封管水解Bremner法测定了不同种植年限下土壤氨基酸氮、氨基糖氮、氨态氮、未知氮等酸解性有机氮组分,以探究不同种植年限和种植方式对土壤有机氮组分的影响。结果显示,旱地土壤的不同氮组分含量仅为水稻土相对应氮组分含量的50%~60%,水稻种植较旱地更利于土壤氮素的保存和利用。从长时间尺度来看,除氨基酸氮和水稻土氨基糖氮外,有机氮各组分含量随时间呈指数变化趋势,水稻土主要呈增加趋势,而旱地土壤则表现为降低趋势。该地区土壤氨基酸氮占全氮比例为23.5%~29.3%,氨基糖氮比例为6.0%~7.6%,氨态氮为21.0%~28.8%,未知氮为13.0%~21.1%,不同种植方式和种植年限对土壤主要有机氮组分所占全氮比例影响不大。  相似文献   

15.
 High molecular weight, anionic polyacrylamide (PAM) is currently being used as an irrigation water additive to significantly reduce soil erosion associated with furrow irrigation. PAM contains amide-N, and PAM application to soils has been correlated with increased activity of soil enzymes, such as urease and amidase, involved in N cycling. Therefore we investigated potential impacts of PAM treatment on the rate at which fertilizer N is transformed into NH4 + and NO3 in soil. PAM-treated and untreated soil microcosms were amended with a variety of fertilizers, ranging from common rapid-release forms, such as ammonium sulfate [(NH4)2SO4] and urea, to a variety of slow-release formulations, including polymerized urea and polymer-encapsulated urea. Ammonium sulfate was also tested together with the nitrification inhibitor dicyandiamide (DCD). The fertilizers were applied at a concentration of 1.0 mg g–1, which is comparable to 100 lb acre–l, or 112 kg ha–1. Potassium chloride-extractable NH4 +-N and NO3 -N were quantified periodically during 2–4 week incubations. PAM treatment had no significant effect on NH4 + release rates for any of the fertilizers tested and did not alter the efficacy of DCD as a nitrification inhibitor. However, the nitrification rate of urea and encapsulated urea-derived NH4 +-N was slightly accelerated in the PAM-treated soil. Received: 16 January 1998  相似文献   

16.
Studies assessing the effects of different tillage and N fertilizer management practices on distributions and amounts of various C and N pools in soil can provide information about the influence of such management on the quality of organic matter in agricultural soils. To assess the influence of management on soil quality, we characterized the organic matter by measurements of total N, organic C, microbial biomass N and active N in the 0–20cm profiles of soil from long-term field experiments containing plots under treatments of plow or no tillage and 0, 135, or 270kgNha–1 fertilizer. Previous work had established that on the basis of the crop growth requirement of maize, these application rates of fertilizer N provide amounts of N that are deficient, sufficient, and excessive, respectively. The studies reported provide evidence that the sufficient amount of fertilizer N stimulated formation of the biologically active pools of N (biomass N and active N) in soils under no tillage treatments, but the excessive amount of fertilizer N tended to suppress these pools. The results demonstrated that these influences of excessive N fertilization were not reflected in distributions of total N or total organic C in soil profiles but became evident with the measurements of biologically active N. This suggests that such measurements can provide information related to the influence of different management practices on soil quality. Received: 30 November 1995  相似文献   

17.
A potculture study was conducted in soils collected from long-term fertilizer experiment (LTFE) being kept up as far the past 40 years to determine whether arbuscular mycorrhizal fungus (AMF) Rhizoglomus intraradices colonization changes the active and passive pools of carbon in a maize (Zea mays) – finger millet (Eleusine crocana)- cowpea (Vigna sinensis) cropping sequence in the Experimental Farm of the Tamil Nadu Agricultural University, Coimbatore, India. Soil samples were processed, sterilized and maize plants were grown in various fertility gradients in the absence (M-) or presence (M+) of AMF (Rhizoglomus intraradices) inoculation. The data have clearly shown that M+ soils had consistently higher active pools such as water soluble carbon, hot water soluble carbon and biomass carbon (M- 189; M + 305 mg kg?1), and passive pools such as soil organic carbon (M- 4.17; M + 4.31 mg g?1) and total glomalin. Among the fertility gradients, 100% NPK + Farm Yard Manure (FYM) with or without mycorrhizal fungal inoculation registered higher values for both active and passive pools of C but the response was more pronounced in the presence AMF inoculation. Overall, the data suggest that mycorrhizal fungal inoculation assists in effective carbon sequestration in an intensive cereal-legume cropping system.Abbreviations: AMF: Arbuscular mycorrhizal fungi; DAS: Days After Sowing; LTFE: Long-Term Fertilizer Experiment; WSC: Water soluble organic carbon; HA: Humic acid; FA: Fulvic acid; HWSC: Hot water soluble carbon  相似文献   

18.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4+-N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3-N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC.  相似文献   

19.
Short-term effects of nitrogen on methane oxidation in soils   总被引:6,自引:0,他引:6  
 The short-term effects of N addition on CH4 oxidation were studied in two soils. Both sites are unfertilized, one has been under long-term arable rotation, the other is a grassland that has been cut for hay for the past 125 years. The sites showed clear differences in their capacity to oxidise CH4, the arable soil oxidised CH4 at a rate of 0.013 μg CH4 kg–1 h–1 and the grassland soil approximately an order of magnitude quicker. In both sites the addition of (NH4)2SO4 caused an immediate reduction in the rate of atmospheric CH4 oxidation approximately in inverse proportion to the amount of NH4 + added. The addition of KNO3 caused no change in the rate of CH4 oxidation in the arable soil, but in the grassland soil after 9 days the rate of CH4 oxidation had decreased from 0.22 μg CH4 kg–1 h–1 to 0.13 μg CH4 kg–1 h–1 in soil treated with the equivalent of 192 kg N ha–1. A 15N isotopic dilution technique was used to investigate the role of nitrifiers in regulating CH4 oxidation. The arable soil showed a low rate of gross N mineralisation (0.67 mg N kg–1 day–1), but a relatively high proportion of the mineralised N was nitrified. The grassland soil had a high rate of gross N mineralisation (18.28 mg N kg–1 day–1), but negligible nitrification activity. It is hypothesised that since there was virtually no nitrification in the grassland soil then CH4 oxidation at this site must be methanotroph mediated. Received: 31 October 1997  相似文献   

20.
 The effects of acetate additions to northern hardwood forest soils on microbial biomass carbon (C) and nitrogen (N) content, soil inorganic N levels, respirable C and potential net N mineralization and nitrification were evaluated. The experiment was relevant to a potential watershed-scale calcium (Ca) addition that aims to replace Ca depleted by long-term exposure to acid rain. One option for this addition is to use calcium-magnesium (Mg) acetate, a compound that is inexpensive and much more readily soluble than the Ca carbonate that is generally used for large-scale liming. Field plots were treated with sodium (NA) acetate, Na bicarbonate or water (control) and were sampled (forest floor – Oe and Oa combined) 2, 10 and 58 days following application. It was expected that the addition of C would lead to an increase in biomass C and N and a decrease in inorganic N. Instead, we observed no effect on biomass C, a decline in biomass N and an increase in N availability. One possible explanation for our surprising results is that the C addition stimulated microbial activity but not growth. A second, and more likely, explanation for our results is that the C addition did stimulate microbial growth and activity, but there was no increase in microbial biomass due to predation of the new biomass by soil fauna. The results confirm the emerging realization that the effects of increases in the flow of C to soils, either by deliberate addition or from changes in atmospheric CO2, are more complex than would be expected from a simple C : N ratio analysis. Evaluations of large-scale manipulations of forest soils to ameliorate effects of atmospheric deposition or to dispose of wastes should consider microbial and faunal dynamics in considerable detail. Received: 13 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号