首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于机器视觉的玉米苗期多条作物行线检测算法   总被引:4,自引:0,他引:4  
为满足玉米苗期中耕、追肥等田间管理环节的自主导航行走需求,研究了基于机器视觉的多条作物行线实时检测技术.首先,基于绿色分量增强法、分割阈值优化法和形态特征分析法,对图像分别进行灰度化、二值化和去噪等预处理,该预处理结果不受自然光照变化、阴影、降水/积水、播种模式等影响,对细密状杂草干扰或植株冠层交叠条件下作物行间分界间...  相似文献   

2.
在玉米苗期进行土壤湿度动态监测是提供精准灌溉的重要依据,对于玉米在此阶段快速健康生长具有重要意义。本文模拟超低空图像采集设备的试验方式,通过试验平台采集玉米苗期土壤水分的变化情况,以期建立图像与土壤水分数据的联系。利用超绿特征(2G-R-B)对采集到的玉米苗期土壤图像进行分割以排除植株本身对图像的影响。对试验中分割处理后的土壤图像的均值、归一化方差特征参数与试验平台测得土壤水分数据进行分析比较,分析后对所处理图像采用4G-R-B颜色特征修正,通过计算归一化方差σ_(4G-R-B)作为特征参数与实测土壤湿度进行线性回归分析,二者相关性验证结果为:R~2=0.73,RMSE=3.2%。表明修正处理后图像归一化方差σ_(4G-R-B)图像特征参数能够较好的表征土壤的水分变化。  相似文献   

3.
基于视觉的苗期作物和杂草的图像分割技术逐渐成熟,通过视觉技术对苗期作物进行精准识别和定位,是实现株间除草的关键技术和难点。作物的精准识别首先需要利用颜色特征将图像中的作物、杂草和土壤背景进行分割;其次利用实际识别对象的位置特征,形状特征,纹理特征,光谱特征等构造新的特征向量,结合成熟的分类算法对作物和杂草进行特征分类识别。针对棉苗和大豆苗,主要提取位置特征、形状特征,多采用支持向量机为主分类算法;针对玉米,主要提取位置特征、纹理特征,多采用人工神经网络为主的分类算法;针对部分蔬菜苗,主要提取形状特征、光谱特征,多采用算法结合的优化算法,具体实现时需要根据离线样本学习的结果来平衡苗期作物的识别准确率与实时性。在目前的算法中,主要存在三方面的问题:作物特征提取效果易受到遮挡、光照等干扰;分类算法目前还不能得到非常令人满意的准确性和实时性;目前算法一般是针对某种时段的作物,不具有通用性。这些都是后续算法研究中需要进一步解决的问题。  相似文献   

4.
针对农作物禾苗和杂草辨识和定位不精确,会造成除草机器人除草不净、伤害禾苗、影响产量等问题,提出了一种基于骨架提取算法的作物茎秆中心识别与定位的多级图像识别方法。该方法通过不同图像处理算法的多级式递进融合,实现对农作物茎秆的精确识别与中心定位。首先将采集到的彩色图像转换到HSV颜色空间进行背景分割。然后采用腐蚀算法对图像进行腐蚀操作,腐蚀掉杂草图像信息得到仅含作物的图像信息,最后用Zhang-Suen细化算法对作物图像进行骨架提取操作,并对骨架交叉点进行计算分析,识别与定位作物茎秆中心,实现作物精准辨识和定位。对采集的100幅苗期图像进行实验测试,结果表明农作物禾苗茎秆中心识别和定位精度误差小于12mm。本文方法能实时精准辨识禾苗和杂草,并对禾苗进行精准定位,为实现田间机械化除草提供了一种精准可靠的作物识别和定位方法。  相似文献   

5.
作物株间机械除草技术的研究现状   总被引:8,自引:0,他引:8  
作物行间除草技术和装备已趋于成熟,而株间除草技术由于受到作物识别与定位技术的限制,至今仍是一个研究热点。为此,针对株间机械除草,国内外均从纯机械的株间除草机开始研究,后得益于传感器技术和计算机技术的发展,自动控制逐渐得以应用。目前,研究最多的是基于机器视觉和GPS导航的株间除草技术,而作物识别与定位依然是研究的关键点和难点。未来将着力研究用于杂草和作物检测的传感器技术,并利用"互联网+"、大数据、云计算等技术,以期实现作物株间除草的在线控制,进而实现全过程自动化。  相似文献   

6.
为解决目前农业采摘机器人目标难以识别与定位的问题,在原有农业采摘机器人的基础上,提出一种改进YOLOv3算法和3D视觉技术相结合的方法,实现目标的准确识别和精准定位,并利用标定完成目标坐标系和机器人坐标系的转换。通过试验分析改进YOLOv3算法的性能,并与之前的YOLOv3算法、Fast RCNN算法和Faster RCNN算法进行综合比较,研究表明所采用的改进YOLOv3算法和3D视觉具有较高的识别准确度和定位精度,识别准确率分别提高55%、9%、1.4%,最大定位误差分别降低0.69、0.44、0.28 mm,可以较好地完成后续采摘工作,对于农业机器人的发展具有重要的参考价值。  相似文献   

7.
分析了双目视觉系统的工作原理及视觉标定方法,利用YOLO V2卷积神经网络算法实现对目标果实的识别,并对目标果实的空间定位进行了深入研究,设计了一套基于双目视觉和机器学习的采摘机器人果实识别与定位系统。在多次实际定位实验中,橘子的深度定位误差最大值为1.06mm,证实了系统具有一定的准确性和稳定性。  相似文献   

8.
为实现饮料生产线PET饮料瓶液位检测系统集成化和简单化,使用机器视觉方法取代传统传感器触发PET饮料瓶装液位检测程序,实现生产线PET瓶装饮料液位快速识别定位,提出了基于改进YOLOv7的生产线PET瓶装饮料液位快速识别与定位方法。在原YOLOv7的基础上,将原SPPCSPC池化金字塔结构改进为更快的SPPFCSPC结构,并使用SIoU损失函数对原有损失函数进行改进。通过实测实验,改进YOLOv7液位识别模型对包含有色彩失真和噪点的PET饮料瓶身、瓶装液位识别精度为98.9%、96.3%,且单幅图像识别并框定时间均长为12.1ms。且模型能在采集图像样本色彩失真、多噪点和图像旋转情况下仍能实现高精度液位识别与定位。  相似文献   

9.
基于视觉组合的苹果作业机器人识别与定位   总被引:5,自引:0,他引:5  
为实现机器人自动化采摘作业,设计了苹果作业机器人识别与定位系统.模拟人类采摘过程,采用单、双目视觉组合传感器系统,克服了现有识别与定位系统对目标到视觉传感器距离的依赖性.实现了对单、双目视觉系统的单独和组合标定,与手动测量结果相比,双目视觉系统标定后3个方向的标准偏差分别为3.4、1.2和1.2 cm.提出了基于苹果颜色、形状和位置特征的识别与定位方法,试验结果表明:当工作距离为240 cm时,双目视觉系统可以准确识别并定位所有苹果,深度方向标准差为4.9 em;当工作距离为150 cm时,双目视觉系统深度方向标准差为2.4 cm;当工作距离小于100 cm时,单目视觉传感器测量目标到传感器距离的标准偏差为1.0 cm.  相似文献   

10.
基于机器视觉的玉米收获机器人路径识别   总被引:2,自引:0,他引:2  
胡丹丹  殷欢 《农机化研究》2017,(12):190-194
我国玉米种植面积和产量都很大,在农业中占有重要的地位,但收获环节耗费的成本惊人。玉米收获机器人能提高作业效率,极大地降低生产成本,具有广阔的应用前景。路径识别能力是机器人环境适应性的一个重要方面,而机器视觉主要用于农业机器人的路径识别。为此,设计了一种基于机器视觉的玉米收获机器人路径识别方法,并进行田间的实时图像处理试验。结果表明:该路径识别方法具有较好的田间适应性和实用性,经过载机结构改进和内部参数优化后能为玉米收获的智能化和信息化提供技术支撑。  相似文献   

11.
水稻杂株是品种形成过程中的干扰因素,对水稻产业具有较大的危害。水稻杂株的防除以识别为前提,但目前的识别方法消耗大量人力,识别的效率也不理想。计算机视觉是一种图像分析处理技术,在农业领域的应用较广。为此,设计了基于计算机视觉的水稻杂株识别方法,拍摄图像后依次进行预处理、灰度化和二值化,最后根据外观特征采用阈值分割法将杂株识别并提取出来。试验结果表明:秧苗期水稻杂株的性状特征最少,导致计算机视觉的识别效果较差;计算机视觉在抽穗期的识别率最高,误识率最低,具有良好的识别效果。因此,这种识别方法最适合在水稻的抽穗期使用,可以为水稻的品种形成提供技术支撑。  相似文献   

12.
作物行识别算法的虚拟试验方法   总被引:1,自引:0,他引:1  
针对作物行识别算法的传统开发过程对田间作物生长周期依赖性较强,错过适当的田间图像采集时期将直接导致算法开发周期延长等问题,提出一种基于虚拟场景的作物行识别算法测试方法,即在虚拟环境下模拟农田作物行场景和图像采集系统,运用虚拟作物行图像测试作物行的识别算法。该方法在虚拟现实环境下建立作物行场景模型;提出一种融合建模法,根据作物和杂草的几何特征建立对应的三维几何模型;根据实际田间作物的空间分布特征,建立株距、行距可调的田间作物行模型;以Vega Prime为视景仿真工具,通过配置投影模式、渲染模式、视点位姿和图像采集规格,构建图像采集系统,输出作物行场景图像。以苗期棉花作物行为建模对象,对一种经过田间试验验证的双目视觉作物行识别算法进行测试试验。对比实际棉田图像对应的试验结果,同一作物行识别算法的识别正确率、偏差角和图像处理时间均相近。结果表明,本文建立的虚拟棉田作物行与实际棉田作物行场景相近,能够用于作物行识别算法的测试。  相似文献   

13.
花生选种要求花生粒完好、个大、颗粒饱满.为减少花生选种的工作量,该研究以花生粒为研究对象,建立花生选种的视觉识别方法.该方法首先采集图像并对图像进行视觉处理,根据训练样本图像建立基于几何和色度学的项目特征库;再根据采集的待选种子花生图像,对比特征库测试待选种子花生的2个重要几何特征参数面积和圆度,来识别粒大饱满种子花生...  相似文献   

14.
基于视觉测量的茶叶嫩芽定位方法研究   总被引:1,自引:0,他引:1  
针对目前名优茶采摘效率低以及名优茶的采摘具有较强的时效性等问题,提出用双目摄像头定位茶叶嫩芽,以此推动自动化采茶设备的研发。采用双目立体视觉技术获取茶叶嫩芽的三维坐标信息,用于引导采摘机械臂进行自动化采摘作业。试验以茶园中的茶树为研究对象,根据SGBM算法获得一幅视差图像。然后通过OpenCV中reprojectImageTo3D函数得到深度图像,最后对照左摄像机中嫩芽形心在深度图像中的位置,获取茶叶嫩芽的三维坐标信息。实验结果表明,所采用的方案能够较为精确地定位出茶叶三维立体坐标,为后续自主采茶机器人的研发提供了技术支持。  相似文献   

15.
根据对作物根系精准分析和测量的现实要求,分析定量测量作物根系参数的必要性,介绍基于计算机视觉的作物根系图象处理技术的研究进展和成果,为作物根系的精准分析提供理论借鉴.  相似文献   

16.
机器视觉定位是机器人智能化程度的重要指标,基于中医按摩视觉定位,研制出一种能够实现实时图像采集分析、坐标变换的按摩穴位跟踪系统。视觉定位跟踪系统利用摄像头获取图像,并对图像进行处理,判断患者在按摩过程中是否发生移动,实现对按摩穴位的动态跟踪,保证了按摩穴位的准确性。  相似文献   

17.
基于双目立体视觉的苗期玉米株形测   总被引:4,自引:2,他引:2  
将田间正常生长的待测玉米植株带土移至测定台上,标定双目立体视觉系统,提取、分割叶片图像,以Douglas-Peucker多边形法逼近叶片边缘,去除两幅对应图像中没有匹配关系的多边形顶点,结合投影矩阵计算出叶片边缘点的三维坐标.分别投影叶片边缘点到植株平面和植株水平平面,对投影的离散点分段二次拟合、Cardinal样条插值,得到代表叶片形状的曲线,计算出叶长、叶片着生高度、茎叶夹角、叶片方位角等株形指标.测量实验表明,本方法快速、准确、自动化程度高,能够满足苗期玉米株形测量的要求.  相似文献   

18.
19.
【目的】探究视觉与激光雷达融合在棚内农业机器人中的应用,解决复杂环境下机器人自主导航的关键问题,提高机器人的感知能力和环境适应性。【方法】首先,采用高精度的视觉传感器捕捉棚内农业场景,通过图像处理技术提取关键特征,建立视觉地图以支持机器人的定位。同时,引入激光雷达传感器获取场景的三维点云数据,从而实现对环境深度和形状的准确感知。视觉与激光雷达信息的融合构建了综合感知系统,为机器人提供了更全面、可靠的定位信息。其次,针对棚内农业作业中常见的障碍物,设计了基于深度学习的障碍物检测算法。通过训练神经网络,机器人能够在实时环境中快速而准确地识别障碍物,并进行相应的避障决策。【结果】本研究提出的基于视觉与激光雷达融合的农业机器人定位和障碍物检测系统在不同棚内环境中表现出卓越的性能。【结论】机器人能够实现高精度的定位,并对障碍物做出及时准确的响应,为棚内农业的自动化精准作业奠定了坚实的技术基础。  相似文献   

20.
基于优化Faster R-CNN的棉花苗期杂草识别与定位   总被引:2,自引:0,他引:2  
为解决棉花苗期杂草种类多、分布状态复杂,且与棉花幼苗伴生的杂草识别率低、鲁棒性差等问题,以自然条件下新疆棉田棉花幼苗期的7种常见杂草为研究对象,提出了一种基于优化Faster R-CNN和数据增强的杂草识别与定位方法.采集不同生长背景和天气条件下的杂草图像4694幅,对目标进行标注后,再对其进行数据增强;针对Faste...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号