首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein.  相似文献   

2.
Ruminal crude protein (CP) degradability of four commercially available soybean meal (SBM) types--untoasted (U), toasted (T), heat-treated (H) and formaldehyde-treated (F)--was studied by the use of in sacco and in vivo techniques with lactating German Friesian cows cannulated in the rumen, duodenum and ileum. In two in sacco experiments three cows were fed a diet based either on grass hay plus ear-maize silage or on barley whole plant silage. Ruminal degradation rate of CP was estimated as percent nitrogen (N) disappearance from polyester bags incubated in the rumen for 2, 4, 6, 8, 12 and 24 h. Ruminal degradation rate of CP varied among the four SBM types as well as between the two basal diets. N disappearance from the bags after 12 h of incubation averaged 96, 67, 37, and 23% for the U, T, H, and F SBM types, respectively, in the cows fed the hay/ear-maize silage diet vs 99, 86, 58 and 41% for the four SBM types, respectively, in the cows fed the barley whole plant silage diet. In the in vivo experiment, four cows were fed diets based on meadow hay and ear-maize silage in a 4 x 4 Latin square design. The effect of SBM treatment on the flow rate of non-ammonia N (NAN) into the duodenum, and its relationship with the ruminal degradation rate of CP of the four SBM types, was studied. Formaldehyde treatment increased the amount of NAN entering the duodenum (P less than .05): 485 g cow-1 day-1 compared to 383, 418 and 428 g for U, T and H, respectively. Calculated ruminal CP degradabilities were 93, 75, 71 and 38% for SBM types U, T, H and F, respectively.  相似文献   

3.
The effects of ruminal escape proteins and canola meal (CM) on N utilization by growing lambs were evaluated in two experiments. In both experiments, seven supplemental dietary protein treatments were fed. For each of these protein treatments a 3 x 3 Latin square metabolism trial was conducted, using two sets of three lambs and three periods. Within square treatments were 1.4, 1.7 and 2.0 times maintenance intake levels. In Exp. 1, protein treatments were control (7.0% CP, DM basis), urea fed at 9.5 or 12% dietary CP, CM fed at 9.5 or 12% dietary CP and a 50:50 (N basis) mixture of blood meal/corn gluten meal (BC) fed at 9.5 or 12% dietary CP. In Exp. 2, protein treatments were urea, 64% urea and 36% BC (all mixtures on a N basis), 36% urea and 64% BC, BC, 50% CM and 50% BC (CM/BC), CM and soybean meal (SBM), all at 10.5% CP. In Exp. 1, apparent N digestibility (AND) was lower for CM diets than for urea (P = .13) and BC (P less than .05) diets (49.0 vs 50.6 and 51.3%, respectively). Absorbed N was utilized with similar efficiencies for all supplemental protein sources. Dietary CP and digestible protein (DP) were closely related (DP = .879[CP%] -3.66; r2 = .91), indicating that for urea, CM and BC total tract N digestibility was not influenced by theoretical ruminal degradability. In Exp. 2, N balance and N utilization efficiency indicated that the optimal extent of ruminal protein degradation was about 50%. Nitrogen balance was similar for the CM, CM/BC and SBM treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A 4 x 4 Latin square metabolism trial with a 2 x 2 factorial arrangement of treatments was conducted to determine N kinetics in steers. Steers were fed either untreated (UNT-WS) or alkaline hydrogen peroxide-treated wheat straw (AHP-WS) based diets supplemented with soybean meal (SBM) or blood meal (BM). Single doses of (15NH4)2SO4 were infused into ruminal pools to determine N kinetics. Ruminal NH3N concentrations (main effects) were 3.81, 1.65, 3.18, and 2.28 mg/dL in steers when fed diets that contained UNT-WS, AHP-WS, SBM, and BM, respectively. Ruminal N pool size was greater (P < .05) for UNT-WS than for AHP-WS diets and also was greater (P < .10) for SBM than for BM diets. Nitrogen flux rate into the rumen was not affected (P > .10) by diet. However, production rate of N from the ruminal pool was greater (P < .05) for UNT-WS than for AHP-WS diets and greater (P < .10) for SBM than for BM diets. Nitrogen recycled into the rumen was 33% greater (P < .05) for AHP-WS than for UNT-WS diets and 26% greater (P < .05) for BM than for SBM diets. Nitrogen recycling (percentage of N intake) was 33, 56, 36, and 49% for UNT-WS, AHP-WS, SBM, and BM diets, respectively. The blood urea N (BUN) concentrations were 10.23, 4.58, 7.15, and 7.65 mg/dL for UNT-WS, AHP-WS, SBM, and BM diets, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The objective of this study was to determine the effects of soybean meal (SBM) or spray-dried blood meal (BM) supplementation of diets based on untreated (UNT-WS) or alkaline hydrogen peroxide-treated wheat straw (AHP-WS). A 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments was used. Variables included nutrient digestion and flow to the duodenum. Four Simmental steers (average weight 477 kg) fitted with ruminal and duodenal cannulas were fed 65% UNT-WS or AHP-WS based diets in 12 equal portions daily. Diets were formulated to contain 10% CP. Chromic oxide was used as the digesta flow marker and purines were used as the microbial marker. There were no straw type x protein source interactions. Total tract and ruminal OM digestibility were approximately 25% greater (P < .04) when AHP-WS was fed than when UNT-WS was fed. Source of protein did not affect (P > .10) OM or fiber digestion in the rumen or total tract. Ruminal digestion of NDF and ADF was increased (P < .01) by 51 and 40%, respectively, when AHP-WS was fed than when UNT-WS was fed. Main effect means (P > .10) for N flow to the duodenum as a percentage of N intake were 128.2, 142.5, 133.4, and 137.6 for UNT-WS, AHP-WS, SBM, and BM treatments, respectively. Despite increased (P < .01) ruminal OM digestion for AHP-WS, microbial N flow to the duodenum was greater (P < .01) when UNT-WS was fed than when APH-WS was fed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Four diets containing 15% CP were formulated to study the effects of dietary carbohydrate and protein sources on N metabolism and carbohydrate fermentation by ruminal bacteria. Diets were supplied to eight dual-flow continuous culture fermenters during three experimental periods in a randomized complete block design. Six replications were obtained for each diet. Treatments were arranged as a 2 X 2 factorial with two carbohydrate and two protein sources. Carbohydrate sources were corn and barley and protein sources were soybean meal (SBM) and fish meal (FM). Approximately 40% of the dietary CP was derived from SBM or FM and corn or barley provided 39% of dietary DM. All diets contained 15% grass hay, 20% wheat straw, and 10.1 to 15.3% solka floc (DM basis). Interactions (P less than .05) were observed between dietary carbohydrate and protein sources, resulting in a depression of VFA production (moles/day) and digestion (percentage) of ADF and cellulose when the corn-FM diet was fed. True OM digestion (percentage) was higher (P less than .05) for SBM than for FM diets and for corn than for barley diets. Although dietary CP degradation (percentage) was higher (P less than .05) for SBM than for FM diets, non-NH3 N in the effluent (grams/day) was not different among diets due to a greater (P less than .05) bacterial N flow for SBM than for FM diets. Despite the lower amino acid (AA) intake (P less than .05) for corn than for barley diets and also for FM than for SBM diets, flows (grams/day) of total AA, essential AA (EAA), and nonessential AA (NEAA) were similar (P greater than .05) among diets. However, greater (P less than .05) total AA, EAA, and NEAA flows (percentage of AA intake) were found for corn than for barley diets and for FM than for SBM diets. It is concluded, therefore, that ruminal escape protein derived from corn or FM has a significant effect on manipulating AA leaving the ruminal fermentation.  相似文献   

7.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

8.
Eight male Holstein calves (body weight 68 +/- 5 kg; age 75 +/- 6 d), each with a permanent re-entrant pancreatic cannula and T-type ileal and duodenal cannulas, were used in a crossover design with four animals per group to determine amino acid kinetics and digestibilities in the digestive tract of calves fed soybean meal (SBM) and canola meal (CM) protein. The SBM and CM diets were fed twice daily at a level of 900 g at each feeding time (air-dry basis). With the exception of methionine, crude protein and amino acid flows at the proximal duodenum, expressed as a percentage of intake, were not influenced by dietary protein source. Apparent ileal and total tract digestibilities of CP and amino acids were reduced (P less than .05) by feeding CM compared to SBM, but apparent ileal digestibility of methionine was not affected by dietary protein source. Except for methionine, net disappearance of all amino acids in the small intestine, relative to the amount fed, was higher for the SBM diet than for the CM diet. Net disappearance or synthesis of amino acids in the large intestine were not affected by dietary protein source. Similarly, dietary protein source did not affect (P greater than .05) the secretion of pancreatic juice or concentrations of protein, chymotrypsin and trypsin in pancreatic juice. Soybean meal protein has higher ileal and total gastrointestinal tract digestibility than CM protein for young, growing calves.  相似文献   

9.
Five Yorkshire x Lacombe barrows (45 kg initial wt) fitted with duodenal cannulas approximately 10 cm from the pyloric sphincter were used to determine the influence of the pH of the predigestion solution (pH 1.0, 1.5, 2.0 or 2.5), pepsin activity (189 vs 377 IU/liter) and duration of predigestion (0, 1.5, 2.5 or 4.0 h) on the apparent digestibility of the protein in soybean meal (SBM), meal and bone meal (MBM) or canola meal (CM) determined with the Mobile Nylon Bag Technique (MNBT). An additional six barrows were used to determine protein digestibility by conventional methods. Protein digestibilities determined using conventional digestibility techniques were 93.1 +/- .7, 79.1 +/- 1.8 and 79.3 +/- 1.4% for the SBM, MBM and CM diets, respectively. Protein digestibilities determined with the MNBT were highest at pH 2.0 for all three protein sources. Increasing pepsin activity from 189 to 377 IU/liter resulted in a slight increase in the digestibility of SBM and CM, but not of MBM. The absence of predigestion (0 h) resulted in a dramatic reduction in protein digestibility; predigestion times of 1.5 or 2.5 h usually resulted in lower protein digestibilities than did a predigestion time of 4.0 h. The closest agreement between results obtained by the MNBT and conventional digestibility studies occurred with a pH of 2.0, a predigestion time of 4.0 h and a pepsin activity of 377 IU/liter.  相似文献   

10.
An in situ protein degradation trial and two growth trials were conducted to evaluate the use of fish meal (FM) as a protein supplement in feeder lamb diets. Finn cross and Hampshire lambs were given ad libitum access to corn diets, minerals, and water. In Growth Trial 1, four isonitrogenous (12.6% CP on a DM basis) and isocaloric (77% TDN) diets were supplemented with the following: a) 100% soybean meal (SBM); b) 70% SBM + 30% FM; c) 40% SBM + 60% FM; and d) 100% FM on a DM basis. Diets were fed to 144 lambs for 56 d in a randomized complete block (initial BW) design. In Growth Trial 2, four diets were fed to 80 lambs for 42 d in a completely randomized design with treatments arranged as a 2 x 2 factorial. Main effects in Growth Trial 2 were dietary CP level (13.3 or 14.9%) and source (SBM or SBM + FM). Alfalfa hay was used as the roughage part of each diet. In situ CP degradation (determined in cattle) of SBM, FM, and corn fed in both growth trials were 77.8, 52.3, and 56.8%, respectively. In neither growth trial was ADG affected (P greater than .05) by dietary CP source. Lambs gained faster (P less than .05) when the CP level was increased from 13.3 to 14.9% in Growth Trial 2. In both trials, protein efficiency ratio (grams of gain/grams of protein intake) and energy efficiency ratio (grams of gain/kilograms of TDN intake) were not different (P greater than .05) among diets. Because of the low ruminal degradation of corn protein, the relative value of SBM and FM in full-fed, high-corn diets was comparable.  相似文献   

11.
Studies were carried out with six growing barrows fitted with a simple T-cannula 5 to 10 cm anterior to the ileo-cecal sphincter. In Exp. 1, the digestibility of biotin was determined in three cornstarch-based diets formulated to contain 16% CP by supplementation with soybean meal (SBM), meat and bone meal (MBM) and canola meal (CM). In Exp. 2 the digestibility of biotin was determined in three diets that contained 96.8% barley, corn or wheat. Experiments 1 and 2 were conducted according to a replicated 3 X 3 latin square design. In Exp. 3 pigs were fed a cornstarch-based diet supplemented with 12% vitamin-free casein to determine the amount of endogenous biotin. In Exp. 4 the digestibility of supplemental biotin was determined. There was a small amount of endogenous biotin in ileal digesta, 11 micrograms/kg DMI. Digestibilities of biotin determined at the distal ileum (apparent digestibilities corrected for endogenous biotin) were 55.4, 2.7 and 3.9% in SBM, MBM and CM, respectively, and 4.8, 4.0 and 21.6% in barley, corn and wheat, respectively. The digestibility of supplemental biotin was 93.5%. There was a large increase in the level of biotin between digesta collected from the distal ileum and in feces, ranging from 138 to 324 micrograms/kg DMI. With the exception of the CM diet, this increase exceeded dietary biotin intake. Biotin in many feedstuffs was not available in the small intestine.  相似文献   

12.
Four Simmental steers with ruminal, duodenal, and ileal cannulas were used to examine effects of dietary forage: concentrate ratio and supply of ruminally degradable true protein on site of nutrient digestion and net ruminal microbial protein synthesis. Steers (345 kg) were fed ammoniated corn cob (high forage; HF)- or corn cob/ground corn/cornstarch (low forage; LF)-based diets supplemented with soybean meal (SBM) or a combination of corn gluten meal and blood meal (CB). Diets were fed at 2-h intervals with average DM intake equal to 2.2% of BW. Feeding LF vs HF increased (P less than .05) OM digestion (percentage of intake) in the stomach, small intestine, and total tract. Efficiency of microbial CP synthesis (EMCP; g of N/kg of OM truly fermented) decreased (P less than .05) for LF vs HF (24.1 vs 26.8), but microbial N and total N flows to the small intestine were similar (P greater than .05) between energy levels (average 112 and 209 g/d, respectively). Total N flows to the small intestine were 13.1% greater (P less than .05) for CB than for SBM because of increased (P less than .05) passage of nonmicrobial N. Feeding SBM vs CB increased (P less than .05) EMCP (27.3 vs 23.3) and microbial N flow to the small intestine (127.5 vs 112.5 g/d), but these increases were not likely due to increased ruminal concentrations of ammonia N (NH3 N). Decreased (P less than .05) incorporation of NH3 N into bacterial N and slower turnover rates of ruminal NH3 N for SBM vs CB suggest that direct incorporation of preformed diet components into cell mass increased when SBM was fed. Results of this study suggest that the inclusion of ruminally degradable protein in the diet may increase the supply of products from proteolysis and that this can increase EMCP and microbial protein flow to the small intestine.  相似文献   

13.
Five ruminally fistulated 3-yr-old mature Holstein steers (average BW 691+/-23 kg) were used in a 5 x 5 Latin square experiment with a 2 x 2 + 1 fact orial arrangement of treatments. Effects of protein concentration and protein source on nutrient digestibility, excretion of DM and fecal N, ruminal fluid volume and dilution rate, ruminal characteristics, and in situ DM disappearance of whole shelled corn, ground corn, and orchardgrass hay were measured in steers limit-fed high-concentrate diets at 1.5% of BW. A negative control basal diet (NC; 9% CP) was supplemented to achieve either 11 or 14% CP; supplemental CP was either from soybean meal (11 and 14% SBM) or a 50:50 ratio of CP from urea and soybean meal (11 and 14% U). Dry matter and OM digestibilities were 5% greater (P < .07) for steers fed the SBM diets than for those fed the U diets. Starch digestibility did not differ (P > .10) among steers fed any of the diets. Nitrogen source did not affect (P > .10) apparent N digestibility or fecal N excretion; however, steers fed the NC diet had the lowest (P < .10) apparent N digestibility compared with those fed all other diets. Ruminal fluid volume was lower (P < .06) when steers were fed the NC diet compared with all other diets; there were no differences (P > .74) among diets for ruminal fluid dilution rate. In general, ruminal ammonia N and VFA molar proportions were not affected by protein source or concentration. Although CP concentration affected (P < .06) in situ DM disappearance of ground corn, CP concentration did not (P > .48) affect total tract digestion of DM or OM. This indicates that CP concentration may have affected site of digestion, but not extent of digestion. When mature ruminants were limit-fed a corn-based diet to meet primarily a maintenance function, protein source and concentration had little effect on measures of nutrient digestion.  相似文献   

14.
As a novel oilseed crop in Florida, Brassica carinata has the capacity of producing high-quality jet biofuel, with a protein-dense meal (~40% crude protein; CP) obtained as a by-product of oil extraction. Characterization of the meal protein is limited, yet necessary for formulation of beef cattle diets; therefore, the objective of this experiment was to determine ruminal and postruminal digestibility of protein from B. carinata. Eight ruminally cannulated Angus crossbred steers (473 ± 119 kg) were used in a duplicated 4 × 4 Latin square design, in which in situ ruminal and postruminal degradability of nutrients were evaluated. The three-step in vitro procedure was used to compare CP and amino acid (AA) degradation in B. carinata meal pellets (BCM) with that of cottonseed meal (CSM), dry distillers grains with solubles (DDGS), and soybean meal (SBM). In situ bags were incubated in the rumen for 0 to 96 hr, with the undegraded supplement remaining after 16 hr subjected to serial in vitro enzymatic solutions. Data were analyzed using the MIXED procedure of SAS. Ruminal rate of degradation of dry matter, organic matter, and CP was greatest (P ˂ 0.01; 10.9, 11.3, and 11.5 %/h, respectively) for SBM. Rumen degradable protein (RDP) content did not differ (P = 0.20; 47.8% and 55.1%, respectively) between CSM and DDGS, but was decreased (P ˂ 0.01) compared with SBM and BCM, which did not differ (P = 0.99; 72.3% and 71.8% RDP, respectively). Compared with DDGS, SBM had greater (P < 0.01) intestinal digestibility of rumen undegradable protein (RUP). Intestinally absorbable digestible protein (IADP) was greatest (P < 0.01) for CSM, with SBM and BCM having the least IADP. Total tract digestibility of CP (TTDP) was greater (P < 0.01) for SBM compared with CSM and DDGS. The contribution of RUP to intestinally absorbable AA was 7.2 and 3.1 g of lysine and methionine per kilogram of CP in BCM, respectively. The evaluation of B. carinata meal as protein supplemented for cattle consuming a forage-based diet resulted in 71.8% RDP and 97.1% TTDP, thus indicating its viability as a high-quality protein supplement for beef cattle.  相似文献   

15.
Two experiments were conducted to determine the effects of supplemental CP source and level of urea on intestinal amino acid (AA) supply and feedlot performance of lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw (AHPWS). In Exp. 1, five cannulated (ruminal, duodenal, and ileal) crossbred wethers (61 kg) were used in a 5 x 5 Latin square design. Treatments consisted of different sources of CP and included soybean meal (SBM), a combination of urea, distillers dried grains (DDG), and fish meal, each provided an equal portion of supplemental CP (UDF), and three levels of urea (17, 33, and 50% of supplemental CP) fed in combination with DDG (U17, U33, and U50). Organic matter and N digestibilities decreased (P less than .05) when lambs were fed U17 compared with those fed SBM. There were no differences (P greater than .05) in bacterial N or AA flows to the duodenum due to CP source despite large differences in ruminal NH3 N concentrations and lower ruminal OM digestion when lambs were fed U17. Duodenal nonbacterial N and AA flows were highest (P less than .05) in lambs fed U17 and UDF and lowest when lambs were fed U50 and SBM. Lysine concentration in duodenal digesta decreased with incremental increases in DDG. In Exp. 2, 30 individually penned ram lambs (33 kg) were allotted to five CP treatments in a randomized complete block design. Treatments were similar to those of Exp. 1, with the exception that U17 was replaced by a 14% CP diet with SBM as the supplemental CP source; all other diets were formulated to contain 12% CP. Lambs fed U50 had decreased (P less than .08) ADG and gain/feed compared with all other treatments, and lambs fed UDF had greater (P less than .05) ADG and gain/feed than lambs fed U33. It was concluded that 17% of the supplemental CP from urea seems adequate to maximize bacterial protein synthesis and that no more than 33% of the supplemental CP should be provided by urea in diets based on AHPWS. Feeding a combination of ruminally resistant protein sources with complementary AA profiles of lysine and methionine (UDF) may enhance quality of protein entering the duodenum and feedlot performance.  相似文献   

16.
Complementary responses between rendered protein meals were investigated in this study. In a preliminary trial using 12 mature wethers in two replications, there was no difference (P greater than .20) in N digestibility between meat and bone meal (MBM; 96.7%), feather meal (FTH; 89.8%), and soybean meal (SBM; 98.7%). In a 112-d growth trial, individually fed calves (n = 120; 230 kg) received graded levels of FTH, MBM, 50:50 MBM-FTH (CP basis), or SBM with or without tryptophan (Trp) supplementation. Additions of Trp increased plasma Trp levels (P less than .05) but failed to improve efficiency of protein utilization (P greater than .35). Pooled results showed that this efficiency was greater (P less than .05) for FTH (1.47) than for MBM (1.04), FTH:MBM (.80), or SBM (.66). A trial was conducted to determine whether Trp addition reduces growth response to FTH:MBM (50:50) combinations. Calves (n = 230; 285 kg) were blocked by sex and weight into six replications and received FTH:MBM supplying 35% of the supplemental CP fed alone or with a high or low level of Trp supplement. Negative (urea only) and positive controls were included. Calves receiving FTH:MBM combinations gained faster (P less than .10) and were more efficient (P less than .10) than urea-supplemented calves. Performance was not altered by Trp addition. Calves (n = 120; 230 kg) were individually fed in two replications (43 or 48% CP MBM in Replications 1 and 2, respectively) of a growth trial to determine whether there was a complementary response between blood meal (BM) and MBM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Five ruminally, duodenally, and ileally cannulated sheep (average BW 62 kg) were fed 65% roughage: 35% concentrate diets (CP = 15%) in a 5 x 5 Latin square design to study the applicability of using a combination of defaunation with N supplements (soybean meal [SBM], corn gluten meal [CGM], blood meal [BM], urea, and casein) with different extents of ruminal degradation to manipulate microbial protein synthesis and amount of ruminal escape protein. Diets were fed twice daily (1,759 g DM/d). Defaunation was accomplished with 30-ml doses of alkanate 3SL3 (active ingredient: sodium lauryl diethoxy sulfate)/sheep daily for 3 d with 2 d of fasting. Treatment 1 (control) involved feeding faunated sheep a diet in which the supplemental N (45% of total dietary N) was 67% SBM N and 33% urea N. Treatment 2 involved feeding defaunated sheep the same diet as the control. Treatments 3, 4, and 5 involved feeding defaunated sheep diets in which the supplemental N source was either 67% CGM-BM (1:1 N ratio) N:33% urea N, or 33% CGM-BM N:67% urea N or 33% CGM-BM N:33% urea N:33% casein N, respectively. Compared with the faunated control, defaunation decreased (P less than .05) ruminal ammonia concentration (19 vs 26 mg/dl) and increased (P less than .05) CP flow to the duodenum (253 vs 214 g/d) due to a trend for increases in both bacterial (BCP) and nonbacterial (NBCP) CP flows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study was conducted to investigate the effect of dietary crude protein (CP) levels of semi‐purified diets on the additivity of values for standardized ileal digestibility (SID) of amino acids (AA) in mixed diets from multiple protein sources for growing pigs. A total of 28 barrows (initial BW, 66.4 ± 1.3 kg) were surgically fitted with simple T‐cannulas at the distal ileum and assigned to a replicated 14 × 4 incomplete Latin square design with 14 diets and 4 periods. The 14 experimental diets consisted of a nitrogen‐free diet; a corn‐based diet (80 g CP/kg); nine semi‐purified diets containing soya bean meal (SBM), canola meal (CM) or corn distillers dried grains with solubles (cDDGS), each type (protein source) of semi‐purified diets supplied 80, 120 or 160 g CP/kg, respectively; three mixed diets based on corn, SBM, CM and cDDGS formulated to contain 120, 160 and 200 g CP/kg respectively. Pigs were fed each of the 14 diets during a seven‐day period, and ileal digesta were collected from 08:00 a.m to 6:00 p.m on day 6 and 7. Chromic oxide was added as an indigestible marker. Results indicated that the SID of CP and AA were not affected by CP levels (p > .05). Values for SID of AA were additive (> .05) with the exception of His and Lys; Arg and Lys; Arg, Lys, Thr, Asp, Cys and Gly in the mixed diets containing 120, 160 and 200 g CP/kg respectively (p < .05). In conclusion, additivity of SID values of AA in the mixed diets at different CP levels was not affected by the CP levels of semi‐purified diets for growing pigs. Therefore, it is recommended that SID values of AA should be used to formulate practical diets containing multiple ingredients for pigs.  相似文献   

19.
Six Angus steers (260+/-4 kg initial BW) fitted with ruminal, duodenal, and ileal cannulas were used in a 6 x 6 Latin square design to evaluate the effect of feeding poultry by-product meal (PBM) on small intestinal flow and disappearance of amino acids. The diets were provided at 2% of BW on a DM basis, formulated to contain 11.5% CP, and consisted of 49% corn silage, 36% cottonseed hulls, and 15% supplement on a DM basis. Supplements were formulated to contain 37% CP with sources of supplemental N being soybean meal (100% SBM) and 0, 25, 50, 75, and 100% PBM, with urea used to balance for N. Duodenal flow of all amino acids increased linearly (P < .07) as PBM increased in the diet and, except for His, increased (P < .09) for 100% PBM compared with 100% SBM. Similar results were observed for duodenal flow of nonbacterial amino acids, which linearly increased (P < .05) with PBM and were greater (P < .05) for 100% PBM than for 100% SBM. Soybean meal increased (P < .09) the duodenal flow of nonbacterial Lys compared with 0% PBM, and 0% PBM increased (P < .04) flow of Val, Ala, and Pro compared with 100% SBM. Duodenal bacterial essential, nonessential, and total amino acid flows were not affected (P > .80) by PBM; however, they were greater (P < .02) for 100% SBM than for 100% PBM. In addition, nonessential and total bacterial amino acid flows were increased (P < .06) for 100% SBM compared with 0% PBM. Small intestinal disappearance of Lys and Pro increased linearly (P < .09) as PBM increased, and 100% PBM increased (P < .07) disappearance of Arg and Ala compared with 100% SBM. Supplemental N source had no effect (P > .31) on apparent small intestinal disappearance of essential, nonessential, and total amino acids. These data suggest that when PBM, SBM, and urea were used as sources of supplemental N, the daily disappearance of amino acids from the small intestine of steer calves consuming a corn silage- and cottonseed hull-based diet was similar.  相似文献   

20.
本试验探讨了常用饲料在瘤胃的降解特性及非降解饲料的小肠消化率,旨在为研究反刍动物的营养平衡和消化规律及科学配制日粮提供依据。试验选用3头装瘤胃瘘管和十二指肠瘘管的肉牛,采用尼龙袋法研究反刍动物常用饲料粗蛋白质和氨基酸瘤胃降解参数和表观小肠消化率。结果表明,在本试验中粗蛋白质降解率由低到高的顺序为:酒糟蛋白、黄玉米、羊草、玉米胚芽饼、菜粕、棉粕、豆粕、花生饼、啤酒糟、苜蓿、米糠、小麦麸;总氨基酸瘤胃降解率由低至高的顺序依次为:酒糟蛋白、黄玉米、羊草、玉米胚芽饼、菜粕、豆粕、棉粕、啤酒糟、花生饼、苜蓿、米糠、小麦麸。除花生饼、酒糟蛋白和黄玉米外,粗蛋白质和总氨基酸的有效降解率差异不显著(P>0.05)。粗蛋白质的表观小肠消化率由低至高的顺序依次为:苜蓿、羊草、米糠、小麦麸、啤酒糟、玉米胚芽饼、棉粕、菜粕、玉米、酒糟蛋白、花生饼、豆粕;总氨基酸的小肠消化率由低至高的顺序依次为:羊草、苜蓿、米糠、小麦麸、啤酒糟、玉米胚芽饼、菜粕、棉粕、花生饼、玉米、酒糟蛋白、豆粕。由此可见,不同的饲料瘤胃降解特性是不同的,并且为小肠提供的各种可吸收氨基酸潜力也是不同的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号