首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of j-rooting on water stress and growth of loblolly (Pious taeda L.) and eastern white pine (Pious strobus L.) were examined over three growing seasons in the field. Seedlings were planted in an area with severe herbaceous competition with either their roots planted straight or bent into a j shape. All seedlings were planted with their root collars placed at the soil surface. During the first year j-rooted seedlings consistently had lower water potentials but never statistically significant. Since both treatments were planted with the root collar at the soil surface, this trend was likely due to an initial shallower root system in j-rooted seedlings. In year three no differences in water potential were significant and no trends were evident. Growth did not differ significantly by treatment at any time but, by year three, j-rooted plants were consistently larger for both species.  相似文献   

2.
Haywood  James D. 《New Forests》2000,19(3):279-290
Herbaceous plant control with mulchor hexazinone herbicide influenced planted longleafpine (Pinus palustris Mill.) seedling totalheight on a silt loam site in central Louisiana. Thesite had been sheared and windrowed in 1991 and rotarymowed before three treatments were established in arandomized complete block design: (1) Untreatedcheck: no herbaceous plant control after planting;(2) Five mulches: on each plot, five randomlyassigned mulches were placed around seedlings; themulches were either a mat of cotton, hemlock andpolyester, pine straw, woven polypropylene, orperforated polyethylene; and (3) Hexazinone: theherbicide hexazinone at 1.12 kg active ingredient/hawas annually sprayed in the first two growing seasonsover the rows of unshielded seedlings. The longleafseedlings were planted in February 1993.After three growing seasons, seedlings on the mulchand hexazinone treatments were taller than those onthe check plots. About 59% of the mulched andhexazinone treated seedlings had grown out of thegrass stage (at least 12 cm tall) compared to 17% ofthe check seedlings. After five growing seasons, thepercentage of longleaf pine seedlings out of the grassstage was similar on all treatments and averaged 87%. However, these better growing pines were taller on themulch and hexazinone treatments (a 142-cm average)than on the checks (78 cm). Pine straw was anineffective mulch probably because the straw smotheredthe seedlings. The longleaf saplings were tallestwhen the perforated polyethylene mat was used.  相似文献   

3.
The regeneration of Japanese black pine (Pinus thunbergii) seedlings is inhibited in a black locust (Robinia pseudoacacia)-dominated area. We examined the presence of pathogenic fungi in Japanese black pine seedlings in the area in order to determine the effect of pathogenic fungi on the inhibition of regeneration. When Japanese black pine seedlings were planted in the soil obtained from a black locust-dominated area, all of the seedlings died under low-intensity light conditions, whereas 84% of the seedlings survived in the soil obtained from a Japanese black pine-dominated area under the same light conditions. One fungus was isolated from 48.7% of the dead pine seedlings and was identified as Cylindrocladium pacificum Kang, Crous & Schoch, based on the morphological characteristics, growth, and DNA analysis. This fungus was also isolated from 50% of the dead pine seedlings in 2005 and 66.7% of the seedlings in 2006—both were planted in a black locust-dominated area. The virulence of this fungus increased under high-nitrogen and/or low-intensity light conditions. These results reveal the possibility that the soil eutrophication and shading by the black locust are conducive to a severe damping-off disease and threaten the survival and regeneration of Japanese black pine seedlings.  相似文献   

4.
East Texas contains the western extent of the natural range of loblolly pine (Pinus taeda L.) and, therefore, many planted seedlings there experience water deficit sometimes leading to plantation failure. One solution may be to regenerate with clonally propagated drought-hardy planting stock. The objective of this research was to compare the field performance of loblolly pine seedlings and plantlets of diverse genetic origin, produced via micropropagation technology.Two adjacent sites were established (Site I in 1993 and Site II in 1994) with trees produced from four genetic families: Liberty (LIB) and Montgomery (MON) Counties from southeast Texas, and Fayette (FAY) and Bastrop (BAS) Counties from the “Lost Pines” in Central Texas. Height, groundline diameter (GLD), leaf area, survival, root/shoot ratio, and root system architecture were measured throughout the 1994 and 1995 growing seasons. In addition, height and diameter at breast height on Site II were measured at the end of 1999 and 2000 growing seasons.Height and GLD growth for seedlings was significantly greater than for plantlets on both sites. However, mean relative growth rates for height were greater for plantlets during the first growing season, but comparable thereafter. Survival for all treatments was >85% on Site I and >90% on Site II at the end of the 1995 growing season. Survival was significantly different, but by a negligible margin, between families and stock types on Site II at the end of the 1995 growing season, and by a margin of 7% (89% for seedlings vs. 82% for plantlets) at the end of the 2000 growing season. Seedlings had greater leaf area growth than plantlets after two growing seasons. Root/shoot ratio was significantly greater for plantlets after two growing seasons, whereas their specific root length was significantly smaller than that of seedlings. This was attributed to root system architecture. Whereas plantlets produced thicker roots with less length per unit dry weight, seedlings produced more branching with thinner roots for similar dry weights.  相似文献   

5.
Successful regeneration of conifer forests by planting is, in large parts of Europe, highly dependent on the effective suppression of damage caused by the pine weevil Hylobius abietis. We investigated the effectiveness of various combinations of control measures against pine weevil damage under boreal forest conditions in Sweden. In particular, we aimed to determine whether satisfactory regeneration could be obtained without the use of insecticides. The experimental study was established on ten new clear-cuts in each of three consecutive years. We studied the use of chemical and physical methods to protect seedlings directly, and investigated the influence of seedling type, age of clear-cut, and a number of soil factors as affected by preparation of the planting site, on the mortality and level of damage suffered by protected and unprotected seedlings. After two seasons, mortality due to pine weevil was 16% among unprotected seedlings, 6% for seedlings treated with the insecticides cypermethrin or imidacloprid, and less than 1% for those physically protected by a coating of Conniflex. However, the Conniflex, which consists of fine-grained sand embedded in a flexible acrylate matrix, was applied manually, and this may have enhanced its effectiveness compared to that achieved during large-scale, commercial application. Two types of containerized Norway spruce seedlings, which differed mainly in their stem diameter (average 2.6 mm and 3.5 mm), were used in the experiments. Among the unprotected seedlings, the narrower stemmed type was more frequently attacked (34% vs. 28%) and killed (19% vs. 12%) by pine weevil. Mortality caused by pine weevil among unprotected seedlings was higher on 1-year-old than on 2-year-old clear-cuts (20% vs. 12%). Soil preparation around unprotected seedlings had a substantial effect on the proportion attacked and killed by pine weevil as well as on the total mortality, with the highest level of feeding damage and mortality occurring on seedlings in undisturbed humus, and the lowest levels occurring on seedlings planted in pure mineral soil (26% vs. 7% for unprotected seedlings). This study demonstrates that acceptable levels of seedling survival can be achieved in regenerations of North European boreal forest without the use of insecticides. Mortality of unprotected seedlings can be reduced to acceptable levels if they are mostly planted in pure mineral soil. Damage can be further reduced by using seedlings with a somewhat larger stem diameter. Insecticides or a physical barrier of Conniflex alone appear to provide a sufficient level of protection.  相似文献   

6.
Effects of site preparation, shelterwood density and planting depth on the survival and growth of planted beech and oak seedlings were studied. Experiments were performed in one oak and one beech stand in southern Sweden. Two areas with different densities of shelterwood and one clearcut were established in each stand. Growth, damage and survival of the planted seedlings were observed for three years. Soil water potential was recorded weekly and radiation and soil temperatures were recorded continuously during the growing seasons.Neither site preparation methods nor planting depth affected oak seedling growth, when planting was carried out on fresh clearcuts or in shelterwoods, while growth of beech seedlings was positively affected by mounding. Growth of oak seedlings was inhibited by the shelterwood treatments. In beech seedlings, growth was lowest in dense shelterwood, while there was no difference in growth between seedlings on the clearcut area and in the shelterwood of low density. Differences in growth may be explained by differences in radiation and soil water potential.When planting was carried out on a one-year-old clearcut, site preparation improved the subsequent growth of oak and beech seedlings.  相似文献   

7.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

8.
Abstract

Effects of stump harvesting on the properties of surface soil and on the density, structure and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands were estimated in a field trial in western Finland. The experiment was established in 1977 and measured in 2010. Stems and logging residues were harvested after clear-cutting, and stumps were lifted and removed from half of the experimental area. Sixteen plots were planted with pine seedlings and 16 with spruce. The main effects of stump harvesting were improved survival of planted trees and an increase in natural regeneration. No clearly negative effects were noted in the stand development. Stump harvesting had no or minimal effects on the properties of the organic layer and those of the 0- to 10-cm mineral-soil layer. Soil properties did not differ between tree species. Pine production was higher on plots with stump removal compared to plots without soil treatment.  相似文献   

9.
Mature shrubs can provide microhabitats that are beneficial to tree seedling growth and development. Sugar pine trees (Pinus lambertiana) grow in a narrow zone on the eastern slope of the Carson Range in extreme western Nevada, whereas Jeffrey pine (Pinus jeffreyi) is the dominant tree species in the region, an area extensively disturbed by wild fire. This study compares seedling establishment of sugar pine and Jeffrey pine relative to mature shrubs. In the fall of 2002 (cohort 1) and 2003 (cohort 2), 13,600 seeds of both species were planted in wire mesh enclosures, at three sites, under a variety of microhabitat treatments: under shade and in the open, under two species of shrub cover, and with and without plant litter. Seedlings were monitored for survival through two growing seasons. Even though more sugar pine seedlings emerged, more Jeffrey pine seedlings survived, and Jeffrey pine was the more drought tolerant species, better suited for the xeric climate found in the Carson Range. Litter slightly hindered seedling emergence but had no effect on survival and there was no significant species × litter interaction. Supplemental water facilitated survival in all treatments with highest survival in shade treatments. Sugar pine seedlings showed a significant increase in survival over Jeffrey pine seedlings with the addition of water, particularly in open treatments and more of both species survived under manzanita shrubs with water. The highest seedling mortality occurred when shrub canopy was removed, and seedlings experienced the effect of full sun and competition for soil water. For either species, microhabitat is a significant factor in determining success or failure in rehabilitation efforts after disturbance.  相似文献   

10.
After five years of growth at high-elevations (∼3000 m) in Utah, container lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) seedlings survived well (80–95%) and grew to similar heights regardless of nursery storage method and site preparation technique. Seedlings received one of three storage treatments: (1) spring-sown in the nursery, overwintered in cooler storage and outplanted in July; (2) spring-sown, overwintered in freezer storage, and outplanted in July; or (3) winter-sown, no storage, and hot-planted in late August. We outplanted seedlings at two locations that were clearcut and had received two treatments of surface organic matter (coarse wood, logging slash, and forest floor) removal: surface organic matter (OM) piled with a bulldozer and burned or surface OM remaining in situ. Compared to adjacent uncut stands, both site preparation treatments increased total soil bulk density, but retaining surface OM in situ maintained soil OM, carbon, and nitrogen levels. After one growing season, seedlings planted where surface OM had been bulldozed were taller and had more biomass, although survival was similar (≥96%) across site preparation treatments. The height growth advantage disappeared after five growing seasons and although overall survival was good, survival was highest where site preparation involved removal of surface OM and freezer-stored seedlings were planted. Total non-structural carbohydrates tended to be higher in roots than in shoots and were also higher in hot-planted seedlings than in stored seedlings. Our results indicate that nursery and forest managers have several options for successful nursery production and outplanting of container lodgepole pine seedlings in the central Rocky Mountains. Using hot-planted seedlings allows for a faster turnaround time (from seed to plantable seedling) and maintaining surface OM may be a cost-effective alternative to dozer piling and burning.  相似文献   

11.
Excessive slash loading could pose a problem for the regeneration of the serotinous lodgpole pine especially in forests at higher elevation where soil temperature is limiting. In the past, these forests have commonly been harvested using full-tree harvesting where trees are processed at roadside; however, recently cut-to-length harvesting has become a more frequent harvesting method. In cut-to-length harvesting the harvested trees are processed in the block, as a result slash accumulation is much higher on these cutblocks. In an experimental field trial, the cone distribution, natural lodgepole pine regeneration, and the growth and establishment of planted lodgepole pine were evaluated in response to slash load, drag scarification, and mounding after cut-to-length harvesting of high elevation lodgepole pine stands in the Rocky Mountains. Twelve sites were established, each contained six plots which were randomly assigned to six treatment combinations of two slash removal (slash and slash removed) and three mechanical soil preparation treatments (no soil preparation, drag scarifying, and mounding). The slash removal reduced slash volume by more than 50% but also reduced the number of lodgepole pine cones available for regeneration by over 33%. However, soil mechanical treatments offset this effect as fewer cones were necessary to achieve high natural pine regeneration densities. Drag scarification of plots resulted in 12 times the number of pine seedlings compared to the non-prepared plots. Although slash removal did not have an effect on the number of naturally regenerated lodgepole pine seedlings, it had a positive effect on their growth performance. Conversely, planted pine seedlings had lower mortality and better growth in soils that had been mechanically prepared and had the slash removed; however, the growth effects became only apparent 4 years after planting. While slash removal and mechanical soil preparation did increase soil temperatures; the slash removal treatment had a more transient effect on soil temperatures than soil preparation. Differences in soil temperature decreased over time which appeared to be mostly driven by a warming of the soils in the plots with no soil preparation, likely a result of the decomposition of the finer slash and feathermosses. Overall, it appears that surface disturbance on these high elevation sites had a far greater effect on lodgepole pine regeneration and growth than the increased accumulation of slash as a result of cut-to-length harvesting.  相似文献   

12.
Loblolly pine (Pinus taeda L.) seedlings and plantlets, produced from drought resistant genetic families were planted in east Texas and their relative water relations compared through the first two, sixth and seventh growing seasons. Stock type (seedling or plantlet) had a larger influence on water relations than did family source in the early years. Seedlings exhibited more of those characteristics generally considered to benefit survival under harsh environments. The principal difference between stock types was the degree of progressive decrease in predawn water potential (Ψpre) through the growing season. On average and across families, Ψpre decreased through the first growing season by 32 and 17% for plantlets and seedlings, respectively.Complete stomatal closure was never observed for any genetic source or stock type even when water potential was below −2.0 MPa. However, seedlings exhibited more stomatal regulation by lowering their stomatal conductance when water deficit was encountered, and increasing it during periods of favorable soil moisture availability. Predawn water potential was never below −0.9 MPa for any tree in either of the two first growing seasons. Although significant differences between seedling and plantlet performance were observed, their magnitude was small and diminished in the later years (sixth and seventh growing seasons). We conclude that plantlets need further development to be considered as a viable regeneration source for loblolly pine plantations on sites where summer drought is common.  相似文献   

13.
Replanting at appropriate times after harvesting a coniferous forest stand can help efforts to suppress seedling mortality caused by the pine weevil Hylobius abietis, but optimal times are uncertain. We hypothesized that planting in June rather than May in the third season after harvest would reduce feeding damage by the pine weevil and increase seedling survival rates in central Sweden, where new-generation weevils mainly fly away from their development sites in May/early June. An experimental test of the hypothesis in eight clear-cuts confirmed that planting in June instead of May reduced proportions of seedlings attacked by pine weevil, bark removal from seedlings’ stems, and proportions of seedlings killed by feeding damage. These differences between seedlings planted in May and June declined to some extent with time but still remained significant after two growing seasons. The total seedling mortality after two seasons did, however, not differ significantly between seedlings planted in May and June. Overall, 29% of all seedlings were killed by pine weevil, 4.0% by Hylastes bark beetles, and 2.3% by drought. The results indicate that replanting in spring during the third season after harvest can advantageously continue until mid-June with respect to damage and mortality.  相似文献   

14.
Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and hydraulic conductivity of three sources each of shortleaf, loblolly and longleaf pine seedlings were evaluated for 28 days in a seedling growth system that simulated the planting environment. Across species, an increase in root-zone temperature alleviated limitations to root growth caused by water stress. In the coldest temperature, longleaf pine maintained a higher hydraulic conductivity compared to shortleaf and loblolly pine. Without water limitation, the root growth and hydraulic conductivity of shortleaf and loblolly pine were superior to that of longleaf pine, but as water availability decreased, the root growth of longleaf pine surpassed that of loblolly pine. Hydraulic conductivities of the seed sources differed, and differences were attributed to either new root growth, or an increase in the efficiency of the root system to transport water.  相似文献   

15.
We examined how white pine (Pinus strobus L.) seedlings planted under a mature cover of white and red (Pinus resinosa Ait.) pine in eastern Ontario (Canada) responded to treatments aimed at improving light and soil conditions for seedling growth. The treatments were: (a) three levels of partial cutting (no cut or CS0, cut to one-crown spacing between residual trees or CS1, cut to two-crown spacing or CS2); (b) two levels of vegetation control (without herbicide or H0, with herbicide or H1); and (c) two levels of soil scarification (S0 and S1). On the third growing season after planting, total growth of seedlings was lowest in CS0 treatment and similar in CS1 and CS2 treatments. The CS2 created better growing light conditions than the CS1, with and average of 50% of full light at seedling height, which corresponded to the maximum height and diameter growth rates of seedlings. However, CS2 also stimulated the growth of competing woody vegetation (both understory trees and shrubs), and resulted in greater microsite heterogeneity of light availability. Scarification warmed the soil (approximately 1–3 °C in the middle of the growing season), decreased the density of competing trees, but increased the shrub density, with no impact on white pine seedling growth. The treatments had no effect on light-saturated photosynthetic rate (A) of current-year foliage of seedlings, nor on their midday shoot water potential. Leaf N was higher in partial cuts and with vegetation control, but the relationship between N and A was weak to non-existent for the different foliage classes. Measures of the proportion of aboveground biomass allocated to foliage (leaf-mass ratio) suggest an acclimation response of young white pine that improves growth under moderate light availability and compensates for the lack of leaf-level photosynthetic plasticity. We suggest a combination of soil scarification under a one-crown spacing partial cut (corresponding to 14 m2 ha−1 of residual basal area, or an average of 32% of available light at seedling height) as an establishment cut. This should provide optimum growth conditions for planted understory white pine, while also favoring natural regeneration and providing some protection against damage from insects and disease.  相似文献   

16.
Alternative methods of protection are required against feeding by the large pine weevil (Hylobius abietis) on the bark of conifer seedlings. Silicon (Si) has been shown to enhance the resistance of plants to insect herbivores. This study investigated the effects of low doses of Si-rich soil amendments on growth, mortality and bark feeding damage of Sitka spruce (Picea sitchensis) seedlings. Two-year old seedlings were grown, individually, in soil taken from a tree nursery treated with coal ash, peat ash, rice husk ash, slag, sodium metasilicate or a commercially available Si fertiliser (Pro-Tekt) and planted out on two reforestation sites in Ireland. Seedlings grew well (about 20% growth in terms of height, 66% in root collar diameter, after two growing seasons), and Si-rich amendments did not have a significant effect on growth or mortality. Bark feeding damage on Si-treated seedlings did not vary significantly from control seedlings. Bark Si concentrations were not significantly larger in treated seedlings than in control seedlings, but control seedlings already had comparatively high bark Si concentrations (560?mg?kg?1 dry tissue). In conclusion, Sitka spruce seedlings grown in the presence of Si-rich soil amendments prior to planting did not show greater resistance to weevil feeding under the present conditions.  相似文献   

17.
The effects of competing grasses on resource availability, growth and ecophysiological characteristics of 3-0 red pine (Pinus resinosa Ait.) seedlings were examined the first two years following outplanting in Anoka County, Minnesota, USA. Equal numbers of seedlings were planted into suppressed and undisturbed grass communities in a sandy soil. Grass suppression was maintained throughout the first growing season, but partially discontinued thereafter on the site. During the first field season interference from grass reduced pine seedling root collar diameter, needle length, number of new root tips, and lateral root length by over 40%. Mean pre-dawn needle water potential was 0.55 MPa lower in undisturbed grass plots during a brief drought in year one, but otherwise water stress was not significantly (p=0.05) influenced by grass interference. The presence of grass also reduced, up to 50%, the photosynthetically active radiation reaching the seedling canopy. At the end of year one, total biomass N, P, K, and Ca content were significantly (p=0.05) less in seedlings growing in the undisturbed grass community. Nitrogen was deficient in seedlings growing in grass. After two growing seasons, seedling shoot length (p=0.03), root collar diameter (p=0.001), and needle length (p=0.001) were significantly less (40, 54 and 20%, respectively) for seedlings growing in undisturbed grass. Seedling growth reductions induced by grass competition were associated with multiple environmental stressors in the field and not restricted to water stress as was observed in earlier studies with pine species at low and mid-latitude sites.  相似文献   

18.
Karlsson  Anders 《New Forests》2002,23(2):159-175
Field experiments at two sites in Sweden investigated the possibility of establishing silver birch (Betula pendula Roth) on abandoned fields by planting small (5–10 cm tall) seedlings. The effects of five modes of soil preparation (no preparation, rotary cultivation, deep ploughing, soil inversion, and removal of topsoil) with or without preliminary herbicide weed control on seedling performance were studied for three growing seasons following plantation. Both a split-plot design and a randomized block design were used to evaluate the experiments. Where there was no site preparation, seedling survival was close to nil. The highest seedling survival rates on the site with sandy soil were obtained on sites prepared by removing topsoil, or by transposing it by deep ploughing. On the site with silty soil, the best survival was observed on sites created by soil inversion or rotary cultivation. The tallest seedlings were found on sites with topsoil retained within the soil profile. Herbicide application with glyphosate promoted seedling survival and seedling height in combination with no soil preparation, but was of little effect when followed by mechanical soil preparation.  相似文献   

19.
Abstract

The effects of soil scarification on reindeer lichen cover and re-establishment, reindeer foraging and damage possibly caused by reindeer to planted Scots pine seedlings were studied during six growing periods in a field experiment established in a reindeer lichen site that was grazed by a herd of 500–600 reindeer each winter. Seedlings (at a density equivalent to 2000 ha?1) were planted in mounds with mineral soil on top, in tracks with exposed mineral soil, in tracks with mixed organic material and mineral soil and in intact lichen mat (control) with no soil disturbance. The disturbed area varied from 0 to 28%. After six growing periods, the reindeer lichen cover and volume were 10–20% lower in the scarified plots than in the control plots. There was no clear evidence that the reindeer avoided foraging even in plots with the highest levels of soil disturbance. However, the behaviour of the reindeer during winter grazing seemed to be affected by both coverage of reindeer lichen (positively) and the proportion of exposed mineral soil (negatively). Damage possibly caused by reindeer trampling affected 8.2% of the living seedlings each year and approximately 50% of these seedlings were subsequently infected by fungal diseases (compared with 20% of viable undamaged seedlings). Scarification treatments that exposed mineral soil mildly resulted in higher survival and growth rates than the other treatments, especially the control.  相似文献   

20.
Haywood  James D. 《New Forests》1999,18(3):263-276
Several mulches of natural, synthetic, or blends of natural and synthetic fibers were tested around newly planted loblolly pine (Pinus taeda L.) seedlings on a sheared and windrowed site in central Louisiana, USA. The vegetation was primarily winter annuals, some residual grasses and forbs, and sparse woody regrowth. Study 1 was rotary mowed just prior to planting in March 1992, and 35 mulches and an untreated check were established. In Study 2, 15 mulches and an untreated check were established in a 1-year-old rough in March 1993. In both studies, a single loblolly pine seedling formed each plot established in a randomized complete block design, with 10 blocks as replicates. Each block was planted with a separate open-pollinated loblolly pine family.Nearly all mulches had deteriorated to some extent after three growing seasons. Synthetic mulches were generally more durable than the natural or natural/synthetic mulches. Mulching eliminated the established vegetation and germinants, and vegetation did not readily reestablish following the deterioration of a mulch. The soil seed bank apparently was not sufficient to regenerate areas that were once covered with mulch and many of the natural materials deteriorated into a fibrous cover that acted like a natural litter layer. Both of these residual weed control effects -- insufficient soil seed bank and formation of a fibrous cover -- were important in stopping vegetation from reestablishing after a mulch had deteriorated. After three growing seasons, the loblolly pine seedlings generally grew better if mulches were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号