首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The implementation of trees in urban environments can mitigate outdoor thermal stress. Growing global urban population and the risk of heatwaves, compounded by development driven urban warmth (the urban heat island), means more people are at risk of heat stress in our cities. Effective planning of urban environments must minimise heat-health risks through a variety of active and passive design measures at an affordable cost. Using the Solar and Longwave Environmental Irradiance Geometry (SOLWEIG) model and working within the bounds of current urban design, this study aimed to quantify changes in mean radiant temperature (Tmrt) from increased tree cover at five different 200 × 200 m urban forms (including compact mid-rise development, residential and open grassy areas) within a suburb of Adelaide, Australia during summer. Following a successful validation of SOLWEIG, street trees were strategically distributed throughout each of the five urban forms and the model run over five warm sunny days (13–17 February 2011). Results showed spatially averaged daytime (7:30–20:00) Tmrt reduced by between 1.7 °C and 5.1 °C at each site, while under peak heating conditions (16 February, 14:00) Tmrt reduced by between 2.0 °C and 7.1 °C. The largest reduction in Tmrt under peak warming conditions was at the residential site, despite having the fewest number of trees added. Directly below clusters of trees, Tmrt could be reduced by between 14.1 °C and 18.7 °C. SOLWEIG also highlighted that more built-up sites showed higher Tmrt under peak warming conditions due to increased radiation loading from 3D urban surfaces, but over the course of the day, open sites were exposed to greater and more uniform Tmrt. This study clearly demonstrates the capacity of street trees to mitigate outdoor thermal stress and provides guidance for urban planners on strategic street tree implementation.  相似文献   

2.
《Scientia Horticulturae》2002,95(4):351-356
Primula malacoides Franch. ‘Prima Lilac’ was grown at 16 or 20 °C in combination with short days (SD, 8 h) or long days (LD, 16 h). In addition to uninterrupted growing conditions, plants within each temperature were moved at weekly intervals to the other photoperiod and left until termination. Temperature, but not photoperiod, significantly affected the rate of development from start of treatments (51 days from seeding) to 2 mm visible flower bud (VB). At 16 °C, VB averaged 30 days and at 20 °C, 48 days. Time to flower (first horizontal petals) at 16 °C increased from 56 to 64 days as SD increased from 1 week to continuous conditions while LD decreased time to flower from 64 to 56 days. Time to flower at 20 °C varied from 73 to 87 days with additional SD exposure resulting in slower and LD in faster flowering. These observations of the flowering response in ‘Prima’ are contrary to the photoperiodic classification of P. malacoides as a SD plant.  相似文献   

3.
《Scientia Horticulturae》2005,103(3):361-379
The temperature conditions for shoot growth and flower formation were characterised for saffron (Crocus sativus L.). Leaf withering occurred during late winter or spring depending on location, and coincided with a rise in temperature. No growth was detectable in the buds during the first 30 days after leaf withering, neither in underground corms nor in lifted corms incubated in the laboratory under controlled conditions. Flower initiation occurred during the first growth stages of the buds. The optimal temperature for flower formation was in the range from 23 to 27 °C, 23 °C temperature being marginally better. To ensure the formation of a maximum number of flowers, the incubation at these temperatures should exceed 50 days, although incubation longer than 150 days resulted in flower abortion. Flower emergence required the transfer of the corms from the conditions of flower formation to a markedly lower temperature (17 °C). Incubation of the corms after lifting at a higher temperature (30 °C), reduced flower initiation and caused the abortion of some of the initiated flowers. No flowers formed in corms incubated at 9 °C. A variable proportion (20–100%) of the corms forced directly at 17 °C without a previous incubation at 23–27 °C formed a single flower. The wide differences in the timing of the phenological stages in different locations we found in this study seemed related to the ambient temperature. Leaf withering was followed shortly by flower initiation, which occurred during late spring or early summer as the rising temperature reached 20 °C. A long hot summer delayed flower emergence which occurred in late autumn as the temperature fell to the range of 15–17 °C.  相似文献   

4.
《Scientia Horticulturae》2005,105(1):127-138
Experiments were performed with the Chilean geophyte Zephyra elegans, a potential cut flower, to evaluate the effect of corm weight and storage temperature on corm dormancy, and to determine the effect of day and night growing temperatures on its growth and flowering. Z. elegans has a deciduous and synanthous growth habit and the corm is replaced annually. Dormant corms were stored at different constant temperatures or temperature combinations from 20 to 40 °C. Corms released from their dormancy were grown at 15/10, 20/15, or 25/20 °C day/night temperatures. Corms of various weights were planted at the same date after being stored dry at 25 °C for 22 weeks. They all emerged 19–38 days after planting, showing that dormancy release was not affected by corm weight. A 20-week corm storage treatment at a constant 25 °C resulted in the most rapid corm sprouting. Sprouting percentage was reduced at higher or lower storage temperatures. Temperature also affected plant growth. When plants were grown at 15/10 or 20/15 °C they emerged and flowered more rapidly than when they were grown at 25/20 °C. The latter growing temperature also resulted in poor flower quality.  相似文献   

5.
《Scientia Horticulturae》2005,103(2):199-208
We investigated the embryo induction of papaya by anther culture, and identified the sex of plantlets derived from embryos using a sex-diagnostic PCR. Anthers, containing approximately 80% uninucleate pollen, were collected from 10 to 14 mm long male flower buds. They were pre-treated on agar (0.8%) or in liquid medium for 1–5 days at 25 or 35 °C, then transferred to agar medium with 0.1 mg l−1 BA and 0.1 mg l−1 NAA. Agar and liquid media used for the pre-treatment contained water only or MS nutrients with or without sucrose (2.0%). On the agar medium, no embryos were induced at any pre-treatment temperature. In the liquid medium at 25 °C, embryos were induced at about 1.0% (rate of anthers forming embryos) in MS medium with sucrose for 3 or 5 days. At 35 °C, embryo induction rate tended to increase up to about 4.0% when anthers were treated in water for 1 day or MS medium with sucrose for 3 or 5 days. The sex of plantlets established through anther culture was analyzed using a sex-diagnostic PCR. All plantlets were determined as female. From these results, we suggest that all plantlets established through anther culture were of microspore origin, and that the anther culture technique is useful for the breeding of female papaya.  相似文献   

6.
《Scientia Horticulturae》2005,103(2):239-247
Prunus necrotic ringspot virus (PNRSV)-free Begonia spp. plants were raised from petioles of virus-infected plants using in vitro techniques. The petioles were grown on MS medium supplemented with 0.2 mg/l NAA and 0.2 mg/l BAP (pH 5.8). For rooting, half-strength MS medium without any plant growth regulators was used. On rooting medium, shoots were subjected to chemotherapy (virazole, 2-thiouracil or 6-azauracil) and thermotherapy (38 °C for 16 h light period and 22 °C for 8 h dark period) separately or in combination. Regenerated plants (treated with chemo- and thermotherapy) were indexed for PNRSV by DAS-ELISA and RT-PCR. An amplified product of 785 bp was obtained by RT-PCR in PNRSV-infected plants. Virazole at a concentration of 20 mg/l was found to be more effective (30 and 20% of PNRSV-free plants as indexed by ELISA and RT-PCR, respectively) in comparison to the other chemicals. Thermotherapy for 25 days gave 35 and 25% PNRSV-free plants as indexed by DAS-ELISA and RT-PCR, respectively. A combination of both treatments gave a good number of PNRSV-free plants (67.5 and 57.5% as indexed by DAS-ELISA and RT-PCR, respectively). At higher concentrations all three chemicals were found to be toxic. Thermotherapy for more than 25 days caused browning of leaves and shoots died.  相似文献   

7.
《Scientia Horticulturae》2001,87(1-2):131-138
An efficient system has been developed for the in vitro plant regeneration of Lilium longiflorum Thunb. by culturing receptacle sections from flower buds. The sections were cultured on one-half MS medium plus 30 g l−1 sucrose, 8 g l−1 agar, 5.4 μM NAA or 4.9 μM IBA plus 2.2 μM BAP. A section size of 3–4 mm was found to be optimal. After 60 days an average of 41 shoots were formed per explant. More vigorous shoots were obtained by subculturing on hormone-free medium with 20 g l−1 sucrose. Rooting occurred on one-half MS medium with 1.1 μM NAA. Rooted plants were hardened-off in a greenhouse for two months, and normal flowering plants were produced.  相似文献   

8.
《Scientia Horticulturae》2001,87(1-2):93-105
Campanula carpatica Jacq. ‘Blue Clips’ plants were grown in a greenhouse under nine combinations of day and night temperatures created by moving plants every 12 h among three day/night temperatures (15, 20, and 25°C). At each temperature, there were three daily light integrals (DLI; 4.2, 10.8, and 15.8 mol m−2 per day, averaged over the experimental period) created with varying supplemental light, and ambient (≈400 μmol mol−1) and enriched (≈600 μmol mol−1) CO2 concentrations. Time to flower was closely related to average daily temperature (ADT), and was not significantly affected by the day or night temperatures delivered to achieve a specific ADT. Time to flower was not largely affected by DLI or CO2 enrichment. As plant ADT increased between 15 and 25°C, flower diameter decreased about 1 mm per degree and was not related to the difference between day and night temperatures (DIF). Flower diameter was smallest and least sensitive to changes in temperature at lower DLI and at ambient CO2 levels. There were 10 less flower buds and 0.3 g less dry mass per plant at first flower for every 1° increase in plant ADT at high and medium DLIs. Flower bud number and dry mass were relatively low and less sensitive to changes in ADT at low DLI, and increased slightly with CO2 enrichment at medium and high but not at low DLI. Plant height was not related to ADT, but increased linearly as DIF increased from −6 to 12°C at all DLIs, but the response was stronger under low DLI than high and medium DLIs. Flower bud number and dry mass were correlated closely with the ratio of DLI to daily thermal time (base temperature of 0°C). Flower bud number and dry mass were highest when C. carpatica plants were grown at 15°C with a DLI of 10–15 mol m−2 per day.  相似文献   

9.
《Scientia Horticulturae》2005,104(3):293-303
To produce commercially acceptable Ardisia plants, stem tip cuttings from mature plants were rooted and forced in greenhouses. Ten centimeter long cuttings were either treated with 200 ppm 1-naphthalene acetic acid (NAA) for 2 h, 2000 ppm indole-3-yl-butyric acid (IBA) for 10 s, or 0.5 and 1.0% IBA powder prior to sticking them in the rooting medium. Rooting percentage at 45 days exceeded 76% with 2000 ppm IBA treatment which was a significant increase over non-treated control. Rooted cuttings developed into three types of plants: those forming only vegetative shoots without flowers, those forming reproductive shoots with flowers, and those forming both vegetative and reproductive shoots. The ideal plant produced only vegetative shoots when rooted cuttings were transplanted into pots. About 50% rooted cuttings were forced to finish, producing 31 or 40% of high quality plants when rooted cuttings with vegetative shoots were grown in a greenhouse (GH) at temperatures higher than 21/19 °C (day/night) in 1995 or 21/18 °C GH in 1997, respectively. This method shortened the total production time to less than 2 years as compared to 4 years when starting from seeds.  相似文献   

10.
Decayed wood is a common issue in urban trees that deteriorates tree vitality over time, yet its effect on biomass yield therefore stored carbon has been overlooked. We mapped the occurrence and calculated the extent of decayed wood in standing Ulmus procera, Platanus × acerifolia and Corymbia maculata trees. The main stem of 43 trees was measured every metre from the ground to the top by two skilled arborists. All trees were micro-drilled in two to four axes at three points along the stem (0.3 m, 1.3 m, 2.3 m), and at the tree’s live crown. A total of 300 drilling profiles were assessed for decay. Simple linear regression analysis tested the correlation of decayed wood (cm2) against a vitality index and stem DBH. Decay was more frequent and extensive in U. procera, than P. acerifolia and least in C. maculata. Decay was found to be distributed in three different ways in the three different genera. For U. procera, decay did appear to be distributed as a column from the base to the live crown; whereas, decay was distributed as a cone-shape in P. acerifolia and was less likely to be located beyond 2.3 m. In C. maculata decay was distributed as pockets of variable shape and size. The vitality index showed a weak but not significant correlation with the proportion of decayed wood for P. acerifolia and C. maculata but not for U. procera. However, in U. procera, a strong and significant relationship was found between DBH and stem volume loss (R2 = 0.8006, P = 0.0046, n = 15). The actual volume loss ranged from 0.17 to 0.75 m3, equivalent to 5%–25% of the stem volume. The carbon loss due to decayed wood for all species ranged between 69–110 kg per tree. Based on model’s calculation, the stem volume of U. procera trees with DBH  40 cm needs to be discounted by a factor of 13% due to decayed wood regardless of the vitality index. Decayed wood reduces significantly the tree’s standing volume and needs to be considered to better assess the carbon storage potential of urban forests.  相似文献   

11.
Knowledge of allometric equations can enable urban forest managers to meet desired economic, social, and ecological goals. However, there remains limited regional data on young tree growth within the urban landscape. The objective of this study is to address this research gap and examine interactions between age, bole size and crown dimensions of young urban trees in New Haven, CT, USA to identify allometric relationships and generate predictive growth equations useful for the region. This study examines the 10 most common species from a census of 1474 community planted trees (ages 4–16). Regressions were applied to relate diameter at breast height (dbh), age (years since transplanting), tree height, crown diameter and crown volume. Across all ten species each allometric relationship was statistically (p < 0.001) significant at an α-level of 0.05. Consistently, shade trees demonstrated stronger relationships than ornamental trees. Crown diameter and dbh displayed the strongest fit with eight of the ten species having an R2 > 0.70. Crown volume exhibited a good fit for each of the shade tree species (R2 > 0.85), while the coefficients of determination for the ornamentals varied (0.38 < R2 < 0.73). In the model predicting height from dbh, ornamentals displayed the lowest R2 (0.33 < R2 < 0.55) while shade trees represented a much better fit (R2 > 0.66). Allometric relationships can be used to develop spacing guidelines for commonly planted urban trees. These correlations will better equip forest managers to predict the growth of urban trees, thereby improving the management and maintenance of New England's urban forests.  相似文献   

12.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

13.
《Scientia Horticulturae》2005,107(1):43-50
This study was planned to evaluate the effect of preharvest calcium sprays on physicochemical aspects of cell wall components, activity patterns of pectin-modifying enzymes and susceptibility to brown rot (Monilinia fructicola) of peach fruits (Prunus persica L. cv. ‘Andross’). Six or 10 preharvest calcium sprays were applied with two different formulas (calcium chloride and an ethylenediamine tetraacetic acid (EDTA) chelated calcium form) in equimolar calcium concentration (0.12% Ca, w/v). After harvest, peach fruits were cold stored (0 °C, 95% R.H.) up to 4 weeks. Calcium content increased significantly in the calcium-sprayed peaches both in the peel (25–42%) and in the flesh (11–17%), 1 d after harvest. Calcium chloride sprays were more effective than those of chelated calcium, whereas the increase of calcium content in the fruits seems to be unaffected by the 6 or 10 calcium sprays. The increase of cell wall calcium corresponded to increase of calcium in the insoluble pectin fraction, whereas no differences were detected in the calcium of water-soluble pectin fraction. Ethylene production, respiration rate, uronic acid content and activity of pectin-modifying enzymes did not indicate substantial differentiations by preharvest calcium sprays as ripening progressed after harvest or cold storage. Calcium sprays resulted in significant decrease of brown rot development, although no effect on disease incidence was recorded.  相似文献   

14.
Locations of trees in street parking lots (SPL) impact outdoor thermal comfort and should be considered during the urban planning process. In this paper we developed a procedure for changing trees locations in order to improve outdoor thermal comfort on SPL and associated footways. Furthermore, a sensitivity test on the effect of different tree crown shapes on outdoor thermal comfort was carried out. We applied theprocedure on real-world SPL design in the City of Novi Sad (Serbia). A temporal analysis is performed for the heat wave period using Universal Thermal Climate Index (UTCI) calculations in the Ladybug software.The results showed improvement of outdoor thermal comfort on 77 % of all body locations in proposed SPL design with predetermined number of trees. The largest outdoor thermal comfort improvement was noticed in the afternoon hours with up to 3.3 °C UTCI decrease on single body location. By adding trees to the SPL, heat stress was reduced on 84 % of all body locations with maximal UTCI decrease of 3.7 °C on single body location. Furthermore, heat stress reduction by cylinder-shaped tree crowns showed to be more pronounced compared to the sphere-shaped and the cone-shaped tree crowns. Proposed procedure showed that the locations of trees as well as tree crown shapes are very important for the improvement of outdoor thermal comfort and creation of environmentally conscious SPL design.  相似文献   

15.
《Scientia Horticulturae》2001,89(2):143-154
The effectiveness of two commercial formulations of gibberellin (GA) and benzyladenine (BA) for reducing foliar chlorosis on Easter lily (Lilium longiflorum Thunb.) was compared. On a per liter basis, plants were sprayed with 0, 100, 200, or 400 mg (BA equivalent) of Accel (GA4+7:BA of 1:10) or Promalin (GA4+7:BA of 1:1) when the crop leaf area index (LAI)=3. One group of plants was sprayed with 100 mg of Accel or Promalin (BA equivalent) per liter twice: once at LAI=3 and again 3 weeks later. Plants were harvested when the largest flower bud on each plant measured 13 cm in length, stored for 0 or 3 weeks at 2.5°C in the dark, and then moved into a post-harvest evaluation room at 21°C, where foliar chlorosis was monitored for 3 weeks. Senescence of some lower leaves on plants in every treatment was evident at harvest, and incidence of senescence increased during the 21 days of post-harvest evaluation. Cold storage increased the number of leaves senescing during the subsequent evaluation period. Application of Promalin or Accel significantly reduced leaf senescence compared to that of untreated plants. At harvest, 21% of the leaves on untreated plants were senescent, while plants treated with Promalin or Accel averaged 3 or 9% senescent leaves, respectively. Following 7 days of post-harvest evaluation, Promalin was more effective in preventing chlorosis than Accel at the 400 mg l−1 (BA equivalent) level. Following 14 or 21 days of post-harvest evaluation, Promalin was more effective than Accel for the 100 mg l−1 2× and 400 mg l−1 (BA equivalent) treatments.Plants in all Promalin and Accel treatments were taller than untreated plants 1 week after sprays were applied. At harvest, plants sprayed with Promalin were between 6 and 14 cm taller than untreated plants, but those treated with Accel were the same height as untreated plants.Neither Promalin nor Accel influenced the occurrence of malformed or aborted flowers in this study. However, cold storage significantly increased the number of plants with aborted buds and malformed flowers. Unstored plants averaged 0.16 aborted buds and 0.02 malformed flowers each, while those stored 3 weeks averaged 0.51 aborted buds and 0.18 malformed flowers each.  相似文献   

16.
《Scientia Horticulturae》2005,106(4):568-581
The response of melon (Cucumis melo) plants to long-term salinity was investigated to determine the availability of the NaCl pre-treatments (seed priming + seedling conditioning) as an interesting strategy for increasing the salt tolerance. Seeds of melon cultivars “Hasanbey” and “Kirkagac” were primed with 18 dS m−1 NaCl solution for 3 days at 20 °C. During emergence and seedling growth, non-primed seeds were irrigated with local irrigation water (EC: 0.3 dS m−1) whereas primed groups were treated with 9.0 dS m−1 saline solution for 35 days. Seedlings derived from pre-treated (P) and non-pre-treated (NP) groups were transplanted to 8 l pots. After transplanting, salinity treatments were started with the first irrigation. The salinity treatments consisted of five levels (control, 4.5, 9.0, 13.5 and 18.0 dS m−1) of irrigation solution for a period of 90 days. NaCl pre-treatments diminished the inhibiting effect of salinity on growth of melon plants. However, competence for salt adaptation varied with cultivar and the level of salinity. The physiological response of the P plants was also maintained in the long-term. Stomatal conductance and relative chlorophyll content of P plants tended to be higher than those of the NP ones. In addition, NaCl pre-treatments enhanced K and Ca concentrations of leaves and stems, and prevented toxic effects of salinity because less Na accumulated in stems. These results suggest that the use of NaCl pre-treatments could be a useful strategy to increase the salt tolerance of melon plants in the long-term and also to permit the establishment of melon crop by direct sowing in a saline medium.  相似文献   

17.
《Scientia Horticulturae》2002,93(2):157-166
Sandersonia flowers can vary from being lantern- to tubular-shaped. Lantern-shaped flowers are considered to be most commercially desirable when the ratio of the widest to the narrowest diameters of a flower, termed the ratio of hips to waist, is 1.5 or greater. Pedicel length can also affect the overall appearance of a flower stem. Short pedicels are considered more desirable. The influences of temperature and irradiance on Sandersonia aurantiaca flower shape and pedicel length were examined in controlled environment (CE) growth rooms. The growing environments were at constant temperatures of 15, 18, 21, 24 or 27 °C; or day/night temperature differentials of −6, 0, +6, +12, or +18 °C, with a mean of 21 °C. Photosynthetic photon flux densities (PPFD) were 700, 460 or 210 μmol m−2 s−1. At harvest, measurements were made of the widest and narrowest diameters of the oldest flower on each stem and the ratio of these parts was calculated. The pedicel length of the oldest flower was also measured. Environments with constant temperatures below 23 °C and the least day/night temperature differentials (−6, 0 and +6 °C) produced flowers of the most desirable shape, defined as having a hips to waist ratio of 1.5 or greater. At these temperatures, irradiance had a variable effect on flower shape. Pedicel length was also highly dependent on temperature and PPFD. As mean temperatures increased or as the temperature differential changed towards a differential of 12 °C, and as PPFD decreased, pedicel length increased significantly. Hip diameter was more sensitive to environmental changes than waist diameter and thus had a greater effect on flower shape. This work indicates to growers that they can enhance Sandersonia flower quality by producing more desirably shaped flowers with short pedicels through maintaining relatively low (less than 23 °C) mean temperatures, minimising temperature differentials, and maintaining irradiance levels as high as possible.  相似文献   

18.
《Scientia Horticulturae》2005,104(3):325-337
The influence of 24 h mean air temperature (18.3, 20.6, 23.9 and 25.8 °C) and photosynthetic photon flux (PPF; 0.6, 2.1, 3.7 and 4.7 mol m−2 d−1) on the growth cycles of vegetative growth in Ilex × meserveae (‘Blue Princess’ S.Y. Hu) was investigated. Plants propagated from top cuttings were grown in greenhouse compartments. The number of unfolded leaves was recorded continuously throughout the experiment. A modified sine function was fitted to collected data and the values for the amplitude and frequency of the growth curves were analysed. The sine function was tested as a method to evaluate the influence of climate on periodically flushing species. Both amplitude and frequency were significantly influenced by air temperature and PPF. The highest frequency of flushing was found at 23.9 °C and 3.7 mol m−2 d−1. The function resulted generally in a good fit to collected data with R2 values above 0.9. Growth curves of all individual plants were categorised with respect to their growth pattern as poor synchronisation within the treatments did not allow analysis of the mean values of the growth curves.  相似文献   

19.
《Scientia Horticulturae》2002,95(3):203-211
Potted lychee trees (cv. Tai so) of varying vegetative flush maturity were grown under a range of temperature regimes and monitored for subsequent shoot structure and development. A combination of low temperature (15/17 or 18/13 °C day/night) and high vegetative flush maturity was necessary for floral initiation to occur. Exposure to high temperatures (28/23 °C) invariably resulted in the production of vegetative shoots, irrespective of flush maturity. Strong floral initiation was marked by the emergence of terminal panicles and accompanying axillary panicles. A decrease in vegetative flush maturity or increase in temperature (e.g. 23/18 °C) resulted in a decrease in axillary shoot formation and the production of several intermediate shoot structures. These included leafy panicles, stunted panicles, partially emerged buds and non-emergent swollen buds, often produced on the same tree. At 23/18 °C, closer synchronisation of initial flush maturity was required for the production of a consistent shoot-type. Trees with synchronised mature flushes (I-2) at 23/18 °C resulted in the production of swollen terminal buds. Healthy trees were maintained in this state for at least 11 months. These results indicate that both temperature and flush maturity can influence subsequent shoot structure of lychee. In the absence of either a strong floral temperature (18/13 °C) or strong vegetative temperature (28/23 °C), slight differences in initial flush maturity have greater impact on the type of emerging shoot formed.  相似文献   

20.
《Scientia Horticulturae》2005,106(2):190-202
The response of petunia (Petunia x hybrida Vilm.-Andr. ‘Countdown Burgundy’) and impatiens (Impatiens wallerana Hook ‘Accent Orange Tempo’) to Prohexadione-calcium was evaluated under a clear and a far-red light absorbing greenhouse (AFR) film to investigate the dosage effect of Prohexadione-Ca and to determine if it can overcome the flowering delay under FR deficient greenhouse environments. Prohexadione-Ca reduced stem elongation of petunia and impatiens under AFR and clear films when applied 3 weeks after germination. Late applications were less effective. In both crops, main stem length decreased in a quadratic pattern as the concentration of Prohexadione-Ca increased. Under both films, 50–100 mg l−1 Prohexadione-Ca resulted in ≈30% shorter petunia plants. Greater concentrations (500 and 1000 mg l−1) resulted in excessively short plants (over 70%). Prohexadione-Ca at 100 mg l−1 delayed anthesis of petunia by 8 and 3 days under the clear film and the AFR film, respectively during less inductive photoperiods but had no effect during inductive photoperiods. In impatiens, Prohexadione-Ca at 100 mg l−1 delayed anthesis over 10 days under clear or AFR film. Greater concentrations (200 and 300 mg l−1) inhibited flowering of impatiens. Prohexadione-Ca treatments significantly affected flower color development. Untreated petunia plants had dark burgundy flowers. Prohexadione-Ca treatment increased L*, a*, and C* values and decreased hue angle indicating that the flowers were faded. Flowers of untreated impatiens plants were bright orange color. Prohexadione-Ca at 100 mg l−1 increased L* value and decreased a*, b*, and C* values indicating that significant petal fading had occurred. Flowers of treated plants were nearly white under both films. Although effective in height control, loss of color would be a major limitation to the use of Prohexadione-Ca on flowering crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号