首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a unique set of deletion lines, (Olympic×Gabo, varying in high molecular weight glutenin subunit (HMW-GS) composition, but with the same genetic background) it was shown that the presence of glutenin particles in glutenin macropolymer (GMP) is directly related to the presence of certain HMW-GS. In the absence of HMW-GS only a small amount of insoluble glutenin protein (GMP) could be recovered from the flour that contained only LMW-GS. No particles were observed in this fraction. When one subunit (HMW-GS Glu-Ax1) was present some particles could be observed, but when two or more HMW-GS were present particles could be clearly identified. The amount of GMP increased with the increasing number of HMW-GS. All particles had the same LMW-GS composition irrespective of HMW-GS-composition. Since the relative proportion of LMW-GS in GMP was dependent on the number of HMW-GS, we postulate that LMW-GS become part of GMP through disulfide cross-linking with HMW-GS. GMP wet weight is correlated with the average HMW density of the glutenin particle. These data were combined with previously published technological data from the same set of wheats. Significant statistical relationships were observed between optimal mixing time and glutenin particle size and between thimble-loaf height and GMP content. Taken together, these studies suggest that glutenin HMW-GS composition affects flour technological properties through glutenin particle size.  相似文献   

2.
Baking performance for bread and puff pastry was tested for Six European and two Canadian wheat cultivars and related to the rheological and fracture properties in uniaxial extension of optimally mixed flour–water doughs and doughs to which a mix of bakery additives was added. Extensive baking tests were performed as a function of water addition for puff pastry and as a function of water addition and mixing time for bread. For optimum baking performance, puff pastry doughs required lower water additions than bread doughs. Baking performance of the flours differed for the two products. For puff pastry, higher volumes were obtained per gram of flour than for bread. Puff pastry volume was positively correlated with optimum bread dough mixing time, while bread volume was not. Instead, bread volume was positively correlated with gluten protein content.All doughs exhibited strain hardening, a more than proportional increase of the stress with the strain. For all doughs fracture, stress and strain increased with increasing displacement speed of the hook and decreasing temperature. Large differences were observed between the cultivars regarding stress, strain hardening, strain rate-dependency of the stress, fracture stress and fracture strain. At both 25 and 45 °C, addition of a mix of bakery additives resulted in a decrease of the stress at relatively small strains and a significant increase of the strain hardening coefficient. Fracture strains remained the same or increased as a result of addition of the mix. Differences between flours regarding the strain rate and temperature-dependency of the fracture strain remained. The weaker the dough, the stronger the strain rate and temperature-dependency of the fracture strain.Puff pastry volume was positively correlated with strain hardening and negatively with the strain rate-dependency of the stress. In short, the stronger the dough, the higher the puff pastry volume. For bread, it were not the strongest doughs that gave the highest loaf volumes, but those with intermediate dough strength. Low volumes for puff pastry and bread were found for doughs having a low fracture stress and low strain hardening coefficients. Loaf volumes of flours with high dough strength (i.e. high stress-level and high strain hardening) gave intermediate loaf volumes. We concluded that a high stress can hamper the extensibility of dough films between gas cells, thus limiting the expansion of gas cells during fermentation and baking and hence the loaf volume that can be obtained.  相似文献   

3.
4.
5.
6.
Dough mixing involves a combination of different deformation flows, e.g. shear and elongation. The complicated nature of mixing process makes it difficult to understand dough processing at a mechanistic level. A new Couette device allowed the effects of shear flow on the physical properties of glutenin macro-polymer (GMP) and micro-structure formation of the dough to be studied. Steady shear deformation using concentric Couette-type flow did not decrease GMP content or size of glutenin particles. Confocal scanning laser microscopy revealed the formation of interconnected gluten domains indicating the development of a gluten network. In an eccentric Couette configuration the results depended on the degree of eccentricity. A higher degree of eccentricity and a longer processing time led to considerable reduction in GMP content and size of glutenin particles. The micro-structural change in the narrow gap regions of the eccentric cell occurred early in processing, leading to a break up of large protein domains, and a microscopically more homogeneous dough. Transient high shear flow led to elongation and break up of the macroscopic gluten network. In low shear regions of the eccentric cell (wider gap settings), reformation or aggregation of protein domains was observed. Thus, the gluten aggregation–break up mechanisms are strongly influenced by the local flow profile in a conventional mixer. The impact of different types of shear flow must be taken into account in the design of dough mixers.  相似文献   

7.
Mixing measurements provide valuable information about dough strength and stability (STAB) traits. These measurements are important in milling and baking operations, and for varietal selection in wheat breeding programmes. There are several techniques with different sample sizes used for measuring these traits so there is interest in examining the agreement between methods in terms of genotypic (varietal) rankings. This issue has been investigated by using two different mixing methods, a small-scale Mixograph (2 g) and large-scale Farinograph (50 g) using data from a doubled haploid population (190 lines) from a Chara (excellent dough strength)×WW2449 (poor dough strength) cross. The cross was grown in a field trial at the Wagga Wagga Agricultural Institute (WWAI) in 2000. Eleven mixing traits were measured and compared according to a statistical design. The estimated genetic correlation matrix for six of the 11 mixing traits, dough development time (DDT), STAB, mixing tolerance index (MTI), maximum bandwidth (MBW), bandwidth at peak resistance (BWPR) and peak resistance (PR) revealed that for these dough-strength-related parameters, both methods were measuring equivalent traits, although individual parameters had widely different coefficients of variation. In this population, PR was correlated with the extensibility trait length determined by large-scale extension testing. None of the large-scale or small-scale mixing traits was an effective predictor of the small-scale extensibility parameter extensibility at Rmax (Ext_Rmax). The data verified that small-scale Mixograph tests are a robust and efficient alternative to large-scale Farinograph tests for both commercial breeding and research.  相似文献   

8.
Previously we reported that the SDS insoluble gel-layer: the Glutenin Macro Polymer (GMP) can be considered as a gel consisting of protein particles. These glutenin particles have a size of about 10−1–102 μm and consist of HMW-GS and LMW-GS only. In GMP isolates from flour, the particles are spherical. In isolates from dough, glutenin particles have lost this shape. This seems relevant, since mixing disrupts the particles and the mixing energy required for dough development correlated with the glutenin particle size in flour. The question studied in this paper is how changes at a glutenin particle level affected the subsequent process of gluten network formation during dough rest and if this could be used to explain resulting dough rheological properties. To this end, we studied how various mixing regimes affected the dough properties during and after resting (elasticity). We cannot fully explain the differences in the final dough properties observed using parameters such as the quantity of GMP in flour, the quantity of re-assembled GMP in dough and the size of re-assembled glutenin particles. However, other parameters were found to be important: (1) the Huggins constant K′ reflecting the tendency of glutenin particles to interact at level II of the Hyperaggregation model; (2) the composition of glutenin particles affecting the potential to form smaller or larger particles and (3) for over-mixed dough, covalent re-polymerisation at the so-called level I of hyperaggregation. Using these parameters we can better explain dough viscoelasticity after resting.  相似文献   

9.
B-glucan is one of the components that differentiate oats from other cereals and that contribute to the health-related value of oats. However, so far oats cannot easily be applied in bread-like products without loss of product quality. Here we have studied how the content and viscosity of oat β-glucan affect the technological properties of oat dough in both a gluten-free and a gluten-containing system. In both systems, increasing the β-glucan concentration resulted in an increase of dough stiffness and in a reduction of dough extensibility. β-glucan negatively impacted the elastic properties that additional wheat gluten conferred to oat dough. This effect was smaller for medium-viscosity β-glucan than for high-viscosity β-glucan. Interestingly, dough made from low β-glucan flour (<2%) had increased gas retention capacity. Overall, the impact of β-glucan on the properties of oat dough systems was governed by concentration and viscosity, with or without additional wheat gluten. Our findings indicate that β-glucan is a key component that determines the rheology of oat-based dough systems and, with that, the technological functionality of oat in dough systems.  相似文献   

10.
The study of food products is always a challenge due to the number of components involved and the interactions that may occur between them. Water is a particular ingredient which interacts with all hydrophilic compounds, although affinities may differ for limiting water amount. During this study, results obtained using 1H NMR on cake dough were compared in terms of the effects of flour type (soft or medium hard), the addition of gluten (5%–20%) and the use of soft flour fractions (flour particle fractions smaller or larger than 50 μm). T2 values and the signal intensities of different proton populations were studied as a function of the wheat protein contents of dough samples. Physicochemical characterization methods were used to better understand how the origin and particle size of flour might impact the hydration properties and mobility of a model system. Increasing the protein content in dough samples was related to an increase of the mobility of fat protons and of the least mobile proton population (relaxation times ranging from 175 to 180 ms and from 5 to 7 ms, respectively).  相似文献   

11.
12.
Arising from work showing that conventionally bred high protein digestibility sorghum types have improved flour and dough functionality, the flour and dough properties of transgenic biofortified sorghum lines with increased protein digestibility and high lysine content (TG-HD) resulting from suppressed synthesis of several kafirin subclasses, especially the cysteine-rich γ-kafirin, were studied. TG-HD sorghums had higher flour water solubility at 30 °C (p < 0.05) and much higher paste viscosity (41% higher) than their null controls (NC). TG-HD doughs were twice as strong as their NC and dynamic rheological analysis indicated that the TG doughs were somewhat more elastic up to 90 °C. CLSM of doughs and pastes indicated that TG-HD had a less compact endosperm protein matrix surround the starch compared to their NC. The improved flour and dough functional properties of the TG-HD sorghums seem to be caused by reduced endosperm compactness resulting from suppression of synthesis of several kafirin subclasses which modifies protein body and protein matrix structure, and to improved protein-starch interaction through hydrogen bonding specifically caused by reduction in the level of the hydrophobic γ-kafirin. The improved flour functionality of these transgenic biofortified sorghums can increase their commercial utility by complementing their improved nutritional quality.  相似文献   

13.
14.
The effects of different percentages of barley flour (i.e. 0–25%) in wheat flours on the physico-chemical properties and structure of dough and bread were investigated. As the percentage of barley flour in mixed flour was increased, its protein and gluten contents decreased whereas the ash content and enzyme activity increased. The rheological characteristics of the four dough mixes were studied using Farinograph, Extensograph and Alveograph. The water absorption (p < 0.01) and stability (p < 0.05) decreased significantly as the percentage of barley flour increased, while no changes were observed in the extensibility and maximum heights. Significant differences were observed in the structural and physical properties as well as in the image analysis of breads. With the increase in the percentage of barley flour, the crumb apparent density decreased (p < 0.1) whereas the porosity (i.e., fraction to total volume) increased (p < 0.1). Overall, the shape and pore structure at 10% barley flour (W90B10) were similar to the pure wheat flour bread, while addition at 15 and 25% of barley flour (W85B15 and W75B25) showed more non-uniform and larger pores.  相似文献   

15.
Retardation test, step-shear rate experiments, low-amplitude and large-amplitude dynamic measurements have been combined to study the nonlinear and time-dependent viscosity of dough and shear-induced effects of flow on dough structure. Despite large quantitative differences in linear viscoelastic constants, doughs from different flours or with different water contents display the same type of flow behaviour. Shear-induced structural changes cause flow to shift from a high viscosity steady-state regime to a low viscosity one. The process, irreversible, is responsible for the time-dependent character of dough viscosity and seems to be controlled by the mechanical energy absorbed. Nevertheless, the two steady-state viscosities follow the same shear-thinning flow curve, fitted by a Cross equation with an exponent close to 1; the Newtonian plateau is approached at very low shear rate values. Viscosity data obtained on different doughs yield a unique flow master curve in reduced coordinates. Shear-induced structural changes cause also the linear viscoelastic plateau modulus of dough to decrease; this progressive weakening of the network structure is irreversible and seems governed by the accumulated strain. These characteristics of dough rheology are discussed with reference to the behaviour of concentrated suspensions.  相似文献   

16.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

17.
A technique for development of potato flour was standardized. Five products viz. cake, biscuit, weaning food, panjiri and ladoo were prepared incorporating potato flour, defatted soy flour and corn flour. Baking and roasting were the major processing techniques employed for the development of these products. Protein, ash and fat contents of potato flour were almost similar to those of raw potatoes. Significant differences in protein, ash and fat contents of all the products were observed. Protein and starch digestibility of potato flour was significantly higher than that of raw potatoes. Protein digestibility increased by 12 to 17 percent on baking or roasting of products. Processed products had significantly higher starch digestibility and mineral availability compared to raw products. Thus, it can be concluded that roasting and baking are effective means of improving starch and protein digestibility and mineral availability of products.  相似文献   

18.
Batters, from three wheat cultivars, were mixed up to their maximal consistency (tpeak) at different mixing speeds (N) and flour/water ratios [Auger, F., Morel, M.H., Lefebvre, J., Dewilde, M., Redl, A., 2008. A parametric and microstructural study of the formation of gluten network in mixed flour–water batter. Journal of Cereal Science 48, 349–358]. Gluten and starch were extracted from those batters using a process which included two successive steps: dilution and sieving. In order to reveal the specific influence of the mixing step, a standardized gentle washing and sieving procedure was selected. Mixing the batters at tpeak guaranteed a high and stable gluten protein recovery (ca. 82%) irrespective of mixing conditions. SE-HPLC analysis of protein, from flours and batters sampled at tpeak, demonstrated that mixing led to the almost total breakdown of the unextractable glutenin polymers (ca. 80%), whereas their re-assembly occurred during gluten extraction. The extent of glutenin re-assembly in gluten was influenced by the batter mixing history and was mainly related to the number of mixing rotations (N.tpeak). Gluten protein contents were also found related to N.tpeak. We proposed that the leaching of starch from the batter during gluten extraction was controlled by the elasticity of the protein network, i.e. the gluten content in unextractable glutenin. An innovating scheme relating the glutenin re-assembly capacity to the irreversible thiol protein oxidation is proposed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号