首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clemastine is an H1 antagonist used in certain allergic disorders in humans and tentatively also in horses, although the pharmacology of the drug in this species has not yet been investigated. In the present study we determined basic pharmacokinetic parameters and compared the effect of the drug measured as inhibition of histamine-induced cutaneous wheal formation in six horses. The most prominent feature of drug disposition after intravenous dose of 50 microg/kg bw was a very rapid initial decline in plasma concentration, followed by a terminal phase with a half-life of 5.4 h. The volume of distribution was large, Vss = 3.8 L/kg, and the total body clearance 0.79 L/h kg. Notably, oral bioavailability was only 3.4%. There was a strong relationship between plasma concentrations and effect. The effect maximum (measured as reduction in histamine-induced cutaneous wheal formation) was 65% (compared with controls where saline was injected) and the effect duration after i.v. dose was approximately 5 h. The effect after oral dose of 200 microg/kg was minor. The results indicate that clemastine is not appropriate for oral administration to horses because of low bioavailability. When using repeated i.v. administration, the drug has to be administered at least three to four times daily to maintain therapeutic plasma concentrations because of the short half-life. However, if sufficient plasma concentrations are maintained the drug is efficacious in reducing histamine-induced wheal formations.  相似文献   

2.
Pharmacokinetic parameters of hydroxyzine and its active metabolite cetirizine were determined after oral and intravenous administration of 2 mg kg(-1) of hydroxyzine to six healthy dogs. Plasma drug levels were determined with high-pressure liquid chromatography. Pharmacodynamic studies evaluated the suppressive effect on histamine and anticanine IgE-mediated cutaneous wheal formation. Pharmacokinetic and pharmacodynamic correlations were determined with computer modelling. The mean systemic availability of oral hydroxyzine was 72%. Hydroxyzine was rapidly converted to cetirizine regardless of the route of administration. The mean area-under-the-curve was eight and ten times higher for cetirizine than hydroxyzine after intravenous and oral dosing, respectively. After oral administration of hydroxyzine, the mean peak concentration of cetirizine was approximately 2.2 microg mL(-1) and that of hydroxyzine 0.16 microg mL(-1). The terminal half-life for cetirizine varied between 10 and 11 h after intravenous and oral administration of hydroxyzine. A sigmoidal relationship was fit to the data comparing cetirizine plasma concentration to wheal suppression. Maximum inhibition (82% and 69% for histamine and anticanine IgE-mediated skin reactions, respectively) was observed during the first 8 h, which correlated with a plasma concentration of cetirizine greater than 1.5 microg mL(-1). Pharmacological modelling suggested that increasing either hydroxyzine dosages or frequencies of administration would not result in histamine inhibition superior to that obtained with twice daily hydroxyzine at 2 mg kg(-1). In conclusion, there was rapid conversion of hydroxyzine to cetirizine. The reduction of wheal formation appeared almost entirely due to cetirizine. Pharmacodynamic modelling predicted that maximal antihistamine effect would occur with twice daily oral administration of hydroxyzine at 2 mg kg(-1).  相似文献   

3.
The pharmacokinetics of the histamine H(1)-antagonist cetirizine and its effect on histamine-induced cutaneous wheal formation were studied in six healthy horses following repeated oral administration. After three consecutive administrations of cetirizine (0.2 mg/kg body weight, bw) every 12h, the trough plasma concentration of cetirizine was 16+/-4 ng/mL (mean+/-SD) and the wheal formation was inhibited by 45+/-23%. After four additional administrations of cetirizine (0.4 mg/kg bw) every 12 h, the trough plasma concentration was 48+/-15 ng/mL and the wheal formation was inhibited by 68+/-11%. The terminal half-life was about 5.8 h. A pharmacokinetic/pharmacodynamic link model showed that the maximal inhibition of wheal formation was about 95% and the EC(50) about 18 ng/mL. It is concluded that cetirizine in doses of 0.2-0.4 mg/kg bw administered at 12 h intervals exhibits favourable pharmacokinetic and pharmacodynamic properties without causing visible side effects, and the drug may therefore be a useful antihistamine in equine medicine.  相似文献   

4.
OBJECTIVE: To investigate the effects of oral administration of activated charcoal (AC) and urine alkalinization via oral administration of sodium bicarbonate on the pharmacokinetics of orally administered carprofen in dogs. ANIMALS: 6 neutered male Beagles. PROCEDURES: Each dog underwent 3 experiments (6-week interval between experiments). The dogs received a single dose of carprofen (16 mg/kg) orally at the beginning of each experiment; after 30 minutes, sodium bicarbonate (40 mg/kg, PO), AC solution (2.5 g/kg, PO), or no other treatments were administered. Plasma concentrations of unchanged carprofen were determined via high-performance liquid chromatography at intervals until 48 hours after carprofen administration. Data were analyzed by use of a Student paired t test or Wilcoxon matched-pairs rank test. RESULTS: Compared with the control treatment, administration of AC decreased plasma carprofen concentrations (mean +/- SD maximum concentration was 85.9 +/- 11.9 mg/L and 58.1 +/- 17.6 mg/L, and area under the time-concentration curve was 960 +/- 233 mg/L x h and 373 +/- 133 mg/L x h after control and AC treatment, respectively). The elimination half-life remained constant. Administration of sodium bicarbonate had no effect on plasma drug concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: After oral administration of carprofen in dogs, administration of AC effectively decreased maximum plasma carprofen concentration, compared with the control treatment, probably by decreasing carprofen absorption. Results suggest that AC can be used to reduce systemic carprofen absorption in dogs receiving an overdose of carprofen. Oral administration of 1 dose of sodium bicarbonate had no apparent impact on carprofen kinetics in dogs.  相似文献   

5.
The pharmacokinetics and the effects on inhibition of histamine-induced cutaneous wheal formation of the histamine H1-antagonist fexofenadine were studied in horse. The effect of ivermectin pretreatment on the pharmacokinetics of fexofenadine was also examined. After intravenous infusion of fexofenadine at 0.7 mg/kg bw the mean terminal half-life was 2.4 h (range: 2.0-2.7 h), the apparent volume of distribution 0.8 L/kg (0.5-0.9 L/kg), and the total body clearance 0.8 L/h/kg (0.6-1.2 L/h/kg). After oral administration of fexofenadine at 10 mg/kg bw bioavailability was 2.6% (1.9-2.9%). Ivermectin pretreatment (0.2 mg/kg, p.o.) 12 h before oral fexofenadine decreased the bioavailability to 1.5% (1.4-2.1%). In addition, the area under the plasma concentration-time curve decreased 27%. Ivermectin did not affect the pharmacokinetics of i.v. administered fexofenadine. Ivermectin may influence fexofenadine absorption by interfering in intestinal efflux and influx pumps, such as P-glycoprotein and the organic anion transport polypeptide family. Oral and i.v. fexofenadine significantly decreased histamine-induced wheal formation, with a maximal duration of 6 h. A pharmacokinetic/pharmacodynamic link model indicated that fexofenadine in horse has antihistaminic effects at low plasma concentrations (EC50 = 16 ng/mL). However, oral treatments of horses with fexofenadine may not be suitable due to the low bioavailability.  相似文献   

6.
A study on the bioavailability and pharmacokinetics of florfenicol was conducted in six healthy dogs following a single intravenous (i.v.) or oral (p.o.) dose of 20 mg kg(-1) body weight (b.w.). Florfenicol concentrations in serum were determined by a high-performance liquid chromatography/mass spectrometry. Plasma concentration-time data after p.o. or i.v. administration were analyzed by a non-compartmental analysis. Following i.v. injection, the total body clearance was 1.03 (0.49) L kg(-1)h(-1) and the volume of distribution at steady-state was 1.45 (0.82) L kg(-1). Florfenicol was rapidly distributed and eliminated following i.v. injection with 1.11 (0.94)h of the elimination half-life. After oral administration, the calculated mean C(max) values (6.18 microg ml(-1)) were reached at 0.94 h in dogs. The elimination half-life of florfenicol was 1.24 (0.64) h and the absolute bioavailability (F) was achieved 95.43 (11.60)% after oral administration of florfenicol. Florfenicol amine, the major metabolite of florfenicol, was detected in all dogs after i.v. and p.o. administrations.  相似文献   

7.
The pharmacokinetics of selamectin were evaluated in cats and dogs, following intravenous (0.05, 0.1 and 0.2 mg/kg), topical (24 mg/kg) and oral (24 mg/kg) administration. Following selamectin administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). After intravenous administration of selamectin to cats and dogs, the mean maximum plasma concentrations and area under the concentration-time curve (AUC) were linearly related to the dose, and mean systemic clearance (Clb) and steady-state volume of distribution (Vd(ss)) were independent of dose. Plasma concentrations after intravenous administration declined polyexponentially in cats and biphasically in dogs, with mean terminal phase half-lives (t(1/2)) of approximately 69 h in cats and 14 h in dogs. In cats, overall Clb was 0.470 +/- 0.039 mL/min/kg (+/-SD) and overall Vd(ss) was 2.19 +/- 0.05 L/kg, compared with values of 1.18 +/- 0.31 mL/min/kg and 1.24 +/- 0.26 L/kg, respectively, in dogs. After topical administration, the mean C(max) in cats was 5513 +/- 2173 ng/mL reached at a time (T(max)) of 15 +/- 12 h postadministration; in dogs, C(max) was 86.5 +/- 34.0 ng/mL at T(max) of 72 +/- 48 h. Bioavailability was 74% in cats and 4.4% in dogs. Following oral administration to cats, mean C(max) was 11,929 +/- 5922 ng/mL at T(max) of 7 +/- 6 h and bioavailability was 109%. In dogs, mean C(max) was 7630 +/- 3140 ng/mL at T(max) of 8 +/- 5 h and bioavailability was 62%. There were no selamectin-related adverse effects and no sex differences in pharmacokinetic parameters. Linearity was established in cats and dogs for plasma concentrations up to 874 and 636 ng/mL, respectively. Pharmacokinetic evaluations for selamectin following intravenous administration indicated a slower elimination from the central compartment in cats than in dogs. This was reflected in slower clearance and longer t(1/2) in cats, probably as a result of species-related differences in metabolism and excretion. Inter-species differences in pharmacokinetic profiles were also observed following topical administration where differences in transdermal flux rates may have contributed to the overall differences in systemic bioavailability.  相似文献   

8.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The pharmacokinetics of ibafloxacin, a new veterinary fluoroquinolone antimicrobial agent, was studied following intravenous (i.v.) and oral administration to healthy dogs. The mean absolute bioavailability of ibafloxacin after oral doses of 7.5, 15 and 30 mg/kg ranged from 69 to 81%, indicating that ibafloxacin was well absorbed by dogs. Ibafloxacin was also absorbed rapidly [time of maximum concentration (t(max)) 1.5 h], reaching a mean maximum concentration (C(max)) of 6 microg/mL at 15 mg/kg, well distributed in the body [large volume of distribution at steady state (V(ss)) and V(area) of 1.1 L/kg and 4 L/kg, respectively], and exhibited an elimination half-life of 5.2 h and a low total body clearance (8.7 mL/min/kg). Both C(max) and area under the concentration-time curve (AUC) showed dose proportionality over the dose range tested (7.5-30 mg/kg). The pharmacokinetics of ibafloxacin was similar following single and repeated dosage regimens, implying no significant accumulation in plasma. Food promoted the absorption of ibafloxacin by increasing C(max) and AUC, but did not change t(max). High amounts of the metabolites, mainly 8-hydroxy- and, 7-hydroxy-ibafloxacin were excreted in urine and faeces, either unchanged or as glucuronide conjugates. Following oral administration of 15 mg ibafloxacin/kg, the total recovery of ibafloxacin, its metabolites and conjugates in urine and faeces was 61.9-99.9% of the dose within 48 h.  相似文献   

10.
The gastroduodenal mucosa of 30 healthy dogs was examined by endoscope after 7 days of oral non-steroidal anti-inflammatory drug administration. The dogs were divided into five groups. One group received ketoprofen (1 mg/kg every 24 h), one group copper-indomethacin (0.2 mg/kg every 12 h), one group 1 mg of prednisolone and 200 mg of cinchophen (1 tablet per 20 kg every 12 h), one group aspirin (15 mg/kg every 12 h) and one group gelatin (1 capsule every 12 h). Occult blood was not detected in the faeces either prior to or after non-steroidal anti-inflammatory drug administration. Packed cell volume, total plasma protein and buccal mucosal bleeding times did not significantly change after non-steroidal antiinflammatory drug administration. Gastroduodenal lesions were observed in 22 dogs. There was no significant difference in lesions between the ketoprofen, copper-indomethacin and prednisolone-cinchophen groups, but the gelatin group had significantly (p 相似文献   

11.
Maropitant is the first NK1 receptor antagonist developed to treat and prevent emesis in dogs; it is administered by subcutaneous (s.c.) injection at 1 mg/kg, or orally (p.o.), in tablet form, at either 2 or 8 mg/kg depending on indication. The absolute bioavailability of maropitant was markedly higher (90.7%) following s.c. injection than after oral administration (23.7% at the 2 mg/kg dose and 37.0% at the 8 mg/kg dose). First-pass metabolism contributes to the low bioavailability of maropitant following oral administration. The difference in bioavailability between the two oral doses reflects the nonlinear kinetics characterizing the disposition of maropitant within the 2-8 mg/kg dose range. Systemic clearance of maropitant following intravenous (i.v.) administration was 970, 995 and 533 mL/h.kg at doses of 1, 2 and 8 mg/kg, respectively. Nonproportional kinetics were observed for p.o. administered maropitant at doses ranging from 2 to 16 mg/kg but dose proportionality was demonstrated at higher doses (20-50 mg/kg). Linearity was also demonstrated following s.c. administration at 0.5, 1 and 2 mg/kg. Maximum plasma drug concentration (Cmax) occurred 0.75 h (tmax) after s.c. administration at 1 mg/kg, and at 1.7 and 1.9 h after oral administration of 8 and 2 mg/kg doses, respectively. The apparent terminal half-life of maropitant was 7.75, 4.03 and 5.46 h after dosing at 1 mg/kg (s.c.), 2 mg/kg (p.o.) and 8 mg/kg (p.o.), respectively. Feeding status had no effect on oral bioavailability. Limited accumulation occurred following once-daily administration of maropitant for five consecutive days at 1 mg/kg (s.c.) or 2 mg/kg (p.o.). At the dose of 8 mg/kg (p.o.) once daily for two consecutive days, the mean AUC(0-24h) (second dose) was 218% that of the first dose value. Urinary recovery of maropitant and its main metabolite was minimal (<1%), thus supporting the evidence that maropitant clearance is primarily hepatic.  相似文献   

12.
The pharmacokinetic disposition of 2-mercaptopropionylglycine (2-MPG) given as a single intravenous injection and/or as a single oral dose was studied in 9 normal and 13 cystinuric dogs. After intravenous injection of approximately 10 or 20 mg/kg body weight the pharmacokinetics were best described by a three-exponential function. The first phase involved a distribution process apparently including establishment of drug-plasma protein and drug-tissue binding. The second phase involved rapid renal elimination and 60% of the drug was excreted within 3 h of administration. There was also a slow terminal third phase with a long half-life after both intravenous (t1/2 = 23 h) and oral (t1/2 = 22 h) administration. No dose dependency was observed. A deep pool of reversibly tissue-bound 2-MPG was indicated by a Vss of 3.3 +/- 0.9 l/kg body weight and the long terminal elimination phase. Total clearance was estimated as 4.1 +/- 0.9 ml/min/kg body weight. 2-MPG was eliminated mainly by renal excretion, but there was a difference in recovery of dose between normal and cystinuric dogs. During the first 24 h after intravenous and oral administration, 69% and 54%, respectively, of the drug was recovered in the urine of normal dogs. The corresponding figures in cystinuric dogs were 44% and 29%, respectively. The absolute bioavailability (FAUC) was 88 +/- 20% in normal dogs.  相似文献   

13.
Methadone is an opioid, which has a high oral bioavailability (>70%) and a long elimination half-life (>20 h) in human beings. The purpose of this study was to evaluate the effects of ketoconazole [a CYP3A and p-glycoprotein (p-gp) inhibitor] and omeprazole (an H+,K(+)-ATPase proton-pump inhibitor) on oral methadone bioavailability in dogs. Six healthy dogs were used in a crossover design. Methadone was administered i.v. (1 mg/kg), orally (2 mg/kg), again orally following oral ketoconazole (10 mg/kg q12 h for two doses), and following omeprazole (1 mg/kg p.o. q12 h for five doses). Plasma concentrations of methadone were analyzed by high-pressure liquid chromatography or fluorescence polarization immunoassay. The mean +/- SD for the elimination half-life, volume of distribution, and clearance were 1.75 +/- 0.25 h, 3.46 +/- 1.09 L/kg, and 25.14 +/- 9.79 mL/min.kg, respectively following i.v. administration. Methadone was not detected in any sample following oral administration alone or following oral administration with omeprazole. Following administration with ketoconazole, detectable concentrations of methadone were present in one dog with a 29% bioavailability. MDR-1 genotyping, encoding p-gp, was normal in all dogs. In contrast to its pharmacokinetics humans, methadone has a short elimination half-life, rapid clearance, and low oral bioavailability in dogs and the extent of absorption is not affected by inhibition of CYP3A, p-gp, and gastric acid secretion.  相似文献   

14.
The pharmacokinetic properties and in vitro potency of nimesulide, a nonsteroidal anti-inflammatory drug (NSAID) were investigated in 8 or 10 dogs after intravenous (i.v.), intramuscular (i.m.) and oral (single and multiple dose) administrations at the nominal dose of 5 mg/kg. After i.v. administration, the plasma clearance was 15.3 +/- 4.2 mL/kg/h, the steady-state volume of distribution was low (0.18 +/- 0.011 L/kg) and the elimination half-life was 8.5 +/- 2.1 h. After i.m. administration, the terminal half-life was 14.0 +/- 5.3 h indicating a slow process of absorption with a maximum plasma concentration (6.1 +/- 1.5 microg/mL) at 10.9 +/- 2.1 h postadministration and the systemic bioavailability was 69 +/- 22%. After oral administration in fasted dogs, the maximal plasma concentration (10.1 +/- 2.7 microg/mL) was observed 6.1 +/- 1.6 h after drug administration, the plasma half-life was 6.2 +/- 1.9 h and the mean bioavailability was 47 +/- 12%. After daily oral administrations for 5 days, the average plasma concentration during the fifth dosage interval was 8.1 +/- 2.9 microg/mL and the overall bioavailability was 58 +/- 16%. The mean accumulation ratio was 1.27 +/- 0.4. In vitro nimesulide inhibitory potencies for cyclooxygenase (COX)-1 and COX-2 isoenzymes were determined using a whole blood assay. Canine clotting blood was used to test for inhibition of COX-1 activity and whole blood stimulated by lipopolysaccharide (LPS) was used to test for inhibition of COX-2 activity. The inhibitory concentration (IC50) for inhibition of COX-2 and COX-1 were 1.6 +/- 0.4 microM (0.49 +/- 0.12 microg/mL) and 20.3 +/- 2.8 microM (6.3 +/- 0.86 microg/mL) giving a nimesulide COX-1/COX-2 ratio of 12.99 +/- 3.41. It was concluded that at the currently recommended dosage regimen (5 mg/kg), the plasma concentration totally inhibits COX-2 and partly inhibits COX-1 isoenzyme.  相似文献   

15.
Six dogs were treated with a single intravenous (i.v.) dose (2 mg/kg) of marbofloxacin, followed by single oral (p.o.) doses of marbofloxacin at 1, 2 and 4 mg/kg, according to a three-way crossover design. The same experimental design was used for the subcutaneous (s.c.) route. In addition, a long-term trial involving eight dogs given oral doses of marbofloxacin at 2, 4 and 6 mg/kg/day for thirteen weeks was carried out. Plasma and urine samples were collected during the first two trials, plasma and skin samples were collected after the second of these trials. Plasma, urine and skin concentrations of marbofloxacin were determined by a reverse phase liquid chromatographic method. Mean pharmacokinetic parameters after i.v. administration were the following: t1/2β=12.4h; Cl B= 0.10 L/h.kg; V area= 1.9 L/kg. The oral bioavailability of marbofloxacin was close to 100% for the three doses. At 2 mg/kg, C max of 1.4 μg/mL was reached at t max of 2.5 h. Mean AUC and C max values had a statistically significant linear relationship with the doses administered. About 40% of the administered dose was excreted in urine as unchanged parent drug. After s.c. administration, the calculated parameters were close to those obtained after oral administration, except t max (about 1 h) which was shorter. The mean skin to plasma concentration ratio after the long-term trial was 1.6, suggesting good tissue penetration of marbofloxacin.  相似文献   

16.
The purpose of this study was to determine the pharmacokinetics and tissue fluid distribution of cephalexin in the adult horse following oral and i.v. administration. Cephalexin hydrate (10 mg/kg) was administered to horses i.v. and plasma samples were collected. Following a washout period, cephalexin (30 mg/kg) was administered intragastrically. Plasma, interstitial fluid (ISF) aqueous humor, and urine samples were collected. All samples were analyzed by high-pressure liquid chromatography (HPLC). Following i.v. administration, cephalexin had a plasma half-life (t(1/2)) of 2.02 h and volume of distribution [V(d(ss))] of 0.25 L/kg. Following oral administration, the average maximum plasma concentration (C(max)) was 3.47 mug/mL and an apparent half-life (t(1/2)) of 1.64 h. Bioavailability was approximately 5.0%. The AUC(ISF):AUC(plasma) ratio was 80.55% which corresponded to the percentage protein-unbound drug in the plasma (77.07%). The t(1/2) in the ISF was 2.49 h. Cephalexin was not detected in the aqueous humor. The octanol:water partition coefficient was 0.076 +/- 0.025. Cephalexin was concentrated in the urine with an average concentration of 47.59 microg/mL. No adverse events were noted during this study. This study showed that cephalexin at a dose of 30 mg/kg administered orally at 8 h dosage intervals in horses can produce plasma and interstitial fluid drug concentrations that are in a range recommended to treat susceptible gram-positive bacteria (MIC < or = 0.5 microg/mL). Because of the low oral bioavailability of cephalexin in the horse, the effect of chronic dosing on the normal intestinal bacterial flora requires further investigation.  相似文献   

17.
Tramadol is an analgesic and antitussive agent that is metabolized to O-desmethyltramadol (M1), which is also active. Tramadol and M1 exert their mode of action through complex interactions between opiate, adrenergic, and serotonin receptors. The pharmacokinetics of tramadol and M1 were examined following intravenous and oral tramadol administration to six healthy dogs, as well as intravenous M1 to three healthy dogs. The calculated parameters for half-life, volume of distribution, and total body clearance were 0.80 +/- 0.12 h, 3.79 +/- 0.93 L/kg, and 54.63 +/- 8.19 mL/kg/min following 4.4 mg/kg tramadol HCl administered intravenously. The systemic availability was 65 +/- 38% and half-life 1.71 +/- 0.12 h following tramadol 11 mg/kg p.o. M1 had a half-life of 1.69 +/- 0.45 and 2.18 +/- 0.55 h following intravenous and oral administration of tramadol. Following intravenous M1 administration the half-life, volume of distribution, and clearance of M1 were 0.94 +/- 0.09 h, 2.80 +/- 0.15 L/kg, and 34.93 +/- 5.53 mL/kg/min respectively. Simulated oral dosing regimens at 5 mg/kg every 6 h and 2.5 mg/kg every 4 h predict tramadol and M1 plasma concentrations consistent with analgesia in humans; however, studies are needed to establish the safety and efficacy of these doses.  相似文献   

18.
The pharmacokinetic properties of cefpodoxime, and its prodrug, cefpodoxime proxetil, were evaluated in two separate studies, one following intravenous (i.v.) administration of cefpodoxime sodium and the second after oral (p.o.) administration of cefpodoxime proxetil to healthy dogs. After cefpodoxime administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). A single i.v. administration of cefpodoxime sodium at a dose of 10 mg cefpodoxime/kg body weight resulted in a cefpodoxime average maximum plasma concentration (Cmax) of 91 (+/-17.7) microg/mL, measured at 0.5 h after drug administration, an average half-life (t1/2) of 4.67 (+/-0.680) h, an average AUC(0-infinity) of 454 (+/-83.1) h.microg/mL, an average V(d(ss)) of 151 (+/-27) mL/kg, an average Cl(B) of 22.7 (+/-4.2) mL/h/kg and an average MRT(0-infinity) of 5.97 (+/-0.573) h. When dose normalized to 10 mg cefpodoxime/kg body weight, cefpodoxime proxetil administered orally resulted in Cmax of 17.8 +/- 11.4 microg/mL for the tablet formulation and 20.1 +/- 6.20 microg/mL for the suspension formulation and an average AUC(0-LOQ) of 156 (+/-76.1) h.microg/mL for the tablet formulation and 162 (+/-48.6) h.microg/mL for the suspension formulation. Relative bioavailability of the two oral formulations was 1.04 (suspension compared with tablet), whereas the absolute bioavailability of both oral formulations was estimated to be approximately 35-36% in the cross-study comparison with the i.v. pharmacokinetics. Combined with previous studies, these results suggest that a single daily oral dose of 5-10 mg cefpodoxime/kg body weight as cefpodoxime proxetil maintains plasma concentrations effective for treatment of specified skin infections in dogs.  相似文献   

19.
Acepromazine is extensively used in veterinary practice. In dogs, it is used mainly as a preanaesthetic and sedative agent, without the knowledge of pharmacokinetic data in this species. We studied the disposition both after oral and intravenous administration. It was shown, that the sedative effect after an oral dose of 1.3-1.5 mg/kg lasted for about 4 hours. The elimination was slower after oral administration (half-life 15.9 h) than after i. v. injection (half-life 7.1 h). The bioavailability of the orally administered drug formulation averaged 20%. The calculation of the pharmacokinetic parameters was performed computer-aided, using conventional compartmental analysis and non-compartmental statistical moment analysis and the results were compared.  相似文献   

20.
The pharmacokinetics of cefepime were studied following i.v. and i.m. administration of 20 mg/kg in 10 ewes. Following i.v. administration of a single dose, the plasma concentration-time curves of cefepime were best fitted using a two-compartment open model. The elimination half-life (t(1/2beta)) was 1.76 +/- 0.07 h, volume of distribution at steady-state [V(d(ss))] was 0.32 +/- 0.01 L/kg and total body clearance (Cl(B)) was 2.37 +/- 0.05 mL/min.kg. Following i.m. administration, the drug was rapidly absorbed with an absorption half-life (t(1/2ab)) of 0.49 +/- 0.05 h, maximum plasma concentration (Cmax) of 31.9 +/- 1.5 mug/mL was attained at (tmax) 1.1 +/- 0.2 h and the drug was eliminated with an elimination half-life (t(1/2el)) of 2.06 +/- 0.11 h. The systemic bioavailability (F) after i.m. administration of cefepime was 86.8 +/- 7.5%. The extent of plasma protein binding measured in vitro was 14.8 +/- 0.54%. The drug was detected in urine for 36 h postadministration by both routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号