首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
三种微藻与苯酚的相互作用研究   总被引:1,自引:0,他引:1  
任佳  麻晓霞  马玉龙  马彩虹  张新沙 《安徽农业科学》2012,40(20):10560-10562,10605
[目的]研究小球藻、螺旋藻和斜生栅藻3种微藻与苯酚的相互作用。[方法]以小球藻、螺旋藻和斜生栅藻为藻种,人工模拟配置不同浓度苯酚的废水为受试水样,进行微藻与苯酚的相互作用研究。[结果]苯酚对小球藻的生长具有促进作用,而对螺旋藻和斜生栅藻均有一定的抑制作用,其中螺旋藻表现得更为敏感,当苯酚浓度高于200 mg/L时,螺旋藻死亡;小球藻、斜生栅藻对低浓度苯酚均有一定的去除能力,并随苯酚浓度增加其去除苯酚能力减弱。[结论]利用微藻处理低浓度含酚废水具有一定的应用价值。  相似文献   

2.
为了探讨植物生长调节剂对养殖水体有益藻的调控作用,比较了3种植物生长调节剂赤霉素(GA3)、胺鲜酯(DA-6)和复硝酚钠对2种有益藻蛋白核小球藻(Chlorella pyrenoidsa)和斜生栅藻(Scedesmus obliquus)生长的影响。结果表明,赤霉素、胺鲜酯和复硝酚钠对蛋白核小球藻的最佳作用浓度分别为0.4、0.1和1.0 mg/L。赤霉素和胺鲜酯对斜生栅藻的最佳作用浓度均为0.1 mg/L,复硝酚钠对斜生栅藻生长无明显促进作用。  相似文献   

3.
为了给马铃薯(Solanum tuberosum L.)高产优质栽培技术提供理论依据,在大田试验条件下,设置硝态氮、铵态氮、硝态氮和铵态氮混合3个氮源,0、75、300 kg/hm2 3个硫酸镁施用量,研究不同氮源与镁配合施用对马铃薯产量、品质及养分吸收的影响。结果表明,不同氮源对马铃薯块茎产量没有显著影响,但不同氮源与镁肥配施对马铃薯块茎产量有明显的影响,单施硝态氮与镁肥配合或硝态氮和铵态氮混合与镁肥配合都能提高马铃薯大、中块茎比例。不同氮源与镁配施对马铃薯块茎总淀粉、粗蛋白含量没有显著的影响,全硝态氮或50%硝态氮+50%铵态氮混合与硫酸镁75 kg/hm2配合对马铃薯鲜块茎维生素C含量有明显的影响。不同氮源与镁配施对马铃薯块茎氮、磷、钾和镁养分吸收量有显著的影响。不同氮源对马铃薯块茎氮、磷、钾和镁养分吸收量没有显著影响。除钾吸收量没有受到施镁的影响外,马铃薯块茎中的氮、磷和镁养分吸收量随施镁量增加而相应增加。本研究结果表明,等量硝态氮和铵态氮混合与适量镁肥配合施用可增加马铃薯块茎产量、提高养分吸收、改善品质和提高商品率。  相似文献   

4.
对微藻净化水质进行了初步研究,在模拟废水中分别培养小球藻(Chlorella vulgaris)和栅藻(Desmodesmus),探索了废水成分对两种微藻脱氮除磷的影响。结果表明,微藻净化水质是高效的,只需培养36 h,氨氮的去除率在90%以上,磷去除率在70%以上。废水中的镁源和碳源对两种微藻净化水质有较大的影响,钙、铁、微量元素等成分影响较小。栅藻比小球藻耐受极端环境能力更强,更适合用于富营养化水体的净化。  相似文献   

5.
为了更经济、有效地处理猪场沼液,采用微藻净化沼液的方法,通过一株蛋白核小球藻(Chlorella pyrenoidosa)对10%猪场沼液稀释液为期18 d的净化,全面检测沼液在净化过程中不同时期、不同指标的变化情况。结果表明,蛋白核小球藻可在消毒后的沼液稀释液中存活且具有较好生长状态,OD_(680nm)最高可达1.206、相对生长速率最高可达0.208 0。经过蛋白核小球藻净化后,沼液中总氮、总磷、铵态氮含量去除率分别为61.89%、99.72%、96.79%;硝态氮以及亚硝态氮含量有所上升;COD含量变化曲线呈波动情况。证明了蛋白核小球藻净化猪场沼液的可行性。  相似文献   

6.
通过Smith生态位宽度指数和Pianka生态位重叠指数分析了啮蚀隐藻、新月菱形藻、微绿球藻和蛋白核小球藻在氮、磷比率和硅酸盐含量资源维上的生态位宽度和生态位重叠特征.结果表明,在氮、磷比率资源上各种群生态位宽度的大小依次为微绿球藻>啮蚀隐藻=蛋白核小球藻>新月菱形藻,各微藻在N:P=24时生长最好,但新月菱形藻在高氮、磷比率下具有更好的适应性.在硅酸盐含量资源上各种群生态位宽度大小依次为微绿球藻=蛋白核小球藻>啮蚀隐藻>新月菱形藻,对硅酸盐含量的较理想适宜范围除了微绿球藻在28-59 μmol·L-1外,各微藻均在28~54 μmol·L-1.生态位宽度较小的种与其他种的生态位重叠却大.在氮、磷比率和硅酸盐含量上.蛋白核小球藻分别与微绿球藻和啮蚀隐藻有最大的重叠值.说明蛋白核小球藻在氮、磷比率的需求上和对硅酸盐含量耐受上,分别经受着与微绿球藻和啮蚀隐藻的剧烈竞争.当养殖水体N:P值高时,微藻定向培育应当选择啮蚀隐藻和新月菱形藻组合或者蛋白核小球藻和新月菱形藻组合;当养殖水体N:P值较低时可引入微绿球藻、啮蚀隐藻.在硅酸盐含量资源上,对于新月菱形藻和蛋白核小球藻,硅酸盐含量为28 μmol·L-1或54 μmol·L-1均可,但为了其他微藻的共生长,硅酸盐含量应为28μmol·L-1.  相似文献   

7.
以产油藻类栅藻、小球藻为研究对象,通过贴壁方式考查微藻处理养猪沼液废水的效果。结果表明,栅藻、小球藻均能在沼液中较好生长,其生物产率分别是6.26、6.08 g·m~(-2)·d~(-1),与在正常培养基上(BG11)相当。栅藻、小球藻在沼液中培养,藻细胞油脂积累分别占细胞干重的34.6%和31.4%,与正常培养基相差不大。栅藻、小球藻均能较好净化废水中主要污染指标氨氮(NH_3-N)、总磷(TP)及化学需氧量(COD),栅藻的去除率分别是96.59%、74.52%和72.47%,小球藻去除率分别是94.90%、73.55%和71.40%。本研究将产油微藻培养和养猪沼液废水处理相结合,研究结果可为藻类生物燃料生产及沼液废水资源化利用等提供理论基础。  相似文献   

8.
普通小球藻和雨生血球藻之间的化感效应   总被引:1,自引:0,他引:1  
郑迪  段舜山 《安徽农业科学》2009,37(6):2380-2383
为了探讨经济微藻之间是否存在化感互利效应的问题,进行了普通小球藻和雨生血球藻之间的化感作用效应试验。试验设置了氮、磷营养限制和正常营养2个水平,普通小球藻和雨生血球藻分别作为受体被培养在相对应的供体藻滤液中的处理,测定了藻细胞密度、生物量和叶绿素a含量等指标。结果表明:①普通小球藻滤液对雨生血球藻的生长具有化感促进效应,雨生血球藻滤液对普通小球藻同时存在化感促进或抑制效应。②在正常营养条件下,2种微藻的细胞密度均呈现较明显的互利促进效应,普通小球藻滤液对雨生血球藻细胞密度的增加量为5.5%-15.8%;雨生血球藻滤液对普通小球藻细胞密度的促进量为2.0%-16.8%。③在营养限制条件下,普通小球藻滤液对雨生血球藻具化感促进作用,细胞密度的促进量为2.3%-13.0%;而雨生血球藻滤液对普通小球藻却产生化感抑制效应,细胞密度的抑制率为10.0%-14.1%。  相似文献   

9.
以硝态氮(NO_3~-)为氮源,采取正常供氮(全氮)和缺氮(三分之一正常供氮)处理,以2个基因型油菜品种(6号和27号)作为研究材料,通过测定地上部和地下部的硝态氮和铵态氮含量,研究了不同氮水平下油菜体内硝态氮、铵态氮的分布及转化差异。结果表明:6号铵态氮地上部比地下部低12.7%,硝态氮低44.3%;27号对应的铵态氮地上部比地下部高6.0%,硝态氮低36.2%;总的硝态氮比铵态氮含量高273.6%。不同施氮水平下缺氮处理对应的铵态氮、硝态氮地上部比地下部分别低15.7%和42.1%;全氮处理对应的铵态氮地上部比地下部高9.3%,硝态氮低39.2%。在没有铵态氮作为氮源的前提下,作物本身可以利用吸收到的硝态氮(仅有NO_3~-)在体内转化为铵态氮,在由硝态氮转变为铵态氮的过程中,植株体内可利用的氮素含量决定了硝态氮与铵态氮的分布与含量差异,以及对应的转化量。  相似文献   

10.
从底泥中筛选了一株脱硫弧菌属(Desulfovibrio)硫酸盐还原菌(SRB),选取易分解的普通小球藻、斜生栅藻、羊角月牙藻、螺旋鱼腥藻作为其营养源,以聚乙烯醇和海藻酸钠为主要包埋材料制备固定化SRB微球,并采用正交实验对包埋条件进行优化,然后通过上流式厌氧反应器考察了固定化SRB微球对含铜废水的长期处理效果。结果表明:微藻经过5 d发酵可分解为丙酸、丁酸、戊酸等脂肪酸,其中斜生栅藻由于发酵产物最佳被选为SRB营养源。制备微球最优配比为聚乙烯醇用量2%、海藻酸钠1%、氯化钙6%、二氧化硅1%、菌液50 m L,而且二氧化硅与聚乙烯醇用量对硫酸盐去除率影响最大。上流式厌氧反应器在反应初期对污染物的去除以微球的吸附作用为主,5 d后SRB菌发挥作用,在反应器运行0~36 d期间Cu2+的去除率可达到98%以上,运行45 d基本失效。每克微藻对Cu2+、SO2-4去除能力分别为45.28、182.17 mg·d~(-1)。  相似文献   

11.
马检  樊卫国 《中国农业科学》2016,49(6):1152-1162
【目的】探究硝态氮和铵态氮及其配比条件对枇杷(Eriobotrya japonica Lindl.)实生苗的氮素吸收动力学参数和生长发育的影响,确定枇杷可吸收利用的氮素形态,为枇杷的氮肥管理提供科学依据。【方法】以枇杷实生苗为材料,采用离子耗竭法,测定枇杷实生苗根系对不同硝态氮和铵态氮的吸收动力学参数;以pH为7.35的石灰性黄壤为栽培介质,设置5个不同硝铵比的施氮处理,研究不同硝态氮和铵态氮配比对枇杷实生苗生长及根系形态特征的影响。【结果】在不同的NH4+及NO3-离子浓度及其不同配比的营养液中,枇杷实生苗根系吸收铵态氮、硝态氮及总氮的规律均符合Michaelis-Menten酶动力学方程。无论NH4+和NO3-离子浓度如何变化,枇杷实生苗根系对NH4+吸收的内在潜力及亲和力和其在根中的流速均比NO3-的大。在单纯供给硝态氮的条件下,枇杷对NO3-的吸收并没有得到促进。在供给不同硝铵配比的处理中,随铵态氮比例的增加,枇杷实生苗根系中总氮的最大吸收速率(Imax)和根系中流速(α)明显增大,而米氏常数值(Km)明显减小;随硝态氮比例的增加,根系中总氮的Imax和离子流动速率(α)明显降低,Km值明显增大。增加铵态氮的比例能够促进枇杷实生苗根系对氮素的吸收,而增大硝态氮的比例对枇杷根系吸收氮素营养有不利影响,铵态氮是枇杷优先选择吸收的氮素形态。在土培条件下,施不同配比的硝态氮肥和铵态氮肥,枇杷实生苗的植株高度、基径、干重生物量、根冠比、根系形态指标和总叶面积的差异显著。增大铵态氮的施肥比例能够显著增大植株高度、基径、干重生物量、根冠比、总叶面积,根的总长度、总表面积、总体积、平均直径,总根尖数及根系分形维数。100%的铵态氮处理的上述指标最大,100%的硝态氮处理的上述指标最小。【结论】铵态氮能够明显促进枇杷实生苗的生长发育,增强枇杷实生苗对氮素的吸收利用,而硝态氮则抑制枇杷实生苗的生长。在混合供应铵态氮和硝态氮的条件下,增加铵态氮比例能够促进枇杷实生苗的生长发育。  相似文献   

12.
用实验生态学方法研究了小球藻(Chlorella sp.)、绿色巴夫藻(Pavlova viridis)、小新月菱形藻(Nitzschia closterium f.minutissima)、亚心形扁藻(Platymonas subcordiformis)、微绿球藻(Nannochloropsis oculata)和湛江等鞭金藻(Isochrysis zhanjiangensis)对缢蛏稚贝摄食和生长的影响.结果表明:缢蛏稚贝对6种微藻的清滤率随浓度的增加而增大,当达到一定浓度时清滤率反而下降;在相同浓度下,稚贝对中规格的绿色巴夫藻、小新月菱形藻和湛江等鞭金藻的清滤率显著高于小规格的小球藻、微绿球藻和大规格的亚心形扁藻(P<0.05).不同微藻对缢蛏稚贝的存活率顺序为微绿球藻<小球藻+亚心形扁藻+微绿球藻<小球藻<湛江等鞭金藻<亚心形扁藻<小新月菱形藻<绿色巴夫藻+小新月菱形藻+湛江等边金藻<绿色巴夫藻.初始壳长无显著性差异的稚贝经30 d的生长试验,8个饵料组稚贝的壳长出现明显差异(P<0.05);亚心形扁藻组的日生长率均明显高于其他组(P<0.05),壳长增长率和绿色巴夫藻组无显著性差异(P<0.05).从本试验可知,小球藻、绿色巴夫藻、小新月菱形藻、亚心形扁藻、微绿球藻和湛江等鞭金藻的适宜投喂浓度为30×104、15×104、10×104、6×104、40×104和10×104cell/mL,绿色巴夫藻和亚心形扁藻对缢蛏稚贝的生长效果要好于其他微藻.  相似文献   

13.
为探究适于喜树Camptotheca acuminata生长的最佳氮素水平和氮素形态,采用盆栽法,以2年生喜树实生苗为材料,以分析纯硫酸铵[(NH42SO4]、硝酸钾(KNO3)为氮肥,设置对照(ck)、铵态氮(NH4+-N)[T1(2.5 g·株-1)、T2(5.0 g·株-1)、T3(7.5 g·株-1)、T4(10.0 g·株-1)]和硝态氮(NO3--N)[W1(2.5 g·株-1)、W2(5.0 g·株-1)、W3(7.5 g·株-1),W4(10.0 g·株-1)]处理,研究不同水平铵态氮和硝态氮施肥对喜树生长生理特性、叶绿素荧光参数及光系统Ⅱ核心复合体叶绿体相关基因(psbA,psbB,psbC和RbcL)表达的影响。结果表明:从整个生育期看,与ck相比,合理增施(T1~T3,W1~W3)铵态氮和硝态氮显著促进了喜树的生长发育、叶绿素合成、叶绿素荧光特性及叶绿体相关基因的表达(P < 0.05)。本试验条件下,T3和W3施肥处理效果最佳(P < 0.05),且W3优于T3(P < 0.05),认为喜树属于喜硝植物;高氮T4和W4处理下处理后期(处理60~105 d),喜树叶片受到明显的光抑制(P < 0.05),表明高氮不利于植物光合特性的提高。适当增加铵态氮和硝态氮可以显著促进喜树的生长和光合效率;喜树在7.5 g·株-1的铵态氮和硝态氮施氮量下生长效果最佳。  相似文献   

14.
以分离自海南海域的两株微藻小球藻HNC11(Chlorella sp.HNC11)和双眉藻HNY(Amphora sp. HNY)为材料,研究其对虾池废水中氮和磷的去除效果。结果表明,两株微藻在富氮和富磷的虾池废水中均能正常生长,双眉藻相对生长速率是其在宁波三号培养基条件下的3.73倍;在3 L的玻璃三角瓶中培养4 d后,小球藻和双眉藻对对虾养殖废水活性磷的去除率分别达到95.1%和90.8%,对氨态氮的去除率分别为87.1%和37.4%,两种藻对硝态氮和亚硝态氮的去除效果均不显著。  相似文献   

15.
以南方运动场常用草坪草兰引3号结缕草为材料,用不同形态氮配制的营养液(T1:100%硝态氮、T2:75%硝态氮 25%铵态氮、T3:50%硝态氮 50%铵态氮、T4:25%硝态氮 75%铵态氮、T5:100%铵态氮、T6:100%酰胺态氮)进行砂培试验,通过分析草坪盖度、草坪密度、草丛高度、地上部和地下部生物量及叶片叶绿素含量等指标,研究了不同形态氮对草坪草生长和草坪质量的影响.结果显示:硝态氮、铵态氮和酰胺态氮都能促进兰引3号结缕草的生长;硝态氮、铵态氮以及硝态氮 铵态氮混合处理之间,对草坪草的生长和草坪质量的影响差异不显著;酰胺态氮处理的草坪草,其密度、盖度、草丛高度、草坪草地上部及地下部生物量都明显低于硝态氮、铵态氮和硝态氮 铵态氮混合处理;75%铵态氮 25%硝态氮可以作为兰引3号结缕草氮肥施用的最佳配比.  相似文献   

16.
张超一  樊小林 《中国农业科学》2015,48(14):2777-2784
【目的】探究不同铵硝配比条件下香蕉幼苗对铵态氮、硝态氮两种形态氮素的吸收特性以及两种氮源离子相互作用对香蕉氮素吸收动力学特征的影响,筛选最适于香蕉氮素吸收利用的铵硝配比,为香蕉氮素营养高效吸收提供理论依据。【方法】依据养分吸收动力学原理,利用改进的耗竭法研究不同铵硝配比营养液中巴西品种香蕉(Musa AAA Giant Cavendish cv. Brazil)幼苗对铵态氮、硝态氮以及总氮的吸收动力学特征。设7个处理:100%铵态氮(100%A)、90%铵态氮+10%硝态氮(90%A+10%N)、70%铵态氮+30%硝态氮(70%A+30%N)、50%铵态氮+50%硝态氮(50%A+50%N)、30%铵态氮+70%硝态氮(30%A+70%N)、10%铵态氮+90%硝态氮(10%A+90%N)和100%硝态氮(100%N)。每个处理设9个氮浓度梯度:0、0.1、0.2、0.5、1、1.5、2、3、4 mmol·L-1。【结果】不同铵态氮﹕硝态氮配合条件下,香蕉苗吸收铵态氮、硝态氮及总氮的规律均符合Michaelis-Menten酶动力学方程,其动力学方程达到极显著水平。NH4+-N比例在10%-70%时,随着NO3--N比例的增加,可以增加香蕉幼苗对NH4+-N的吸收速率。在NH4+-N比例为70%时,NH4+-N的最大吸收速率(Vmax)最大,为55.56 μmol·g-1·h-1,NH4+-N比例超过70%会降低香蕉幼苗对NH4+-N的吸收速率。香蕉幼苗对NO3--N的吸收速率呈现随营养液NH4+-N比例的增加而显著降低的规律。NH4+-N比例从10%增大到90%时,NO3--N的Vmax降低了2.62倍,增加NH4+-N的比例明显抑制香蕉幼苗对NO3--N的吸收。铵硝配比对香蕉根系与NH4+-N和NO3--N的亲和力影响无明显规律。在铵硝配比为3﹕7时香蕉总氮Vmax达到83.33 μmol·g-1·h-1,明显高于其他处理,最有利于香蕉吸收利用氮素。【结论】NH4+-N比例低于70%时,增加NO3--N比例可以促进香蕉幼苗对NH4+-N的吸收,NH4+-N比例高于70%时,增加NO3--N比例抑制NH4+-N的吸收。增加NH4+-N的比例明显抑制香蕉幼苗对NO3--N的吸收,铵硝配比为3﹕7最有利于香蕉吸收利用氮素。  相似文献   

17.
以普通小球藻(Chlorella vulgaris)和斜生栅藻(Scenedesmus obliquus)为受试生物,采用批量培养方法研究了13种季铵盐阳离子表面活性剂(QACS,烷基链长度CL=8~18)对两种淡水藻的急性毒性。结果表明,13种QACS对普通小球藻和斜生栅藻的96h-EC50分别在0.108~9.472mg·L-1和0.085~12.188mg·L-1之间;且随着烷基链长度CL的增加,取代基相同的QACS对两种淡水藻的急性毒性逐渐增大。抛物线模型较线性方程能更好地拟合QACS的急性毒性参数lg(1/EC50)与辛醇/水分配系数lgKow以及与烷基链长度CL之间的关系,且对普通小球藻和斜生栅藻的拟合趋势相同,可为预测类似化合物对淡水藻的急性毒性提供参考。  相似文献   

18.
采用正交法建立了由栅藻(Scencdesmus obliquus)、小球藻(Chlorella vulgans)、亚硝化细菌(Nitritebacteria)、硝化细菌(Nitrate bacteria)组成的复合藻-菌净化系统去除氨态氮和亚硝酸态氮的最优化模型,确定了单胞藻与细菌的最优化数量配比关系,即栅藻∶小球藻∶亚硝酸化细菌∶硝化细菌=2.13∶1∶2.38∶3.73。利用该系统模型与单藻、单菌去除池塘老化水体中的氨态氮、亚硝酸态氮显示:去除氨态氮和亚硝酸态氮的效率远远高于单藻、单菌,其去除率分别为97.3%和68.8%。同时该系统模型还具有增加养殖水体溶解氧的作用,可使水体中的溶解氧在试验设定的参数中短时间达到9.7 mg.L-1,并可为水产动物提供1.6×106CFU.mL-1的天然藻类饵料。  相似文献   

19.
为探究黄土丘陵区不同种植年限沙棘人工林对土壤可溶性氮组分积累的季节和坡位动态变化的影响,以志丹县金丁镇不同时间种植沙棘人工林(20年生、15年生、5年生)为研究对象,以荒草地为对照,采集0~20 cm土壤样品,分析土壤可溶性氮组分含量和比例的季节和坡位动态变化。结果表明,沙棘人工林可显著增加土壤硝态氮、铵态氮和可溶性有机氮(soluble organic nitrogen,SON)含量,沙棘人工林种植年限越长,土壤可溶性氮养分增加越明显。沙棘人工林土壤硝态氮、铵态氮和SON分别比荒草地增加109.72%、112.27%和19.62%。土壤可溶性氮组分存在显著的季节性动态变化,土壤SON春冬季(84.46 mg·kg-1)较高,夏秋季(37.89 mg·kg-1)较低,硝态氮春夏季(7.37 mg·kg-1)较高,冬季(6.75 mg·kg-1)较低,铵态氮秋季(6.58 mg·kg-1)较高,其他季节变化不明显。土壤SON季节变化规律与硝态氮变化规律相反。土壤可溶性氮组分在坡位间的变化规律为坡下最高,坡上较低,坡下的硝态氮、铵态氮和SON分别比坡上高28.7%、3.89%和20.3%。土壤可溶性氮组分以土壤SON为主,占土壤TSN平均为81.1%,其次是土壤硝态氮,平均为10.0%,土壤铵态氮所占比例最低,平均为8.9%。在陕北黄土丘陵区,营造沙棘林能有效提高土壤氮素,并且林龄越长,土壤可溶性氮素提升越明显。  相似文献   

20.
樊卫国  葛会敏 《中国农业科学》2015,48(13):2666-2675
【目的】石灰性黄壤是中国西南喀斯特地区的主要土壤种类,这一地区柑橘分布广泛。研究石灰性黄壤上柑橘对不同形态氮肥的选择吸收与利用特性,旨在为中国西南喀斯特地区柑橘园施肥提供合理的氮肥选择依据。【方法】以枳砧纽荷尔脐橙嫁接苗为材料,以pH 8.1的石灰性黄壤为栽培介质,采用土培方法,测定单施硝态氮、铵态氮、尿素及混施不同比例硝态氮和铵态氮后枳砧纽荷尔脐橙幼树的总叶面积、高度、基径、鲜重及干重生物量、根冠比值、氮的吸收量和氮的利用效率;采用常规耗竭法,在春季和夏季测定枳砧纽荷尔脐橙幼树根系对NO3-和NH4+吸收的动力学参数。【结果】在石灰性黄壤上,单施硝态氮、铵态氮、尿素的枳砧纽荷尔脐橙幼树生长发育和氮的吸收利用受到明显抑制,植株的总叶面积、高度、基径、鲜重及干重生物量、根冠比值、氮的吸收量和氮的利用效率均变小,其中以单施尿素的为最小。混施硝态氮和铵态氮对枳砧纽荷尔脐橙幼树的生长发育和氮的吸收利用有明显的促进作用。其中硝态氮和铵态氮的比例为75﹕25的施氮处理,植株生长发育最好,氮的吸收量和利用效率最大,植株总叶面积为0.44 m2,高度为73.95 cm,基径为1.36 cm,鲜重及干重生物量分别为232.95 g/株和130.27 g/株,鲜重及干重根冠比值分别为1.02和1.06,整株氮的吸收量和利用效率分别达到3.80 g/株和0.0292 g·mg-1。混施硝态氮和铵态氮时,随铵态氮的比例增大,植株的生物量及氮的吸收量和利用效率随之下降。单施铵态氮或尿素,根系会产生NH3中毒现象。无论春季或夏季,单施硝态氮和混施不同比例的硝态氮和铵态氮的枳砧纽荷尔脐橙幼树根系对NO3-的最大吸收速率(Imax)均无显著差异,根系对NO3-的吸收较为稳定。春季根系对NO3-Km值都明显比夏季的小,根系与NO3-的亲和力强于夏季,夏季根系对NO3-Km值差异不显著。混施硝态氮和铵态氮时,将硝态氮的比例提高至50%-75%时能够增强春季枳砧纽荷尔脐橙幼树根系对NO3-的亲和力,增加春季和夏季根系中NO3-的流动速率(α)。在春季,随氮肥中铵态氮比例的增大,根系对NH4+的最大吸收速率和NH4+在根系中的流动速率随之增大,而根系对NH4+的亲和力随之降低。在夏季,随氮肥中铵态氮比例的增大,根系对NH4+的最大吸收速率、亲和力和NH4+在根系中的流动速率随之减小,单施铵态氮的根系与NH4+的亲和力最小,对NH4+的最大吸收速率最低,NH4+在根系中的流动速率最慢。混施硝态氮和铵态氮后,在春季和夏季枳砧脐橙幼树的根系与NO3-的亲和力都比NH4+的强,NO3-在根系中的流动速率远大于NH4+的。【结论】在石灰性黄壤上,枳砧脐橙幼树的根系对NO3-的吸收表现出较明显的偏好,混施75﹕25的硝态氮和铵态氮能够促进脐橙的生长发育和提高氮的吸收及利用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号