首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the nitrogen (N) in agricultural soils is organically bound, while the N uptake by plants and also the N losses from the soil-plant system into the environment are as inorganic N. The electro-ultrafiltration (EUF) method and the extraction by a CaCl2 solution extract an organic N fraction (Norg) that is thought to provide information about the amount of rapidly mineralizable N in soils. This paper aims to illustrate various aspects regarding the biological meaning of the Norgfractions extracted by these two extraction methods and also the opportunities and limitations for predicting the mineralizable N based on an Norg analysis. From an evaluation of numerous data on EUF and CaCl2 extract-able Norg fractions we concluded that these methods extract N compounds which can be used as indices for easily mineralizable soil N. However, both methods extract only some of the rapidly mineralizable N in soils, and some of the Norg ecxtracted appears to be from the more recalcitrant soil organic N. This was particularly true for the EUF-method. It may therefore be desirable to improve both the extractability and the selectivity of the extraction methods. This may be achieved by measuring extractable amino-N compounds instead of the total extractable Norg. Evaluating the numerous field experiments done during the last decade shows that the calibration factors obtained for extractable Norg were not the same for different growing seasons, geographical regions and management practices. Theoretically, for each combination of these factors separate calibrations would be necessary. It is this inflexibility which appears to be the most serious drawback for the use of extractable Norg fractions in practice. A possible solution may be to combine the flexibility of a simulation model with additional information obtained by the analysis of extract-able soil organic N. Further work in this direction may be desirable.  相似文献   

2.
The objective of the investigation was to identify the most important organic N-containing fractions extracted from soils by electroultrafiltration (EUF) or a CaCl2 solution, respectively, and their importance for nitrogen mineralization. The investigation comprised 19 agricultural and one forest top soil. Net N mineralization was tested in Mitscherlich pot experiments with three treatments: (1) fallow soil without N fertilizer, (2) soil cultivated with rye grass without N fertilizer, (3) soil cultivated with rye grass with N fertilizer. The highest proportion of N in the extracts was the amino N fraction (amino acids + peptides) amounting to approximately 60% of the total N extracted by CaCl2 and to about 40% of the total N extracted by EUF. The proportion of amino sugars from total N extracted was in average 10% for the CaCl2 and 5.2% for the EUF extracts. The proportion of heterocyclic N bases derived from nucleic acids amounted in average to 4.8% and 3.6% for the CaCl2 and EUF extract, respectively. Amino N (amino acids + peptides) were correlated best with net N mineralization (EUF, r = 0.81***, CaCl2, r = 0.86***). The correlation between amino sugars and net N mineralization was r = 0.55* for the EUF extract and r = 0.49* for the CaCl2 extract. The heterocyclic N bases did not correlate with net N mineralization. Correlations between Norg extracted by CaCl2 versus net N mineralization were higher than those obtained by the EUF extract. Net N mineralization was about four times higher in the fallow soils than in the treatment with grass and no N fertilizer. In the treatment with grass + N fertilizer on average no net N mineralization occurred, moreover there was a tendency of N immobilization. It is assumend that in the treatments with grass cultivation, organic C released by roots stimulated the assimilation of mineral N and amino acids by soil microorganisms resulting in a low net N mineralization. Net N mineralization led to a highly significant depletion in the Norg pools and particularly in the amino N and amino sugar pools in the treatment with grass and without N fertilizer. This depletion was particularly evident in the CaCl2 extracts. The results justify the conclusion that the Norg obtained with both extraction methods originates from a dynamic N pool into which N flows in and out. The amino N extractable with EUF or CaCl2 is a reliable indicator for the net N mineralization potential of soils.  相似文献   

3.
Abstract

Comparison of methods is necessary to develop a quick and reliable test that can be used to determine soil‐available nitrogen (N) in an attempt to increase the efficiency of N fertilizers and reduce losses. The objectives of this research were to compare the fractions extracted by the calcium chloride (CaCl2) and the electro‐ultrafiltration (EUF) methods and to correlate them to the mineralization rate (k) obtained from a 112‐d incubation of 61 soil samples. Thirty‐five soil samples were collected from cornfields and 26 from winter cereal fields. Subsamples were either aerobically incubated to calculate k or extracted by the EUF and CaCl2 methods to identify three fractions: nitrate (NO3 ?)‐N, ammonium (NH4 +)‐N, and Norg‐N. The Norg‐N extracted by both methods was larger in soils from cornfields than in soils from winter cereal fields. In samples from cornfields, the Norg‐N fraction obtained by the EUF method was correlated to the Norg‐N measured by the CaCl2 method (r=0.46). Soil N content was related to k in samples from cornfields (r=0.40) but not in samples from winter cereal fields. Also, k was correlated to inorganic N content extracted by both chemical methods. The CaCl2 method was a reliable alternative for laboratories to determine soil‐available N for corn but not for winter cereal.  相似文献   

4.
研究结果表明,有机、无机肥施用后,土壤微生物量C、N、P开始增加很快,随着时间的推移,土壤微生物量C又有所降低,但生物量N和P则基本保持稳定。硫铵施入土壤后,微生物对肥料15N的生物固持10天后达到最高峰,以后被固持在体内的15N有一部分被逐渐释放出来,但一个月后仍有17%左右的15N被固持在微生物体内。硫铵与有机肥配合施用时,微生物对硫铵15N固持比例有所增加。有机肥中的15N被微生物固持的比例也较大,在肥料施入20天左右达到最大值,一个月后仍有19-25%存在于微生物体内。硫铵施用一个月后15N损失高达18%,有机肥中的N也有少量被损失。  相似文献   

5.
The turnover of native and applied C and N in undisturbed soil samples of different texture but similar mineralogical composition, origin and cropping history was evaluated at −10 kPa water potential. Cores of structurally intact soil with 108, 224 and 337 g clay kg−1 were horizontially sliced and 15N-labelled sheep faeces was placed between the two halves of the intact core. The cores together with unamended treatments were incubated in the dark at 20 °C and the evolution of CO2-C determined continuously for 177 d. Inorganic and microbial biomass N and 15N were determined periodically. Net nitrification was less in soil amended with faeces compared with unamended soil. When adjusted for the NO3-N present in soil before faeces was applied, net nitrification became negative indicating that NO3-N had been immobilized or denitrified. The soil most rich in clay nitrified least N and 15N. The amounts of N retained in the microbial biomass in unamended soils increased with clay content. A maximum of 13% of the faeces 15N was recovered in the microbial biomass in the amended soils. CO2-C evolution increased with clay content in amended and unamended soils. CO2-C evolution from the most sandy soil was reduced due to a low content of potentially mineralizable native soil C whereas the rate constant of C mineralization rate peaked in this soil. When the pool of potentially mineralizable native soil C was assumed proportional to volumetric water content, the three soils contained similar proportions of potentially mineralizable native soil C but the rate constant of C mineralization remained highest in the soil with least clay. Thus although a similar availability of water in the three soils was ensured by their identical matric potential, the actual volume of water seemed to determine the proportion of total C that was potentially mineralizable. The proportion of mineralizable C in the faeces was similar in the three soils (70% of total C), again with a higher rate constant of C mineralization in the soil with least clay. It is hypothesized that the pool of potentially mineralizable C and C rate constants fluctuate with the soil water content.  相似文献   

6.
Summary Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was accounted for as (NH4 ++NO3 )-N in Drummer, Hafizabad, and Khurrarianwala soils, respectively. Potentially mineralizable N (determined by anaerobic incubation) varied between 1.5% and 10% of the applied 15N in the three soils at different stages of incubation; somewhat higher percentages were mineralizable in the Pakistani soils than in the Drummer soil. From 3.7% to 9% of the applied 15N was accounted for in the microbial biomass. From 10% to 32% of the applied N was recovered in the humic acid and fulvic acid fractions of the organic matter by sequential extraction with Na4P2O7 and NaOH; from 12% to 49% was recovered in the humin fraction. Of the three soils, Drummer soil contained more 15N as humic and fulvic acids. In all cases, the 15N was approximately equally distributed between the humic and fulvic acid fractions. A significant percentage of the humin 15N (52%–78%, equivalent to 8%–34% of the applied 15N) occurred in non-hydrolyzable (6 N HCl) forms. Of the hydrolyzable 15N, 42%–51% was accounted for as amino acid-N followed in order by NH3 (17%–30%), hydrolyzable unknown forms (20%–22%), and amino sugars (6%–2%). The recovery of applied 15N for the different incubation stages was 87±22%. Recovery was lowest with the Khurrarianwala soil, presumably because of NH3 volatilization losses caused by the high pH of this soil.  相似文献   

7.
The extraction of soils by the electro-ultrafiltration (EUF) method yields organic N which has been used as an index for mineralisable N in soils. This EUF extractable organic fraction contains a mixture of various N compounds not yet completely identified. It has been proposed that the amino N compounds are more indicative for the potentially mineralisable N in soils than the total organic N extracted (Mengel et al., 1999). An amendment of soils with easily mineralisable organic matter may, therefore, alter the amino N concentrations of the organic N extracted. Our determination of the amino N compounds aimed to prove this hypothesis. The principle of our experiment was to mix soil with green manure, bacterial biomass and cellulose, respectively, and to incubate the treated soil aerobically for 80 days at 20°C in the laboratory. Control treatments without organic amendment were also incubated. Soil samples were taken several times during the incubation period and analysed for the inorganic N (NO3-N and NH4+-N) and for the EUF extractable organic N. Amino acids and amino sugars were determined in the hydrolysed EUF extracts. The concentrations of amino acids and amino sugars in the organic N extracted varied with time and differed between the treatments. Glutamic acid has been found to be the most relevant amino acid in the EUF extracts and was particularly indicative for the existence of mineralisable green manure in the soil. Glucosamine was the most relevant amino sugar in the EUF extracts and this amino sugar appears to be indicative for the easily mineralisable relics of microbial cells in the soil.  相似文献   

8.
Summary Considerable effort has been spent in developing chemical indices to predict N mineralization. However, in spite of numerous studies, the relationship between the index value and plant N uptake has not been as apparent as hoped, and therefore, additional work is required to evaluate the ability of promising new indices to predict the extraction of mineralizable N from soil. The objective of the present study was to evaluate the use of phosphate borate and hot KCl to extract immobilized 15N-labeled fertilizer, applied 1 and 2 years previously. Soil samples (0–15 cm) were collected on 12 June 1989 from field soil fertilized in either 1987 or 1988 with 15N-labeled urea. In the laboratory, net N mineralization over 51 days and the amount of N extracted by the phosphate borate and hot KCl methods were determined. In the field, the amount of residual fertilizer and soil plus fixed N in soybeans (Glycine max) at the V5 growth stage were determined on 12 June 1989. The extractability ratio (ER*) and the mineralizable extractability ratio (MER) were higher for mineralizable N and phosphate borate N for fertilizer applied in 1988 than 1987, while ER* and MER values for the hot KCl were similar for both application dates. These results suggest that compositional changes occurred which influenced the extractability and mineralization of residual fertilizer applied 1 and 2 years previously, and that the phosphate borate was able to predict these changes while the hot KCl method was not.  相似文献   

9.
Summary The effect of salts on the balance of fertilizer N applied as 15N-labelled ammonium sulphate and its interaction with native soil N was studied in a pot experiment using rice (Oryza sativa L.) as a test crop. The rice crop used 26%–40% of the applied N, the level of applied N and salts showing no significant bearing on the uptake of fertilizer N. Losses of fertilizer N ranged between 54% and 68% and only 5%–8% of the N was immobilized in soil organic matter. Neither the salts nor the rate of N application had any significant effect on fertilizer N immobilization. The effective use of fertilizer N (fertilizer N in grain/fertilizer N in whole plant) was, however, better in the non-saline soil. The uptake of unlabelled N (N mineralized from soil organic matter and that originating from biological N2 fixation in thes rhizosphere) was inhibited in the presence of the salts. However, in fertilized soil, the uptake of unlabelled N was significantly enhanced, leading to increased A values [(1-% Ndff/% Ndff)x N fertilizer applied, where Ndff is N derived from fertilizer], an index of interaction with the added N. This added N interaction increased with increasing levels of added N. Since the extra unlabelled N taken up by fertilized plants was greater than the fertilizer N immobilized, and the root biomass increased with increasing levels of added N, a greater part of the added N interaction was considered to be real, any contribution by an apparent N interaction (pool substitution or isotopic displacement) to the total calculated N interaction being fairly small. Under saline conditions, for the same level of fertilizer N addition, the added N interaction was lower, and this was attributed to a lower level of microbial activity, including mineralization of native soil N, rootdriven immobilization of applied N, and N2 fixation.  相似文献   

10.
The effects of annual application of rice straw or cow manure compost for 17–20 y on the dynamics of fertilizer N and soil organic N in Gley paddy fields were investigated by using the 15N tracer technique during the rice cropping season. The chloroform fumigation-extraction method was evaluated to determine the properties of soil microbial biomass under submerged field conditions at the tillering stage before mid-summer drainage, with special reference to the fate of applied NH4 +-15N.

The transfer ratios from applied NH4 +-15N to immobilized N in soil and to uptake N by rice during given periods varied with the rice growth stages and were affected by organic matter application. The accumulated amounts of netmineralized soil organic N (net-Mj ), immobilized N (Ij ), and denitrified N (Dj ) during the cropping season were estimated to be 14.0–22.5, 6.3–11.2, and 3.4–5.3 g N m-2, respectively. Values of net-Mj and Ij were larger in the following order: cow manure compost plot > rice straw plot > plot without organic matter application, and their larger increase by the application of cow manure compost contributed to a decrease of the Dj values, as compared with rice straw application.

Values of E N extra extractable soil total N after fumigation, increased following organic matter application, ranging from 2.1 to 5.4 g N m-2. Small residual ratios of applied 15N in the fraction E N at the end of the given period indicated that re-mineralization of newly-assimilated 15N through the easily decomposable fraction of microbial biomass had almost ended. Thus, the applicability to paddy field soils of the chloroform fumigation-extraction method was confirmed.  相似文献   

11.
N dynamics in soil where wheat straw was incorporated were investigated by a soil incubation experiment using 15N-labelled nitrate or 15N-labelled wheat straw. The incubated soils were sampled after 7, 28, 54 days from the incorporation of wheat straw, respectively, and gross rates of N transformations including N remineralization and temporal changes in the amount of microbial biomass were determined.Following the addition of wheat straw into soils, rapid decrease of nitrate content in soil and increase of microbial biomass C and N occurred within the first week from onset of the experiment. Both the gross rates of mineralization and immobilization determined by 15N-ammonium isotope dilution technique were remarkably enhanced by the addition of wheat straw, and gradually decreased with time. Remineralization rate of N derived from 15N-labelled nitrate, and mineralization rate of N derived from 15N-labelled wheat straw was estimated by 15N isotope dilution technique using non-labelled ammonium. Remineralization rates of N derived from 15N-labelled nitrate were calculated to be 0.71 mg N kg−1 d−1 after 7 days, 0.55 mg N kg−1 d−1 after 28 days, and 0.29 mg N kg−1 d−1 after 54 days.Nearly 10% of the 15N-labelled N originally contained in the wheat straw was held in the microbial biomass irrespective of the sampling time. The amount of inorganic N in soil which was derived from 15N-labelled wheat straw ranged between 1.93 and 2.37 mg N kg−1.Rates of N transformations in soil with 15N-labelled wheat straw were obtained by assuming that the k value was equal to the 15N abundance of biomass N, and the obtained values were considered to be valid.  相似文献   

12.
A greenhouse rhizobox experiment was carried out to quantify the incorporation of 13C- and 15N-labelled rhizodeposits into different soil pools, especially into the rhizosphere microbial biomass, with increasing distances to the root surface of Lolium perenne. Five layers were analysed over 0-4.2 mm distance to an artificial root surface. C and N derived from rhizodeposition were 4.2% of total C and 2.8% of total N in soil at 0-1.0 mm distance and decreased rapidly with increasing distance. Microbial biomass C and N increased significantly towards the roots. At 0-1.0 mm distance microbial biomass C and N accounted for 66% and 29% of C and N derived from rhizodeposition, respectively. These percentages declined with increasing distance to the roots, but were still traceable up to 4.2 mm distance. Only small amounts of root released C and N were found in the 0.05 M K2SO4-extractable fraction. Extractable C and N derived from rhizodeposition varied around means of 4% of total C and N derived from rhizodeposition and increased only marginally with increasing distance to the roots. C derived from rhizodeposition in the non-extractable soil organic matter increased from 65 to 89% of total C derived from rhizodeposition at 0-3.4 mm distance. Conversely, microbial biomass C derived from rhizodeposition decreased from 33 to 4%. N derived from rhizodeposition in the non-extractable soil organic matter increased from 61 to 79% of total N derived from rhizodeposition at 0-2.6 mm distance, followed by a decline to roughly 55% in the two outer layers. Microbial biomass N decreased from 37 to 16% at 0-2.6 mm distance, followed by an increase to roughly 41% in the two outer layers. The C/N ratio of total C and N derived from rhizodeposition as well as that of extractable C and N derived from rhizodeposition increased with increasing distance to the roots to values above 30. In contrast, the C/N ratio of incorporated rhizodeposition C and N into the microbial biomass decreased to values less than 5 at 2.6-4.2 mm distance. The data indicate differential microbial response to C and N derived from rhizodeposition at a high spatial resolution from the root surface. The turnover of C and N derived from rhizodeposition in the rhizosphere as a function of the distance to the root surface is discussed.  相似文献   

13.
Management of N fertilization depends not only on the mineral N measured at the beginning of the growing season but also on the status of the low-molecular-weight organic-N fraction. Our study was conducted to analyze how much of the 15N applied in labeled cornshoot tissue would be recovered in 0.01 M CaCl2-extractable 15N fractions and wheter a decrease in the CaCl2-extractable 15N fraction quantitatively followed the trend in net mineralization of the 15N applied in corn-shoot tissue during an incubation period. The effects of adding 15N-labeled young corn-shoot tissue to a sandy soil and a clay soil were investigated for 46 days in an aerobic incubation experiment at 25°C. The application of 80 mg N kg-1 soil in the form of labeled corn-shoot tissue (24.62 mg 15N kg-1 soil) resulted in a significant initial increase, followed by a decrease the labeled organic-N fraction in comparison with the untreated soils during the incubation. The labeled organic-N fraction was significantly higher in the sandy soil than in the clay soil until the 4th day of incubation. The decrease in labeled organic N in the sandy soil resulted in a subsequent increase in 15NO inf3 sup- during the incubation. Ammonification of applied plant N resulted in a significant increase in the 1 M HCl-extractable non-exchangeable 15NH inf4 sup+ fraction in the clay soik, owing to the vermiculite content. The 15N recovery was analyzed by the 0.01 M CaCl2 extraction method; at the beginning of the incubation experiment, recovery was 37.0% in the sandy soil and 36.7% in the clay soil. After 46 days of incubation, recovery increased to 47.2 and 43.8% in the sandy and clay soils, respectively. Net mineralization of the 15N applied in corn-shoot tissue determined after the 46-day incubation was 6.60 mg 15N kg-1 soil (=34.9% of the applied organic 15N) and 4.37 mg 15N kg-1 soil (=23.1% of the applied organic 15N) in the sandy and the clay soils, respectively. The decrease in the labeled organic-N fraction extracted by 0.01 M CaCl2 over the whole incubation period was 3.14 and 2.33 mg 15N kg-1 soil in the sandy and clay soil, respectively. These results indicate that net mineralization of 15N was not consistent with the decrease in the labeled organic-N fraction. This may have been due to the inability of 0.01 M CaCl2 to extract or desorb all of the applied organic 15N that was mineralized during the incubation period.  相似文献   

14.
土壤微生物对施入肥料氮的固持及其动态研究   总被引:34,自引:0,他引:34  
采集长期定位试验(14年)土壤(棕壤)进行盆栽试验,并应用同位素^15N示踪技术研究了土壤中微生物对肥料氮的固持及其动态,结果表明,施肥后5天土壤微生物对施入人肥氮的固持达达到最高,除单施氮肥处理的固持量占施入人肥氮量的5.4%外,其余各处理均天13.3%-15.4%间,施肥后土壤微生物量氮的增加主要来自化肥氮,后者占微生物体总氮量的64.1%-87.3%,在作物生长期间微生物固持的化肥氮逐渐释入  相似文献   

15.
EUF extractable nitrogen and its relation to nitrogen uptake and yield of wheat The investigations were focussed on the question whether nitrogen extracted from soils by EUF may reflect nitrogen availability for cereals. Soil samples were taken from the upper soil layer of farmers' fields differing in soil type and texture. Samples still taken in the autumn after the harvest of sugar beets as well as samples taken under cereals in January had relatively high contents of EUF extractable organic N and low contents of NO3. Decrease in EUF extractable N during spring (March until end of May) under winter wheat was significantly correlated with the N uptake of the wheat and with grain yield. In the plots not treated with fertilizer N the organic N of the EUF-extracts was as a mineralizable N source more important for crop nutrition than the EUF extractable NO3. The correlation between the EUF extractable N in spring and the grain yield of wheat was highly significant (r = 0.79***). In this correlation 20 different locations were implicated. Similar good correlations were found between the EUF extractable N and the N uptake of wheat.  相似文献   

16.
Summary A pot experiment in the greenhouse was conducted to compare the contribution of N derived from the atmosphere or from biological N2 fixation by Sesbania rostrata inoculated with Azorhizobium caulinodans, applied either to roots or to roots and stems (single or multiple stem inoculation). Two subsequent crops were grown for 50 days under flooded conditions. N derived from air was estimated by 15N dilution using 15N enrichment of soil NH inf4 sup+ -N and of Echinochloa crusgalli as the non-N2-fixing reference datum and compared with estimates obtained by the N-difference method. The first crop was grown to stabilize the 15N into the soil organic N fraction. The 15N enrichment of soil NH inf4 sup+ -N in the second crop declined slowly. The extractability ratio (15N enrichment of extractable soil N to 15N enrichment of total soil N) decreased from 4.8 to 4.1 50 days after planting. The enrichment of soil NH inf4 sup+ -N was comparable to that of E. crus-galli, resulting in similar estimates of N derived from air when either soil NH inf4 sup+ -N or enrichment of E. crus-galli was used as a non-fixing reference. The N-difference method did not always provide reliable estimates of N derived from air; percentages ranged from 75 to more than 80 by 50 days after planting in both crops and did not differ among treatments. The study demonstrates the potential of using 15N enrichment of soil NH inf4 sup+ -N as a non-N2-fixing reference for reliable BNF estimates of crops in lowland puddled soil.  相似文献   

17.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   

18.
Abstract

In order to evaluate the influence of extraction procedure on extractable nitrogen (N) fractions, fresh as well as dried soil samples were extracted with CaCl2 at various temperatures (20,40,60, 80°C) for 30–120 minutes. Data obtained were compared with those from the electro‐ultra‐filtration (EUF) method. Increasing the drying temperature as well as the extraction temperature led to an increase in Norg content. The EUF and CaCl2‐method produced comparable results for all N‐fractions (NO3 , NH4 +, Norg) when an extraction temperature of 80°C was applied for two hours. Data presented suggested that the Norg fraction represented mainly the microbial biomass and may thus be considered as being easily available to plants.  相似文献   

19.
Incubation and pot experiments were conducted to investigate the impact of commercially distributed biofertilizers (effective microorganisms [EM], BIOSTIMULATOR, BACTOFIL‐A, and BACTOFIL‐B) on soil microbial‐biomass content and activity, net N mineralization in soil, and growth of Lolium perenne. According to the manufacturers, the products tested are based on microbial inoculants or organic growth stimulants, and are supposed to influence soil microbial properties and improve soil conditions, organic‐matter decomposition, and plant growth. In the incubation experiment (40 d, 20.6°C, 50% maximum water‐holding capacity), EM was repeatedly applied to soil together with different organic amendments (nonamended, chopped straw, and lupine seed meal). Under the experimental conditions of this study, no or only marginal effects of EM on organic C, total N, and mineral N in soil could be observed. In soil treatments without any organic amendment, EM suspension slightly enhanced microbial activity measured as soil CO2 evolution. In soil with easily degradable plant residues (lupine seed meal), EM suspension had a suppressive effect on microbial biomass. However, comparisons with sterilized EM and molasses as the main additive in EM suspension showed that any effect of EM could be explained as a pure substrate effect without the influence of added living organisms. In the pot experiment with Lolium perenne (air‐conditioned greenhouse cabin, 87 d, 16.8°C, 130 klxh d–1 light quantity), the products EM, BIOSTIMULATOR, BACTOFIL‐A, and BACTOFIL‐B were tested in soil with growing plants. The products were repeatedly applied for a period of 42 d. Within this study, no effects of the different biofertilizers on mineral N in soil were detectable. There were clear suppressive effects of all tested biofertilizers on microbial‐biomass content and activity. Comparisons with sterilized suspensions showed that the effects were not due to living microorganisms in the suspensions, but could be traced back to substrate‐induced processes.  相似文献   

20.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号