首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
安徽省农田生态系统氨排放研究   总被引:1,自引:0,他引:1  
农田生态系统氨排放分人为源和自然源2种,以农田生态系统为研究对象,以氮肥施用、土壤本底、固氮植物和秸秆堆肥为统计单元,利用排放系数模型算了安徽省农田生态系统氨排放现状。2014年全省农田生态系统氨排放量为50974.0 t,其中,氮肥施用氨排放量最大,占总排放量的80.4%。在此基础上提出大气氨污染防治措施,旨在减少农田生态系统大气氨排放,提高空气质量,为科学施肥、合理综合利用秸秆等提供依据。  相似文献   

2.
南京市2013年人为源大气氨排放清单及特征   总被引:4,自引:0,他引:4  
根据搜集的南京市各类人为源氨排放的活动水平数据,采用排放因子法,建立了南京市2013年人为源大气氨排放清单.结果表明,①2013年南京市人为源大气氨排放量约为25.79 kt,排放强度为3.91 t/(km2·a);②农业源是南京市人为源氨的主要排放贡献源,占总排放量的75.65%;③畜禽养殖是南京市人为源氨排放的最大贡献源,占总排放量的42.96%,肉鸡是南京市畜禽养殖氨排放最大的贡献源,占畜禽养殖排放总量的35.90%,其次是肉猪,占21.77%;④氮肥施用是南京市人为源氨排放的第二大排放源,占总排放量的25.98%,其中,水稻的氮肥施用贡献了66.84%;⑤废物处理是南京市人为源氨排放的第三大贡献源,占总排放量的15.74%,烟气脱硝占废物处理源的70.68%.除了畜禽养殖和氮肥施用两大排放源,烟气脱硝过程中的氨排放需要引起足够重视.  相似文献   

3.
山东省农业源氨排放清单研究   总被引:2,自引:0,他引:2  
为建立山东省农业源氨排放清单,根据《山东统计年鉴2016》数据,采用排放因子法估算了山东省2015年农业源氨排放清单。结果表明,山东省2015年农业源氨排放量为105.831万t,排放强度为6.71 t·km-2。畜禽养殖是最大的排放源,排放量为68.673万t,占总排放量的64.89%,猪和家禽是畜禽养殖排放量的最大贡献源,两者占畜禽养殖排放量的72.88%;其次是氮肥施用,排放量为30.835万t,占总排放量的29.14%;生物质燃烧、人体排放、土壤本底的氨排放量分别为2.173、2.117、1.943万t,分别占总排放量的2.05%、2.00%、1.84%;固氮植物的氨排放量最小,仅为0.09万t,不足总排放量的1%。菏泽、德州、潍坊、临沂、济宁、聊城是山东省农业源氨排放大市,氨排放量为7.910~13.662万t。研究表明,应从规范畜禽养殖规模和合理施肥两方面着手,精准施策,以减少山东省农业源氨排放量。  相似文献   

4.
江苏省农业源氨排放分布特征   总被引:8,自引:0,他引:8  
[目的]研究江苏省氨排放分布特征。[方法]根据江苏省农业源活动水平数据,采用排放因子法,建立了2014年江苏省农业源大气氨排放清单,利用GIS软件分析了江苏省农业源氨排放的分布特征。[结果]2014年江苏省农业源氨排放总量为679.23 kt,排放强度为6.61 t/km2;畜禽养殖是江苏省农业源氨排放的最大贡献源,占总排放量的67.80%,氮肥施用是第二大贡献源,占29.29%;鸡是江苏省畜禽养殖氨排放最大的贡献源,其次是猪,分别贡献了41.15%和30.17%。[结论]江苏省农业源氨排放无论是排放量还是排放强度都呈现出由南向北递增的空间分布特征,苏北地区是江苏省最需要控制的农业源氨排放贡献区。  相似文献   

5.
上海市农业源氨排放清单及分布特征   总被引:1,自引:0,他引:1  
通过收集上海市农业源氨排放活动水平数据,分析筛选文献报道和模型计算的排放因子,建立了2011年上海市农业源氨排放清单。结果表明:2011年上海市农业源氨排放总量为54.53×10~3t,畜禽养殖和氮肥施用是上海市最主要的农业氨排放来源,分别占总排放量的61.2%和34.3%。其中,肉猪和家禽是畜禽养殖业最主要的氨排放来源,分别占畜禽养殖业氨排放总量的56.9%和34.2%。浦东新区、金山区、奉贤区和崇明县是上海市农业源氨排放量最大的4个区县,其排放分担率之和占排放总量的66.2%。奉贤区的奉新镇是畜禽养殖氨排放量最大的镇,而青浦区的练塘镇则是氮肥施用氨排放贡献最大的镇。研究发现,浦东新区、金山区、奉贤区和崇明县是上海市需要重点控制农业源氨排放的4个区县,而肉猪、家禽养殖和氮肥施用为3个主要控制源。  相似文献   

6.
京津冀地区不合理的肥料和粪便管理造成了大量的氨排放,促进了该地区PM2.5的上升。本研究基于排放因子法和高分辨率活动数据建立了京津冀地区2015—2019年的氨排放清单,阐明了该地区农业源氨排放的总量和来源、时间变化、空间格局以及减排潜力。结果表明:2015—2019年京津冀地区年均农业源氨排放量为429.1 Gg·a~(-1),玉米种植、尿素施用和室内圈舍是氨排放的主要来源;农业源氨排放量逐年下降,其中种植业贡献了75%的减少量。京津冀地区农业源氨排放呈现"南高北低"的格局,50%的县(区、市)贡献了80%以上的排放。提高作物氮利用率可以大幅降低种植业的氨排放(57.5%),采用酸性碳酸钙替代饲料中的碳酸钙则可以有效降低畜禽养殖业的氨排放(26%~53%)。  相似文献   

7.
为探讨花生壳生物炭用于农田土壤改良的效果,采用盆栽试验,结合静态箱-气相色谱法研究了施用不同剂量(0、0.5%、1%、2%、4%)花生壳生物炭对红壤和潮土的理化性质及温室气体排放变化特征的影响。结果表明,施用生物炭对潮土温室气体排放的影响较大,且两种土壤表现出不同的排放特征。总体上,潮土N_2O累积排放量显著高于红壤,与单施氮肥处理相比,随生物炭添加量的增加,潮土N_2O累积排放量显著降低,降幅达6.5%~26.6%;红壤N_2O累积排放量则随生物炭添加量的增加呈上升趋势,与单施氮肥处理相比,红壤N_2O累积排放量增幅为14.7%~54.3%。与对照相比,施用生物炭显著增加潮土CO_2排放,其累积排放量增幅最大为25.9%;而对红壤CO_2累积排放量则没有显著影响。此外,在施用不同剂量生物炭处理下,两种土壤CH_4排放无规律性变化,CH_4排放累积量总体在0左右。与空白对照和单施氮肥处理相比,随生物炭添加量的增加,两种土壤的固碳量显著增加,潮土增加了57.1%~78.7%,红壤增加了11.2%~59.9%;同时随生物炭的施用,潮土温室气体排放强度显著提高68.0%~76.8%,而生物炭添加量对红壤的温室气体排放强度无显著影响。分析认为,对潮土施用生物炭通过改变土壤容重、有机碳、无机氮等养分含量,显著提高温室气体排放强度,抑制供试作物生长,增强其净综合温室效应;而对红壤添加生物炭则可促进作物生长,其温室气体排放强度无显著增加,提升土壤固碳量,具有较好的生态效应。  相似文献   

8.
根据各类氨排放源活动水平数据,采用排放因子法,估算了天津市氨排放清单,结合中尺度气象模式WRF和排放清单处理模式SMOKE,在分析天津市人为源氨排放的时空分布特征的基础上建立了2017年天津市高时空分辨率氨排放清单。结果表明,2017年天津市氨排放量为57.45 kt,畜禽养殖和氮肥施用是排放贡献最大的排放源,分别占排放总量的49.3%和33.6%;在畜禽养殖源氨排放中,奶牛、蛋鸡的排放量最大,占畜禽养殖排放总量的46.9%,其次是生猪和肉牛,分别占14.3%和13.8%;武清区、宝坻区、蓟州区等天津市西部及北部区域是氨排放主要贡献区域,占天津市氨排放总量的65.5%,且该区域的氨排放具有显著的时间变化特征,表现为12:00、18:00左右是排放量较高时间段。  相似文献   

9.
太原市NH_3排放量估算及地域分布特征分析   总被引:1,自引:0,他引:1  
NH3在大气细颗粒物(PM2.5)和灰霾形成过程中扮演着重要角色。为了解太原市NH3来源及排放情况,利用排放因子法,根据2013年该市各类氨排放源的活动水平数据,对NH3年排放量进行了估算,并分析其地域分布特征。结果表明,太原市NH3排放总量约为11 445 t,其中99.3%来自于人为源排放,0.7%来自自然源排放;在人为NH3排放源中,农业源是太原市的主要排放贡献源,其中畜禽养殖排放量最大,占34.2%;其次为氮肥施用,占18.9%;畜禽源中,鸡是NH3排放最大贡献源,占畜禽源NH3排放总量的31.0%,其次是猪,其贡献率为28.5%;在太原市下辖的六区三县一市中,畜禽NH3排放量约3 904 t,依贡献值从大到小排序为:清徐县小店区阳曲县古交市晋源区尖草坪区娄烦县杏花岭区万柏林区迎泽区。说明在人为氨源排放过程中,畜禽养殖的贡献很大,且主要分布在郊区县市中,建议加强对畜禽养殖业的管理,采取有效措施,严格控制氨气排放。  相似文献   

10.
安徽省氨排放量估算   总被引:1,自引:0,他引:1  
[目的]估算安徽省氨排放量,为氨排放控制方案的制订提供决策依据。[方法]采用排放系数模型,对安徽省不同排放源的氨排放量进行估算。[结果]2014年安徽省氨的排放总量为528 046.80 t,其中,农田生态系统和畜禽养殖业为主要氨排放源,分别为50 860.98和357 812.01 t,占总量的9.63%和67.76%;其他行业中,废物处理为主要氨排放源,为119 373.81 t,占总量的22.61%。[结论]安徽省的氨排放强度超过我国多数省份或地区,这可能与安徽省主要氨排放来源于动物有关。  相似文献   

11.
Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission thatwas measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g/day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the ricegrowing season. These magnitudes of loss of N appear to be most important for environmental point of view.  相似文献   

12.
河北省猪粪尿氮产生量及氨挥发量的研究   总被引:1,自引:0,他引:1  
根据统计资料和文献数据,在确定不同养殖方式的(农户散养、集约化养殖)各猪种(育肥猪、母猪、幼猪)氮排泄量和NH3排放因子参数基础上,对2004年河北省农户散养和集约化养殖下各猪种粪尿N产生量及NH3挥发量进行了估算分析。结果表明:(1)2004年河北省猪粪尿N产生量约为81.6×104t,空间变异性较大,主要集中在石家庄、唐山、保定等地区;农户散养下猪粪尿N产生总量约为集约化养殖下总量的2倍;(2)2004年河北省猪粪尿NH3挥发量约为28.5×104t,石家庄、保定、唐山等地区挥发量最大;农户散养下猪粪尿NH3挥发量约为集约化养殖下总量的3倍多;(3)农户散养、集约化养殖下猪粪尿NH3-N损失率分别为34%、19%,集约化养殖要比农户散养更有利于N素保持与利用,有利于减少NH3挥发所带来的环境污染。  相似文献   

13.
刘鹏  吴文  郑志侠  潘成荣 《安徽农业科学》2013,(25):10472-10476
以2010年为基准年,利用排放因子法对安徽省挥发性有机物(VOCs)的年排放量进行了测算,初步建立了安徽省VOCs的排放清单.结果表明,2010年安徽省VOCs的排放总量约为562.79 kt,其中流动源排放277.65 kt、溶剂使用排放135.98 kt、工艺过程源排放105.33 kt、油品储运排放27.63 kt、固定燃烧源排放16.20 kt.缺乏当地排放因子和良好的活动水平数据是该测算工作的主要不确定性来源.  相似文献   

14.
为了解、监测和评价广西淡水池塘养殖过程中主要污染物产生、排放及其对环境的影响,于2007年10月~2008年7月,选择位于南宁市兴宁区三塘镇留肖村2户养殖户的各1口池塘,在1年的养殖周期内,于秋、冬、春、夏季节,分别采集池塘内、出水口、池塘水源水样,监测池塘养殖斑点叉尾鮰主要污染物[化学耗氧量(COD)、氨氮、总氮、总磷]的排放情况,并通过计算其排污系数K值,测算广西淡水池塘养殖年污染物排放情况并评价其对水域环境的影响。结果表明,在1个养殖周期内,COD、氨氮、总氮、总磷的平均K值分别为182.62、2.32、7.68和0.55kg/t;据此测算在1年的养殖周期内,广西淡水池塘养殖排放的污染物数量分别为COD140263.2t、氨氮1764.0t、总氮5997.6t、总磷425.6t。  相似文献   

15.
施氮量及氮素形态对桑叶中1-脱氧野尻霉素含量的影响   总被引:2,自引:0,他引:2  
[目的]探讨施氮量及氮素形态对桑叶中1-脱氧脱尻霉素含量的影响,以期为提高桑叶中DNJ含量及其药用价值提供参考。[方法]通过改变水培溶液中施氮量(NO3--N和NH4+-N)及氮素形态(NH4+/NO3-),研究其对桑叶主要药用成分1-脱氧野尻霉素(1-deoxynoji-mycin,DNJ)含量的影响。[结果]随着2种氮素含量的增加,桑叶中DNJ均呈现出先升高后降低的趋势,且NO3--N比NH4+-N更利于DNJ的积累;随着NH4+/NO3-比的降低,桑叶中DNJ含量呈现出明显的先上升后下降的趋势,其中当比值为25/75时,含量达到最高。[结论]适当的施氮量及NO--N/NH+-N比能有效提高桑叶中的DNJ含量。  相似文献   

16.
以等量氮、磷、钾肥料为前提条件,辅以不同的脲酶/硝化抑制剂,研究土壤中尿素氮的转化及对有效态氮释放速率的影响。试验结果表明:各抑制剂均能有效地降低NH4^+-N的转化速率,使NH4^+-N最大积累量延后14d左右,并且延缓了NO3^--N的释放高峰达60d以上。其作用效果顺序为:NBPT+DCD〉NBPT〉乙酰甲胺磷〉甲胺。  相似文献   

17.
A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800 mg L-1) on N2O emission from the fluvo-aquic soil subjected to a freezing-thawing cycling. N2O emission sharply decreased at the start of soil freezing, and then showed a smooth line with soil freezing. In subject to soil thawing, N2O emission increased and reached a peak at the initial thawing stage. The average N2O emissions with addition of NH4+-N, NO3 -N and NH2-N are 119.01, 611.61 and 148. 22 ug m-2 h-1, respectively, at the concentration of 40 mg L-1; 205.28, 1 084.40 and 106.13 ug m2 h-1 at the concentration of 200 mg L-1; and 693.95, 1 820.02 and 49.74 ug m-2 h4 at the concentration of 800 mg L-1. The control is only 100.35 ug m-2 h-1. N2O emissions with addition of NH4+-N and NO3--N increased with increasing concentration, by ranging from 17.49 to 425.67% for NH4+-N, and from 563.38 to 1458.6% for NO3--N compared with control. There was a timelag for N2O emission to reach a steady state with an increase of concentration. In contrast, by adding NH2-N to soil, N2O emission decreased with increasing concentration. In sum, NH4+-N or NO3--N fertilizer incorporated in soil enhanced the cumulative N2O emission from the fluvo-aquic soil relative to amide-N. This study suggested that ammonium and nitrate concentration in overwintering water should be less than 200 and 40 mg L-1 in order to reduce N2O emissions from soil, regardless of amide-N.  相似文献   

18.
环保投资对工业废水污染控制的影响研究   总被引:1,自引:0,他引:1  
根据10年来污染治理投资的相关数据,研究了工业废水污染与水污染治理投资之间的关系。结果表明,工业废水排放强度和排放量均与单位GDP水污染治理投资比重呈负相关;工业废水污染未得到有效控制的原因为:环保投资总量不足、单位GDP水污染治理投资比例不稳定、投资结构不合理、投资效率低、环保投融资渠道单一等。  相似文献   

19.
不同施肥管理方式下潮褐土区夏玉米N2O排放量研究   总被引:1,自引:0,他引:1  
在田间试验条件下,分析了不同施肥管理方式对潮褐土区夏玉米农田N2O排放量的影响。试验结果表明,随施氮量增加,N2O排放量呈递增趋势,二者呈显著正相关;DMPP的施用对减少N2O排放较其它处理有明显效果。实验同时证明田间土壤湿度和温度变化对N2O的排放影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号