首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional Mediterranean rainfed cereal/fallow systems are being replaced by cereal monoculture due to land-use pressure. Food or forage legumes in rotation with cereals are an alternative sustainable cropping system. Complex cropping systems can only be assessed by long-term trials. This 11-year rainfed barley-based rotation trial in northern Syria assessed rotation effects on yields of barley and legumes, with particular emphasis on the management of vetch. The mean order of barley grain yields from the rotations was: vetch for hay, vetch for grazing > fallow = medic = vetch for seed > lentil, and continuous barley. Straw yields followed a similar pattern. Nitrogen (60 kg ha?1) increased grain (39%) and straw (65%) yields. The N fertilization of barley had no carryover effect on the alternative legume crops. Although there were no significant differences in seed or straw yield between lentil and vetch, seasonal rainfall influenced overall yields. Total biomass yields were in the order of vetch, medic and lentil. There is a compelling case for annual vetch paired with barley in rotations for the Mediterranean region. Thus, barley/vetch rotations can potentially enhance barley yields and improve soil quality, and provide valuable fodder for small ruminants as well in the region's agricultural systems.  相似文献   

2.
Leguminous pre-crops are an important source of green manure in organic crop rotations for improving soil fertility and achieving high yields of cereals. We aimed to study the potential of various leguminous species, other than the traditionally cultivated red clover (Trifolium pratense L.), as green manure pre-crops for subsequent cereals. The use of different legume species enables to exploit advantages of specific legumes in organic cereal production. In order to test the legumes as pre-crops for cereals, we carried out trials located in the temperate climate zone of northeast Europe (58°44′59.41″ N, 26°24′54.02″ E). We sowed the following perennial legumes as pre-crops: red clover, alsike clover (Trifolium hybridum L.) and Washington lupine (Lupinus polyphyllus Lindl.), biennial white sweet clover (Melilotus albus Medik.) and annual Alexandria clover (Trifolium alexandrinum L.), and crimson clover (Trifolium incarnatum L.). Timothy (Phleum pratense L.) was used as a control. The leguminous pre-crops were followed by three spring cereals (barley, oat and spring wheat) and two winter cereals (rye and winter wheat). We tested the first-year after-effect (all cereals) and second-year after-effect (only barley and oat) of pre-crops on the grain yield of cereals. Perennial and biennial legume species produced the highest dry matter yield and contained the highest amount of nutrients, especially nitrogen, compared to annual species. All subsequent cereals produced significant extra yields after each leguminous pre-crop in the following two years, although the effect was smaller in the second year. The most suitable pre-crops for spring cereals were red and alsike clover followed by lupine, whereas the best pre-crops for winter cereals were sweet clover and annual clovers. Our results show the potential of various leguminous pre-crop species as valuable sources of green manure in organic crop rotation.  相似文献   

3.
Legume–cereal intercropping is increasingly being appreciated in dryland areas, where severe climatic conditions and intensive agricultural practices, generally dominated by continuous cereal cultivation, determine depletion of soil nutrient resources and decline of soil fertility. This research aimed to assess whether and to what extent a newly introduced legume-based intercropping system is able to ameliorate the biological fertility status of an arable soil in a way that is still noticeable during the succeeding durum wheat cropping season in terms of changes in bacterial community structure, soil C and N pools, and crop yield. A field experiment was carried out under rainfed conditions in Southern Italy on a sandy clay loam soil cultivated with durum wheat following in the rotation a recently established grain legume (pea, faba bean)–barley intercropping. Soil chemical, biochemical and eco-physiological variables together with compositional shifts in the bacterial community structure by LH-PCR fingerprinting were determined at four sampling times during the durum wheat cropping season. Soil fertility was estimated by using a revised version of the biological fertility index. Results showed that even though the microbial biomass was significantly altered, the preceding legume intercrops stimulated C-related functional variables thus leading to an increased release of mineral N, which was larger in crop treatments succeeding pea-based than faba bean-based intercropping. The increased N made available in soil enabled the succeeding durum wheat to achieve an adequate grain yield with a reduced N-fertilizer use. Soil type and environmental conditions rather than crop treatments were major determinants of bacterial community structure. The biological fertility status was not varied, suggesting that in intensively managed rainfed areas long-term crop rotations with intercropped legumes are needed to consistently ameliorate it.  相似文献   

4.
The objective of this work was to provide evidence on the effects of faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) on the dynamics of soil N availability and yield parameters of wheat (Triticum turgidum L. var. durum) in a legume–wheat rotation in comparison with the effects of the more extensively studied common vetch (Vicia sativa L.). Soil samples were taken from field plots just before wheat sowing and incubated in the laboratory to assess N mineralization potential, soil respiration and N immobilization after incorporation of legume residues. Soil after vetch cultivation showed the highest residual N and mineralization potential (120 mg N kg?1 soil), the greatest CO2 release and the smallest N immobilization. Smaller mineral N release (80 mg N kg?1 soil) was shown by soil after faba bean cultivation, which, however, would be capable to support an average wheat production without fertilization. Soil after chickpea and wheat cultivation manifested no differences in residual N and mineralization or immobilization potential. Laboratory results were well correlated with grain yield and N uptake during the second season of rotation in the field. All legumes resulted in significant yield surpluses and provided N credit to the following unfertilized wheat.  相似文献   

5.
Introducing autumn-sown legumes into Central European farming systems could be beneficial for addressing two challenges for European agriculture, i.e., the substantial deficit of protein sources for livestock and expected changes in agroclimatic conditions. Therefore, a two-year field experiment was conucted under Pannonian climate conditions in eastern Austria to assess nitrogen (N) yield and N fixation of several winter faba bean varieties from different European countries as compared to a spring faba bean. Winter wheat was used as a reference crop for estimating atmospheric N fixation. Winter faba beans were susceptible to frost damage especially in the harder of the two winters. Winter faba bean varieties could not achieve a higher grain yield and a higher grain N yield than the spring faba bean but had a higher grain N concentration (except for one variety). Grain yield and grain N yield of faba beans were severely impaired by drought in one year (with a mean of varieties of 8.3 g N m?2, winter wheat: 6.4 g N m?2); in the other year, grain N yield of faba beans considerably surpassed that of winter wheat (with a mean of varieties of 21.5 g N m?2, winter wheat: 8.8 g N m?2). After harvest, faba beans left higher nitrate residues in the soil, especially in the subsoil, and higher amounts of N in above-ground residues compared to winter wheat. Faba beans showed high N fixation under optimum conditions (with a mean of varieties of 21.9 g N m?2) whereas drought considerably impaired N fixation (with a mean of varieties of 6.3 g N m?2; with no differences between autumn- and spring-sown faba beans). In conclusion, growing winter faba bean varieties in eastern Austria did not result in higher grain yield, grain N yield, and N fixation compared to growing a spring faba bean.  相似文献   

6.
Legumes have been shown to increase P uptake of the following cereal, but the underlying mechanisms are unclear. The aim of this study was to compare the effect of legume pre-crops and their residues on the growth, P uptake and size of soil P pools in the rhizosphere of the following wheat. Three grain legumes (faba bean, chickpea and white lupin) were grown until maturity in loamy sand soil with low P availability to which 80?mg P kg?1 was supplied. This pre-crop soil was then amended with legume residues or left un-amended and planted with wheat. The growth, P uptake and concentrations of P pools in the rhizosphere of the following wheat were measured 6?weeks after sowing. In a separate experiment, residue decomposition was measured over 42?days by determining soil CO2 release as well as available N and P. Decomposition rates were highest for chickpea residues and lowest for wheat residues. P release was greatest from white lupin residues and N release was greatest from faba bean residues, while wheat residues resulted in net N and P immobilisation. The growth of the following wheat was greater in legume pre-crop soil without residue than in soils with residue addition, while the reverse was true for plant P concentration. Among the legumes, faba bean had the strongest effect on growth, P uptake and concentrations of the rhizosphere P pools of the following wheat. Regardless of the pre-crop and residue treatment, wheat depleted the less labile pools residual P as well as NaOH-Pi and Po, with a stronger depletion of the organic pool. We conclude that although P in the added residues may become available during decomposition, the presence of the residues in the soil had a negative effect on the growth of the following wheat. Further, pre-crops or their residues had little effect on the size of P pools in the rhizosphere of wheat.  相似文献   

7.
This paper presents the results of irrigated rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residues retention, fertilizer N and legumes in crop rotation on yield of maize (Zea mays L.) and soil organic fertility. Chickpea (Cicer arietinum L) and wheat (Triticum aestivum L) were grown in the winters and mungbean (Vigna radiata) and maize in the summers. Immediately after grain harvest, above-ground residues of all crops were either completely removed (−residue), or spread across the plots and incorporated by chisel plough by disc harrow and rotavator (+residue). Fertlizer N rates were nil or 120 kg ha−1 for wheat and nil or 160 kg ha−1 for maize. Our results indicated that post-harvest incorporation of crop residues significantly (p < 0.05) increased the grain and stover yields of maize during both 2000 and 2001. On average, grain yield was increased by 23.7% and stover yield by 26.7% due to residue incorporation. Residue retention also enhanced N uptake by 28.3% in grain and 45.1% in stover of maize. The soil N fertility was improved by 29.2% due to residue retention. The maize grain and stover yields also responded significantly to the previous legume (chickpea) compared with the previous cereal (wheat) treatment. The legume treatment boosted grain yield of maize by 112% and stover yield by 133% with 64.4% increase in soil N fertility. Similarly, fertilizer N applied to previous wheat showed considerable carry over effect on grain (8.9%) and stover (40.7%) yields of the following maize. Application of fertilizer N to current maize substantially increased grain yield of maize by 110%, stover yield by 167% and soil N fertility by 9.8% over the nil N fertilizer treatment. We concluded from these experiments that returning of crop residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping systems and enhances crop productivity through additional N and other benefits in low N soils. The farmers who traditionally remove residues for fodder and fuel will require demonstration of the relative benefits of residues return to soil for sustainable crop productivity.  相似文献   

8.
In crop rotation trials, the errors arising over time on the same plot are correlated. Often-used analyses assume zero or constant correlation between the errors while the actual covariance structure for the plot errors might be very different. The objective of this study was to identify the most suitable covariance structure and incorporate the error structure in assessment of the crop rotations in terms of yield productivity and yield sustainability. A set of five covariance structures were examined for barley yield data from a 14-year, two-course barley rotation trial conducted at two locations in northern Syria. Selection of the covariance structures was based on the Akaike information criterion (AIC, Akaike 1974) (a function of penalized log-likelihood) obtained from fitting the structure. Covariance structure with heterogeneous variances and with constant correlation between errors over cycles within the same plot was found to account for most variability in grain and straw yields at both locations. Modeling data with this covariance structure, the legume rotations gave higher productivity as well as higher annual increases compared with the continuous barley system. This implies that an agricultural production system based on a legume following a cereal is likely to be more sustainable for cereal production compared to cereal followed by cereals.  相似文献   

9.
In 2006, the International Organization of Christian Charities (IOCC) began a program in the country of Georgia to establish an improved dairy enterprise in the villages of Minadze and Ghreli in the Akhaltsikhe district. To correctly determine the fertility requirements for the use of either mineral or organic fertilizer materials for improving soil fertility for legume grain crops (beans, peas, soybeans, etc.) and perennial pastures (a mixture of perennial cereal grasses and perennial legumes) and for the proper management of these soils, it was necessary to understand the geomorphic, chemical, and physical characteristics of the soils of this region. Soils of this region belong to a subtype of Cinnamonic Calcareous soils. The characteristics of these soils as well as their fertility and soil management needs were ascertained. Appropriate amounts of mineral and organic fertilizers needed for the proper growth of legume crops and perennial pastures as well as timing of application are presented.  相似文献   

10.
Landscape-scale variation is a source of information that increasingly is being taken into consideration in agricultural and environmental studies. Models that encompass and interpret this variation in fields and across contrasting management practices have the potential to improve the landscape management of agroecosystems. Our objective was to compare the results of two approaches, analysis of covariance (ANCOVA) and state-space modeling, to determine the factors affecting grain yield in three crop rotations [pea (Pisum sativum L.)–wheat (Triticum aestivum L.)–barley (Hordeum vulgare L.), canola (Brassica napus L.)–wheat–barley, and wheat–wheat–barley] at two sites in Saskatchewan, Canada. Crop rotations were established in adjacent 30 m×80 m plots arranged in a randomized complete block with five replicates. Variables that were expected to affect resource availability and pest infestations in wheat (second rotation phase) or barley (third rotation phase) were measured. Each sampling point was classified according to landscape position as either a shoulder or footslope. Landscape position was considered as a cross-classified treatment along with crop rotation, and analyzed using ANCOVA procedures. State-space modeling was conducted on a single transect connecting sampling points across all of the rotations and replicates at each site. ANCOVA frequently indicated that grain yield and other measured variables differed between landscape position across all rotations, or in a specific crop rotation. For example, grain yield, soil water content, soil N availability during the growing season, and the incidence of common root rot were higher in the footslopes than the shoulders in all of the crop rotations at one of the sites. However, the landscape position effect for grain yield was never fully explained by the landscape position effects detected for the other variables (e.g., higher soil water content in the footslopes did not correspond with higher grain yields in footslope positions at both sites). State-space modeling indicated that most of the measured variables contributed to the prediction of landscape-scale variation for grain yield in the pea–wheat rotation; whereas only leaf and root disease incidences explained landscape-scale variation in the wheat–wheat rotation. The selective omission of data indicated that state-space modeling was accounting for the varied importance of the predictors across the landscape; i.e., localized response functions. The major reason that ANCOVA did not explain landscape-scale variation of grain yield across the different crop rotations may be because it was unable to account for highly localized variation. However, there is evidence from other studies that the ANCOVA approach is appropriate when the response functions explaining grain yield do not vary significantly within the study area. This situation is most likely to occur in studies with smaller experimental areas. Future research conducted at scales reflecting ‘real world’ field conditions (i.e., study units representative of producer’s fields) should consider the use of state-space modeling or alternative statistical techniques that are designed to address and predict the complex and dynamic nature of landscape-scale processes.  相似文献   

11.
Under semi-arid Mediterranean conditions, limited moisture is the main constraint to rainfed cropping with wheat (Triticum aestivum), barley (Hordeum vulgare), and food and forage legumes. With increasing land-use pressure, moisture-conserving fallowing is being replaced by continuous cropping, which is considered an unsustainable practice. Thus, a long-term trial with durum wheat (T. turgidum var. durum) was established in 1983 at Tel Hadya, Aleppo, Syria (mean annual rainfall 330 mm) to assess alternative rotation options to fallow and continuous cropping. Nitrogen (N) and grazing/residue management were secondary factors. Soil aggregation, infiltration, hydraulic conductivity, and total soil organic matter and component fractions (fulvic and humic acids and polysaccharides) were determined at the end of 12 years. Some rotations, e.g., medic (Medicago sativa) and vetch (Vicia faba), significantly increased soil organic matter (12.5–13.8 g kg−1 versus 10.9–11 g kg−1 for continuous wheat and wheat/fallow). All measurements, or indices, indicated parallel trends with increasing organic matter, e.g., coefficients of macro-structure, micro-aggregation, and water-stable aggregates, and decreasing dispersion. Similarly, legume rotations had higher infiltration rates (16.2–21.8 cm h−1 versus 13.9–14.4 cm h−1 with continuous wheat and wheat/fallow) and hydraulic conductivity rates (8.7–12.4 cm h−1 versus 6.2–7.4 cm h−1 with continuous wheat and wheat/fallow). We conclude that cereal/legume rotations, in addition to being biologically and economically attractive, also enhance soil quality and thus promote soil use sustainability in fragile semi-arid areas as in the Mediterranean zone.  相似文献   

12.
Legume pre-crops may increase P uptake of the following wheat, but the mechanisms behind this effect are unclear. A rotation study was carried out to assess the concentrations of rhizosphere P pools of three grain legumes and wheat (phase 1) and their effects on P uptake and P pools in the rhizosphere of the following wheat (phase 2). Faba bean, chickpea, white lupin and wheat were grown for 10 weeks in a loamy sand soil with low P availability. The following wheat was grown in the pre-crop soil with and without addition of pre-crop residues. Among the pre-crops, white lupin had the strongest effect on the P pools; it depleted the labile P pools, resin P and NaHCO3-Pi and also the less labile P pools, NaOH-Pi and residual P; whereas the concentration of NaHCO3-Po was higher than that in the rhizosphere of the other pre-crops. White lupin had a smaller biomass compared to faba bean which depleted the P pools to a lesser extent. Phosphorus uptake of the following wheat was greatest in white lupin pre-crop soil. Chickpea increased P uptake of the following wheat when residues were added. In the presence of residues, wheat after legumes depleted labile P pools to a greater extent than wheat after wheat, but this coincided with greater P uptake only in wheat after chickpea and white lupin, which may be explained by the small root biomass of wheat after faba bean. The results show that the greater P uptake of the following wheat induced by pre-crops may be due to two mechanisms: P mobilisation (white lupin) or P addition with legume residues (chickpea). This study further showed that P uptake by a crop is only partly a function of the depletion of P in the rhizosphere; another important factor is the ability to exploit a large soil volume.  相似文献   

13.
The productivity and quality of malting barley were evaluated using factorial combinations of four preceding crops (faba bean, field pea, rapeseed, and barley) as main plots and four nitrogen fertilizer rates (0, 18, 36, and 54 kg N ha?1) as sub-plots with three replications at two sites on Nitisols of the Ethiopian highlands in 2010 and 2011 cropping seasons. Preceding crops other than barley and N fertilizer significantly improved yield and quality of malting barley. The highest grain yield, kernel plumpness, protein content, and sieve test were obtained for malting barley grown after faba bean, followed by rapeseed and field pea. Nitrogen fertilizer significantly increased yield, protein content, and sieve test of malting barley. All protein contents were within the acceptable range for malting quality. Inclusion of legumes in the rotation also improved soil fertility through increases in soil carbon and nitrogen content. We conclude that to maximize yield and quality of malting barley, it is critical to consider the preceding crop and soil nitrogen status. Use of appropriate break crops may substitute or reduce the amount of mineral N fertilizer required for the production of malting barley at least for one season without affecting its quality.  相似文献   

14.
【目的】粮草轮作、粮豆轮作是黄土高原旱地区常见种植制度,本文利用长期定位试验探索该地区轮作制度和茬口年限对小麦产量、养分吸收和土壤肥力的影响,以期优化旱地作物种植制度。【方法】长期定位试验始于1984年,试验设8个处理:对照(小麦连作,CK),粮草长周期轮作(3组种植方式:2茬小麦→4茬苜蓿→1茬马铃薯→小麦,WAT1;小麦→4茬苜蓿→1茬马铃薯→2茬小麦,WAT2;4茬苜蓿→马铃薯→3茬小麦,WAT3),粮草短周期轮作(2组种植方式:小麦+红豆草→红豆草→小麦,WST1;红豆草→小麦→小麦+红豆草,WST2),粮豆轮作(2组种植方式:小麦+糜子→豌豆→小麦,WPT1;豌豆→小麦→小麦+糜子,WPT2)。小区面积66.69 m2,每个处理重复3次,随机区组排列。小麦收获后采集植物及土壤样品,测定小麦产量、籽粒和秸秆养分含量、土壤肥力性质。【结果】与小麦连作相比,轮作小麦籽粒增产1.47%~29.66%,秸秆增产2.17%~29.77%,粮草轮作增产效果更显著,轮作优势在豆科牧草后第二年最高,第三年减弱。粮草长周期轮作有利于小麦对N、K、Fe、Cu、Zn的吸收,吸收量在苜蓿茬后第三年第二年第一年;粮草短周期轮作可提高小麦对N、K、Fe的吸收量,红豆草茬后第1年吸收量稍高于后第二年;粮豆轮作有利于小麦吸收N、K、Fe、Mn,豌豆茬后第二年吸收量大于第一年。轮作制度和茬口年限对小麦微量元素养分收获指数的影响程度大于大量元素,粮豆轮作有利于N、P、Cu向籽粒转移,3种轮作制度下小麦K收获指数均低于连作小麦,粮草轮作中小麦Fe收获指数低于连作小麦。轮作后,土壤全氮增加11.54%~20.51%,碱解氮提高9.66%~21.56%;粮草短周期轮作对土壤有机质、氮素和速效钾的提升作用突出,但有效磷亏缺23.97%;粮豆轮作对土壤磷素累积和有效化作用明显,其有效磷比小麦连作增加45.52%。【结论】黄土高原旱地区增加小麦产量、改善籽粒矿质营养,实现土壤培肥的较优轮作模式为红豆草(2~4年)→小麦(2年),以4~6年为一个轮作周期,同时注意增施磷肥。  相似文献   

15.
《Soil Use and Management》2018,34(3):335-342
This study investigates the effect of different crop rotation systems on carbon (C) and nitrogen (N) in root biomass as well as on soil organic carbon (SOC ). Soils under spring barley and spring barley/pea mixture were sampled both in organic and conventional crop rotations. The amounts of root biomass and SOC in fine (250–253 μ m), medium (425–250 μ m) and coarse (>425 μ m) soil particulate organic matter (POM ) were determined. Grain dry matter (DM ) and the amount of N in harvested grain were also quantified. Organic systems with varying use of manure and catch crops had lower spring barley grain DM yield compared to those in conventional systems, whereas barley/pea showed no differences. The largest benefits were observed for grain N yields and grain DM yields for spring barley, where grain N yield was positively correlated with root N. The inclusion of catch crops in organic rotations resulted in higher root N and SOC (g C/m2) in fine POM in soils under barley/pea. Our results suggest that manure application and inclusion of catch crops improve crop N supply and reduce the yield gap between conventional and organic rotations. The observed positive correlation between root N and grain N imply that management practices aimed at increasing grain N could also increase root N and thus enhance N supply for subsequent crops.  相似文献   

16.
The greatest challenge for tropical agriculture is land degradation and reduction in soil fertility for sustainable crop and livestock production.Associated problems include soil erosion,nutrient mining,competition for biomass for multiple uses,limited application of inorganic fertilizers,and limited capacity of farmers to recognize the decline in soil quality and its consequences on productivity.Integrated soil fertility management(ISFM) is an approach to improve crop yields,while preserving sustainable and long-term soil fertility through the combined judicious use of fertilizers,recycled organic resources,responsive crop varieties,and improved agronomic practices,which minimize nutrient losses and improve the nutrient-use efficiency of crops.Soil fertility and nutrient management studies in Ethiopia under on-station and on-farm conditions showed that the combined application of inorganic and organic fertilizers significantly increased crop yields compared to either alone in tropical agro-ecosystems.Yield benefits were more apparent when fertilizer application was accompanied by crop rotation,green manuring,or crop residue management.The combination of manure and NP fertilizer could increase wheat and faba bean grain yields by 50%–100%,whereas crop rotation with grain legumes could increase cereal grain yields by up to 200%.Although organic residues are key inputs for soil fertility management,about 85% of these residues is used for livestock feed and energy;thus,there is a need for increasing crop biomass.The main incentive for farmers to adopt ISFM practices is economic benefits.The success of ISFM also depends on research and development institutions to provide technical support,technology adoption,information dissemination,and creation of market incentives for farmers in tropical agro-ecosystems.  相似文献   

17.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

18.
Abstract. The most important root diseases of wheat in southern Australia are take-all, rhizoctonia bare patch and cereal cyst nematode. Control of grasses in annual pastures in the year preceding wheat crops decreased take-all on wheat and the amount of the take-all fungus in soil, decreased the damage caused by Rhizoctonia , and gave yield increases. Fumigation of cereal-growing soils gave yield increases in wheat of 0.75 to 2.8 tonnes per hectare, indicating that in southern Australia soil-borne root diseases impose a major constraint on productivity. Residues of the herbicide chlorsulfuron one year after application to an alkaline soil increased root damage by Rhizoctonia in barley and decreased grain yields by 1.5 tonnes per hectare. Root damage by cereal cyst nematode was decreased by direct drilling wheat and also by having a barley cultivar resistant to the pathogen as a preceding crop. The number of cysts of cereal cyst nematode on wheat roots was increased by the application of superphosphate in bands with the seed. These results show that in southern Australia soil management strategies which decrease the levels of root disease greatly increase grain yields.  相似文献   

19.
We studied the impact of continous barley and a 4-year rotation consisting of fababean, barley after fababean, barley intercropped with field pea, and barley after the intercrop on the soil biological properties of a Gray Luvisol. The crop rotations were estabilshed in 1988 and fertilizer N was not applied to any plots. The plots were sampled five times over the growing season in 1990. The average size of microbial N over the growing season was 20% greater when barley followed fababean or intercropping than in the fababean and intercropped plots. It was 14.9% greater when barley followed fababean or intercropping than in the continuous barley plots. Protozoa populations were greater when barley followed intercropping than in the continuous barley plots, but an inverse trend was found for nematode populations. Average size of the mineral N over the growing season in the 4-year rotation plots was 32% greater than in the continuous barley plots. It was also 23% greater when barley followed fababean or intercropping than in the fababean and intercropped plots. Plant N in the latter plots was significantly greater than in the former and in continuous barley plots; therefore legumes contributed N to the crop rotation through biological N fixation and addition of N-rich crop residues. Significantly higher mineral N and microbial N in the barley of rotation plots than in continuous barley plots indicate that rotation systems with annual legumes alter soil biological properties and N availability.  相似文献   

20.
Abstract

Incidence of grass tetany on small grain pastures has been related to forage Mg content and K/Ca + Mg ratio. The objective of this study was to relate P, K, Ca, Mg, and the K/Ca + Mg ratio in winter forage to specie and variety. In one year on unlimed soil with low pH, rye forage tended to be higher in P than oats, barley, or wheat. P content increased the next year on higher pH soil with less specie differences. K differed little with specie, and was higher in November than later harvests. Rye tended to be higher in Ca both years, especially in the early harvest. Percent Mg was lower for wheat the first year on the low pH soil than the other species, and percent Mg increased in all species at all harvests the next year on higher pH soil with wheat having similar Mg levels to the other species. The K/Ca + Mg ratio of wheat was higher than rye, oats, and barley on the low pH soil. Liming reduced this ratio to near 2.2 on all species. Grass tetany has been reported more likely to occur when K/Ca + Mg is over 2.2, and this study suggests rye, followed closely by oats and barley, would maintain lower ratios than wheat under conditions of low Mg availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号