首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 85 毫秒
1.
  目的  探究水分含量对低分子量三聚氰胺脲醛(MUF)树脂溶液固化特性的影响,为阐明树脂浸渍材在不同干燥阶段、不同空间层位中的树脂固化特性提供数据支撑。  方法  以实验室自制的MUF树脂溶液为研究对象,将其稀释成20%、30%、40%、50%后进行升温差示扫描量热测试(DSC),通过外推法消除升温速率对峰顶温度的影响,拟合求解其最佳固化温度,定性阐述水分含量对MUF树脂固化特性的影响,并运用Kissinger微分法和Flynn-Wall-Ozawa积分法计算20%、30%、40%、50%树脂溶液固化反应的表观活化能,定量分析水分对树脂固化特性的影响。  结果  随着MUF树脂溶液质量分数的降低,DSC曲线中峰顶温度整体上呈现向高温方向偏移的趋势,但是在升温速率15和20 ℃/min条件下,20%树脂溶液DSC曲线的峰顶温度峰位置向低温区域发生了偏移;通过外推法得到的20%、30%、40%、50% MUF树脂溶液的最佳固化温度分别为93.99、90.71、85.46和79.71 ℃;运用Kissinger微分法计算得到其表观活化能分别为92.94、82.37、65.93和50.68 kJ/mol,其结果与Flynn-Wall-Ozawa积分法验算结果相近。  结论  整体上,消除升温速率的影响后,水分对树脂固化反应起阻碍作用,并且水分越多,阻碍效应越明显;但在较高升温速率(15和20 ℃/min)条件下,20%MUF树脂溶液的DSC测试结果表明水分促进树脂固化反应,这可能是由分子运动加剧造成的。   相似文献   

2.
本文考察了杨木、桦木在不同pH值下对三种不同脲醛树脂固化反应的影响,结果表明:木材本身的pH值不同,脲醛树脂胶粘剂的固化反应也有所不同。由于杨木的pH值高于桦木,因此固化反应出现的峰温要比桦木晚一些;不同pH值下,低毒脲醛树脂胶粘剂的固化反应时间有所差异,酸性条件下随着pH值的升高延长了固化时间。  相似文献   

3.
刘洪  敖波  范淑辉  陶明 《安徽农业科学》2009,37(20):9400-9401
[目的]应用热分析法鉴别彝族植物药。[方法]用差热-热重分析(DTA TGA)和差示扫描量热法(DSC)对瓦布友等彝族植物药进行测定,根据图谱峰形和特征进行比较鉴别。[结果]不同样品的DTA的放热峰特征明显,峰顶温度和峰数量不同,同一样品不同组织部位的DTA放热峰不同,不同样品的DSC的特征峰更加明显。[结论]热分析法是彝族植物药鉴别的一种有效鉴别方法,DTA曲线的特征峰可作为鉴别的佐证,DSC曲线的特征峰可作为进一步鉴别的佐证。  相似文献   

4.
固化剂对低摩尔比脲醛树脂固化特性的影响   总被引:1,自引:0,他引:1  
为了解决低摩尔比脲醛树脂固化速度慢、胶接制品胶合强度低的问题,该文采用甲酸铵、乙酸铵与过硫酸铵组成复合固化剂,与传统氯化铵固化剂作比较,研究了不同固化体系对5种摩尔比脲醛树脂的固化性能及胶合板的胶接强度与甲醛释放量的影响。结果显示:以甲酸铵或乙酸铵与过硫酸铵混合作为脲醛树脂的固化剂,固化时间和适用期可以调控以满足胶合板生产需要,固化后体系的pH值高于以氯化铵为固化剂时体系的pH值,胶合板甲醛释放量明显低于以氯化铵作为固化剂的甲醛释放量。   相似文献   

5.
杨木热分析   总被引:8,自引:0,他引:8  
为对使用木材及预测和扑灭火灾提供理论依据,文章通过对杨木进行热重分析(TG)及差示扫描量热分析(DSC),得知杨木热解的初始温度约为200℃,热解速率最大的温度为309℃,整个热解的温度范围为200~520℃。杨木热解分三个阶段进行,首先在200~320℃区间,为热分解阶段,此阶段失重速度快,失重率高,达60%;在320~435℃期间为失重仍较明显的阶段,此阶段失重20%左右;在435℃之后,失重不再明显,为灰化阶段。在整个热解过程中,杨木的热效应值为127kJ·g-1。利用不同升温速度下的三条TG曲线,根据三处不同类型的动力学近似方程,求解得出杨木热解的平均活化能约为150kJ·mol-1。  相似文献   

6.
在自制的酚醛树脂(PF树脂)中加入不同固化剂,考察固化剂对酚醛树脂固化时间的影响,筛选出固化速度最快的固化剂碳酸丙烯酯,同时研究了碳酸丙烯酯用量与树脂固化时间、适用期、胶合强度之间的关系,并优化出添加最佳用量的碳酸丙烯酯优化树脂的热压工艺.结果表明,当碳酸丙烯酯用量为树脂胶液量的2%时,酚醛树脂的固化时间缩短了64.4%,适用期240min.利用添加2%碳酸丙烯酯的酚醛树脂,通过不同热压工艺生产胶合板,当热压时间为1.0min·mm-1时,热压温度从105℃降到95℃;当热压温度为105℃时,热压时间从1.0min·mm-1缩短至0.7min·mm-1,两者均可减少能耗,降低生产成本.差示扫描量热法分析结果表明,添加2%碳酸丙烯酯的酚醛树脂固化起始温度为49.6℃,峰顶温度为109.2℃,固化温度较低.  相似文献   

7.
脲醛树脂固化特性对胶接性能、甲醛释放量的影响   总被引:10,自引:1,他引:10  
用3种低毒脲醛树脂胶粘剂压制胶合板及中密度纤维板试验,对不同固化体系UF树脂胶粘剂的胶接性能和甲醛释放量进行了研究。结果表明,不同固化体系UF树脂胶粘剂产品的胶接性能和甲醛释放量有所不同。胶合板试验中,氯化铵与盐酸组成的固化体系胶接强度最高,氯化铵与过硫酸铵组成的固化体系甲醛释放量最低;不同施胶方法,中密度纤维板甲醛释放量也有较大差别。  相似文献   

8.
不同产地茶叶的热分析鉴别   总被引:1,自引:0,他引:1  
用差示扫描量热法(DSC)和热重法(TG/DTG)对同期采摘的不同原产地的茶叶进行了热分析研究。结果发现,不同产地的茶叶的热化学性质有明显差别。从加热失重、焓变和峰的位置可快速简便的鉴别不同产地的茶叶。  相似文献   

9.
应用差示扫描量热法(DSC)对某品牌管道熔结环氧粉末FBE涂料进行了测试.通过分析材料固有的DSC曲线和固化特性曲线,确定了生产工艺条件,并结合生产实际制备了涂层试样.测试结果表明,当固化段距离为2.5 m,涂敷温度为210℃,钢管传动速率为1.5 m/min时,固化率可达到99.79%.  相似文献   

10.
陈俊英  刘国际  白净 《安徽农业科学》2013,41(4):1423-1424,1478
[目的]为了研究盾叶薯蓣在热分析处理时的变化情况。[方法]在氮气气氛下,加热温度从室温30℃到800℃,加热速率为10℃/min,采用热重法(TG)和差示扫描量热法(DSC)研究了盾叶薯蓣粉末、玉米淀粉和棉花纤维素的热性质。[结果]当温度低于100℃时,盾叶薯蓣只是处于失水干燥阶段,在100℃以后出现比较缓慢的失重过程,在280~400℃范围内热解反应比较剧烈,失重最迅速也最大。而后随着温度的逐渐升高,失重速度越来越慢,最终处于一个比较稳定的数值上。黄姜粉最终失重为75%。从室温到100℃,DSC线基本为一水平直线,吸收的热量较少,为干燥阶段。对黄姜粉而言,从100~550℃,放热量一直在递增,DSC曲线的峰值在553℃,之后开始吸热反应,吸热量呈直线上升趋势。[结论]盾叶薯蓣与玉米淀粉和棉花纤维素的变化曲线不同,不能仅仅看作是淀粉和纤维素的加和。  相似文献   

11.
脲醛树脂固化机理及其应用   总被引:4,自引:0,他引:4  
脲醛树脂在人造板生产中的大量使用是室内空气中产生甲醛污染的主要原因. 掌握脲醛树脂的固化机理将成为解决甲醛污染问题的关键. 该文依据高分子缩聚的经典理论和胶体学说以及一些实验与生产事实,讨论了脲醛树脂中的游离甲醛问题、胶接制品的甲醛释放问题、脲醛树脂的耐水性问题、脲醛树脂固化速度与摩尔比以及固化剂种类的关系问题,分析了脲醛树脂固化的经典理论与胶体学说存在的问题.   相似文献   

12.
提高脲醛树脂胶粘剂耐水性的研究   总被引:4,自引:0,他引:4  
研究旨在筛选提高脲醛树脂胶粘剂耐水性的最佳改性物质。采用在合成脲醛树脂时,加入改性物质使之产生共聚体,从而提高脲醛树脂胶粘剂的耐水性。结果表明,加入三聚氰胺或三聚氰胺加聚乙烯醇改性的脲醛树脂胶粘剂,耐水性提高较大。  相似文献   

13.
采用同步热分析仪研究12份福建乌龙茶茶样的热分解过程.试验条件为:茶样由室温以10℃·min-1匀速升温至600℃,气氛为空气,铝坩埚加盖(盖上钻1 mm的孔).结果表明:茶叶的热分解过程分为5个失重阶段:1室温至100℃左右主要为脱水阶段;2100-226℃为茶叶挥发物逸出阶段;3226-345℃为变味热分解阶段;4345-482℃为碳化阶段;5482-600℃为燃烧阶段.茶叶具有相似的失重过程,差示扫描量热法(DSC)曲线体现茶叶的特征,阶段2主要体现茶叶内含物的品质特征,阶段345主要体现茶叶的纤维素、半纤维素和木质素及粗蛋白、粗脂肪和无机盐等其他物质的含量特征,可反映不同品种、季节和加工工艺茶叶组成的差异.因此同步热分析可作为一种初步的鉴别方法.  相似文献   

14.
以大豆蛋白降解液、三聚氰胺、尿素和高浓度甲醛为原料,合成了一种低摩尔比的大豆蛋白-三聚氰胺-尿素-甲醛共缩聚树脂胶黏剂(SMUF)。选用(NH4)2SO4、(NH4)2S2O8、(NH4)2HPO4和H3PO4作为SMUF树脂的固化剂,研究了固化剂对SMUF树脂基本理化性能的影响。结果表明:1)传统固化剂(NH4)2SO4不能使SMUF树脂充分固化,最终树脂胶合强度低、耐水性差,固化后的胶层断面疏松、多孔;2)H3PO4和(NH4)2S2O8属于中强酸体系,两者均能一定程度加速SMUF树脂的固化,树脂胶合强度和耐水性均得到改善,固化温度显著降低,固化放热量有所提高;3)(NH4)2HPO4是一种缓冲型酸,其催化SMUF树脂的固化速度较为均匀,树脂综合性能较优,树脂的胶合强度和耐水性较好,固化温度也有所降低,树脂交联程度高,树脂固化层断面相对较为均匀。  相似文献   

15.
MDF纤维中脲醛胶含量的定量分析   总被引:5,自引:1,他引:5  
谢拥群  Martin  FENG  James  DENG 《福建林学院学报》2005,25(4):289-293
脲醛树脂胶是中密度纤维板生产的常用胶种,它的用量直接关系到产品的生产成本和产品质量及性能.本文利用在X-射线的照射下,不同的金属离子具有对应的波长衍射,含量的多少反映为衍射强度的原理,应用X-射线衍射仪(WDXRF)对MDF所含的脲醛树脂胶(UF)的含量进行定量分析.分析中采用与胶料固含量2.4%的比例将硫酸铜(CuSO45H2O)与脲醛树脂胶均匀混合和并按照生产工艺的施胶要求加入到纤维的方法,使铜离子成为UF胶料的分布标记.并通过实验室的标准含量的样品和衍射强度之间关系进行标定,从而实现对UF树脂胶料的定量测量.结果表明,Cu离子的波段位置清晰,X-射线的衍射强度和金属含量之间存在良好相关性,并以此建立了中密度纤维板中UF树脂胶含量和X-射线衍射强度之间的线性关系式.经验表明这一关系是精确可靠的.  相似文献   

16.
差式扫描量热仪(DSC)、核磁共振波谱仪(NMR)及其衍生的核磁共振成像技术(MRI)作为水合物不同尺度研究的重要手段,可用于水合物成核、生长、分解过程热流曲线的获取,结构信息识别及多相态表征,日益受到国内外学者的广泛关注。阐述了3种方法在水合物研究中的应用现状,介绍了DSC恒压变温和恒压恒温宏观实验方法在水合物热力学和动力学方面的研究进展,总结了MRI在水合物相变过程中微观可视化的研究成果,综述了NMR在水合物结构识别、混合气体水合物中客体分子组成、孔穴占有率及水合数等分子尺度信息获取的应用情况。针对3种方法的优劣和特点,提出了将DSC与NMR结合,进行水合物生成和分解过程多尺度系统研究的建议。  相似文献   

17.
纳米无机物对MF树脂耐磨性能的影响   总被引:1,自引:0,他引:1  
用单一和复合的纳米无机物直接加入三聚氰胺甲醛(MF)树脂中,探讨其种类、用量、复合比例等对MF树脂耐磨性的影响。结果表明,纳米二氧化硅HTSi-03和纳米三氧化二铝HTAl-06以1:2的质量比复合,总用量为30g·m-2时,能显著提高MF树脂浸渍装饰纸层压板的耐磨性能,耐磨转数可达4300r,达到浸渍纸层压木质地板国家标准家用Ⅱ级的要求。用红外光谱和差示扫描量热法进一步分析了纳米无机物对提高MF树脂耐磨性的改性机理。  相似文献   

18.
采用溶液浇铸的方法制备了以PEO LiClO4(聚氧乙烯高氯酸锂)为基质的共混聚合物膜.运用差热示差扫描热分析和交流阻抗的测试方法,研究了聚合物电解质电导率的影响因素.交流阻抗的测试结果显示,随着PVDF(偏氟乙烯)的加入,含有PEO LiClO4的聚合物电解质的离子电导率会随之下降,然而偏氟乙烯六氟丙烯共聚物P(VDF HFP)加入后,在适量范围内聚合物电解质的电导率会增加.当PEO∶P(VDF HFP)的质量分数为1∶0.5时,电导率(δ)最大,其值为2.3×10-4S/cm.DSC的测试结果表明,P(VDF HFP)的加入后,混合物的熔融温度和熔融峰热焓都会随之下降.研究表明对PEO的共混改性可以显著提高电解质电导率.  相似文献   

19.
三聚氰胺改性脲醛树脂,是业界普遍采用的脲醛树脂改性方法之一。三聚氰胺的加入可以有效改善脲醛树脂的耐水、耐候性,降低游离甲醛含量等。然而,三聚氰胺能否有效参与到脲醛树脂反应体系当中,形成有效的共缩聚成分,对树脂的应用性能更为关键。基于此,文中设置了在终反应摩尔比以及第1阶段摩尔比保持不变的条件下,通过改变反应原料用量,即三聚氰胺与尿素的用量,合成了一系列三聚氰胺-尿素-甲醛(MUF)共缩聚树脂,利用电喷雾电离质谱仪(ESI-MS)对合成的不同MUF共缩聚树脂的分子量分布情况进行了表征。比较不同样品所测图谱,结果表明,在合成反应过程中,通过改变三聚氰胺(M)与尿素(U)的用量对MUF共缩聚树脂分子量的形成、分布及共缩聚成分有较大影响,当M用量占M与U总质量比例增加至40%时,MUF共缩聚树脂分子量的分布发生了质的改变,同时,共缩聚成分的比例也有明显增加。因此,可以认为,在该试验条件下,增加M的用量可以有效促进共缩聚反应的进程,同时,真正意义上的共缩聚树脂的形成,要求M的加入量至少应控制在40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号