首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
土壤碳矿化及活性有机碳影响因子研究进展   总被引:1,自引:0,他引:1  
碳矿化是土壤中重要的生物化学过程,直接影响土壤碳库向大气的排放量,与全球气候变化密切相关。土壤活性有机碳周转较快,对干扰的反应比较敏感,常作为评价土壤碳库微小变化的有效指标,在陆地碳循环研究中具有非常重要的作用。本文对土壤碳矿化和活性有机碳的影响因子研究进展作了简要概述,旨在为正确理解全球变化背景下的土壤碳循环过程与机理提供理论参考。  相似文献   

2.
添加14C标记稻草对喀斯特典型土壤有机碳矿化的影响   总被引:2,自引:0,他引:2  
为了研究有机物质对喀斯特地区典型土壤有机碳积累与转化的影响,采集两种喀斯特典型土壤(棕色石灰土、黑色石灰土)和一种对照土壤(红壤)的表层土壤(0~15 cm),设置不添加外源物质(CK)和添加14C标记的稻草(T1)的处理,进行为期100d的土壤培养试验及矿化试验.测定并分析了这3种典型土壤类型的微生物生物量碳(MBC...  相似文献   

3.
秸秆还田对宁南旱区土壤有机碳含量及土壤碳矿化的影响   总被引:21,自引:8,他引:21  
为了探明秸秆还田对宁南旱区土壤有机碳及土壤碳矿化的影响,为该区作物生产及土壤培肥制度的建立提供参考,通过4a(2007-2010年)秸秆还田定位试验,设置不同秸秆还田量处理,谷子秸秆按3000 kg·hm-2(低L)、6000 kg·hm-2(中M)、9000 kg·hm-2(高H)粉碎还田,玉米秸秆按4 500 kg...  相似文献   

4.
【目的】探索短时间尺度下辣椒秸秆生物质炭添加对喀斯特石灰土地区土壤有机碳(SOC)矿化和SOC库的直接影响,为评估西南喀斯特石灰土地区辣椒秸秆生物质炭还田利用的生态环境效应提供科学依据。【方法】采用广口瓶进行恒温、恒湿密封培养试验,以不添加生物质炭为对照(CK),设置0.1%、0.5%、1.0%、2.0%和4.0%共5个辣椒秸秆生物质炭添加处理,用NaOH溶液吸收法测定63 d培养期内喀斯特石灰土有机质矿化过程释放的CO2,培养结束后测试各形态SOC含量的变化情况。【结果】培养63 d后,0~4.0%添加处理石灰土SOC累积矿化量为473.05±78.60~673.74±102.66 mg C/kg,4.0%添加处理可明显提高累积矿化量。各添加处理SOC矿化过程均可用双库一级动力学模型进行拟合,0.1%~0.5%和1.0%~4.0%添加处理条件下易降解SOC矿化速率常数(ka)分别为0.021±0.001~0.034±0.004/d和0.248±0.021~0.343±0.033/d,对易降解SOC的矿化分别起抑制和促进作用;所有添加处理对难降解SOC矿化起促进作用。1.0%~4.0%添加处理可显著提高易降解SOC库储量(Ca)和土壤微生物量碳(MBC)含量(P<0.05,下同),其值范围分别为238.19±20.72~937.48±71.75 mg/kg和368.22±12.19~449.52±18.91 g/kg。2.0%和4.0%添加处理显著提高土壤易氧化有机碳(ROC)含量,其值分别为2849.97±184.21和3163.92±107.16 mg/kg。生物质炭添加对土壤水溶性有机碳(WSOC)含量无显著影响(P>0.05,下同)。添加辣椒秸秆生物质炭的处理中,MBC与Ca、ka、难降解SOC矿化速率常数(ks)和ROC呈极显著正相关(P<0.01,下同),与难降解SOC库储量(Cs)呈极显著负相关,与WSOC无显著相关性。【结论】辣椒秸秆生物质炭对喀斯特石灰土SOC矿化速率的影响与添加量有关,1.0%~4.0%添加处理可提高矿化速率,同时增加Ca、MBC和ROC含量,但对WSOC含量无影响,4.0%添加处理在63 d培养期内可提高土壤累积矿化量。为减少土壤碳排放,建议辣椒秸秆生物质炭改良西南喀斯特石灰土的添加量应低于4.0%。  相似文献   

5.
通过对稻田土壤有机碳矿化特征及其活性组分的研究,为提高贵州黄壤稻田土壤固碳能力提供理论依据。设置4个处理:不施肥(CK)、单施化肥(NPK)、秸秆配施化肥(NPKS)和生物炭配施化肥(NPKB),结合室内矿化试验对土壤碳氮比(C/N)、活性有机碳(AOC)含量、碳库管理指数(CPMI)和有机碳矿化进行研究。结果表明,与NPK处理相比,NPKB处理SOC含量和C/N分别显著提高9.10%、23.10%,NPKS处理TN含量最高,与CK处理相比显著提高19.39%。NPKS处理下,土壤易氧化有机碳(ROC)、可溶性有机碳(DOC)和微生物量碳(MBC)含量均最高,分别为5.88 g/kg、96.15 mg/kg和334.09 mg/kg。与NPK处理相比,NPKB处理显著增加了土壤稳态碳(SC)含量、碳库指数(CPI)和CPMI,对碳库活度(A)和碳库活度指数(AI)无显著影响,NPKS处理则显著增加了A、AI和CPMI。在培养期内,SOC矿化速率在第1天处于最大值,前期(第1~6天)大幅下降,后期(第6~45天)缓慢下降;第45天时,SOC累积矿化量在2.14~2.82 g/kg之间,而...  相似文献   

6.
采用盆栽试验,研究不同处理方式对水稻秸秆还田后土壤含水量的影响。结果表明,随着时间的推迟,不同处理的土壤含水量整体呈下降的趋势,但不同处理的下降过程及速率有差异;1/2量平铺处理比其他处理更有利于土壤含水量的保持;秸秆还田量对土壤含水量有一定的影响,秸秆还田量越大,土壤含水量也就越大,且变化更稳定。  相似文献   

7.
冻融次数和含水量对棕壤总有机碳和可溶性有机碳的影响   总被引:1,自引:1,他引:1  
以东北地区棕壤为供试土样,采用人工控温,室内培养的方法,使土样经受不同冻融处理,研究了冻融次数和含水量对棕壤有机碳的影响.研究结果表明,冻融次数和含水量对棕壤总有机碳的影响不显著,冻融次数对可溶性有机碳的影响达到显著水平,随着冻融次数的增加土壤可溶性有机碳含量呈先降低后升高的趋势,在试验设计范围内表现为冻融降低了棕壤可溶性有机碳的含量,可溶性有机碳占总有机碳的比例随冻融作用的变化趋势与可溶性有机碳基本一致.土壤可溶性有机碳对冻融处理的反映较为敏感,可以作为反映不同冻融处理对土壤有机质影响的一个较好的指标.  相似文献   

8.
【目的】研究微塑料对农田土壤团聚体稳定性和有机碳矿化的影响,为农膜高残留农地土壤结构的稳定性和农业生态风险评价提供理论依据。【方法】在陕西省延安市安塞县采集低有机质水平的农田土壤(CK),通过添加有机肥后得到高有机质水平土壤(S),在以上2种有机质水平土壤中分别添加不同含量(0.06,0.64,1.92,3.20,6.40 g/kg)、粒径分别为25 μm和1 mm的聚乙烯微塑料(PE-MPs),以不添加微塑料的CK和S作为对照,制成土壤团聚体后进行室内培养,测定水稳性团聚体含量、平均重量直径、微生物量碳含量及有机碳矿化速率,并构建结构方程模型量化微塑料粒径、含量及土壤有机质水平对土壤团聚体稳定性的影响。【结果】①与对照组CK相比,在低有机质水平的土壤中添加0.06 g/kg粒径25 μm PE-MPs后1~5个月,水稳性团聚体含量明显增加,增幅最大可达24.98%;添加粒径1 mm PE-MPs,培养1个月后土壤水稳性团聚体含量增加,培养3~5个月后土壤水稳性团聚体含量降低。与对照组S相比,在高有机质水平土壤中添加粒径25 μm PE-MPs培养1~5个月后,水稳性团聚体含量总体无显著变化;添加粒径1 mm PE-MPs培养1~5个月后,水稳性团聚体含量总体有所提高。②添加25 μm PE-MPs,可使高、低有机质水平土壤团聚体的有机碳矿化速率最大分别提高15.84%和38.64%,添加1 mm PE-MPs会导致团聚体土壤有机碳矿化速率降低,最大降幅达33.17%。③构建的结构方程模型显示,微塑料粒径、含量及土壤有机质水平会通过影响有机碳矿化速率和土壤微生物碳含量,进而间接影响粒径≥0.25 mm水稳性团聚体含量(WR0.25),以上三者对WR0.25的总效应系数分别为0.065,-0.055和0.310。【结论】PE-MPs会降低低有机质贫瘠土壤的团聚体稳定性,增加土壤结构退化的风险;但可增强高有机质水平土壤的团聚体稳定性。  相似文献   

9.
^14C,^15N双标记秸秆对土壤微生物量碳,氮动态变化的影响   总被引:1,自引:0,他引:1  
用密闭培养和熏蒸提取法,研究^14C,^15N标记秸秆对红壤和变性土中原有土壤微生物量及其C/N动态变化的影响。结果表明,施加秸秆可增加原有土壤微生物量,原有土壤微生物量C和N在培养初期很快即达最大值,以后逐渐减少并趋于稳定。  相似文献   

10.
玉米秸秆对不同有机碳含量的黑土有机碳库的影响   总被引:1,自引:0,他引:1  
【目的】研究玉米秸秆不同添加量对不同有机碳含量的黑土土壤有机碳库的影响,为提高退化的黑土质量以及利用秸秆修复退化黑土提供重要参考。【方法】通过室外培养法,在2种不同有机碳含量的黑土中添加不同量(w)的玉米秸秆(0.5%、1.5%和2.5%),研究黑土有机碳库中总有机碳(TOC)、易氧化有机碳(ROC)、微生物量碳(MBC)、溶解性有机碳(DOC)、颗粒有机碳(POC)、轻组有机碳(LFOC)、矿物结合态有机碳(MOC)、重组有机碳(HFOC)和惰性碳(IOC)的含量变化及各组分之间的相关关系。【结果】不同添加量的玉米秸秆均可增加2种有机碳含量黑土的TOC、ROC、MBC、DOC、POC、LFOC、MOC和IOC含量,且对低有机碳含量的黑土提高效果更明显,但却降低了2种黑土的HFOC含量。土壤有机碳库各组分除LFOC和HFOC之外均与TOC具有极显著正相关关系,ROC、MBC、DOC和POC含量之间具有极显著相关性。【结论】添加不同量玉米秸秆对2种有机碳含量的黑土均有一定的影响,高添加量秸秆施入可以有效提升高、低有机碳含量黑土的有机碳库组分,对低有机碳含量的黑土效果更好。在本试验玉米秸秆添加范围内,最佳添加质量分数为2.5%。  相似文献   

11.
Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of ^13C-labelled rice straw or its pyrolysed biochar at 250 or 350℃ to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC; microbial biomass C, MBC; and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25℃. Four treatments were examined as (1) the control soil without amendment (Soil); (2) soil plus ^13C-labelled rice straw (Soil+Straw); (3) soil plus 250℃ biochar (Soil+B250) and (4) soil plus 350℃biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and δ^13C (1 742- 1 877 %). Among treatments, significant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw〉Soil+B250〉Soil+B350, whilst significant higher SOC from the new C as Soil+B250〉Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, significant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst significant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.  相似文献   

12.
刘燕萍  唐英平  卢茜  高人 《安徽农业科学》2011,39(7):3896+3927-3896,3927
[目的]研究温度和土地利用变化对土壤有机碳矿化的影响。[方法]以水田和林地土壤为研究对象,采用室内培养试验,测定土壤有机碳矿化量。[结果]水田和林地土壤有机碳矿化速率变化趋势均为前期较快,后期稳定。土壤有机碳矿化所释放的CO2-C累积量随着培养温度的升高而显著增加(P〈0.05),温度升高10℃,水田和林地土壤释放的CO2-C累积量分别增加157.8%和135.8%,但林地和水田土壤CO2-C累积量的差异并不明显。[结论]温度对土壤有机碳矿化有明显的影响,而土地利用变化对有机碳矿化没有影响。  相似文献   

13.
水田和旱地土壤有机碳周转对水分的响应   总被引:7,自引:1,他引:7  
【目的】研究土壤含水量对水田和旱地土壤中可溶性有机碳和微生物量碳含量以及有机碳矿化的影响,以探明水田和旱地有机碳周转差异的来源。【方法】在标准培养条件下(25℃,100%空气湿度)培养100 d,研究了5个水分梯度下(45%、60%、75%、90%、105%WHC,WHC为土壤饱和持水量)水田和旱地土壤有机碳的矿化特征,并测定了培养期内3个水分梯度下(45%、75%、105%WHC)土壤的可溶性有机碳(DOC)和微生物量碳(MBC)含量。【结果】土壤含水量、土地利用方式(水田和旱地)及两者的交互作用对土壤有机碳的矿化、DOC和MBC均有显著影响。水田(45%-90%WHC)和旱地(45%-75%WHC)土壤有机碳的累积矿化率(量)随含水量增高而增高,有机碳的周转半衰期随含水量的增高而缩短(水田为5.23-7.57 a,旱地为6.79-12.87 a)。100 d的培养期内,水田和旱地土壤分别有2.33%-3.94%和1.66%-3.33%的有机碳参与了矿化。淹水条件下,水田和旱地土壤的有机碳矿化速率均高于好气条件。同时,淹水条件还使水田土壤的DOC、MBC含量显著降低,对旱地则无影响。【结论】在一定水分范围内(水田:45%-90%WHC;旱地:45%-75%WHC),提高含水量可以促进水田和旱地土壤有机碳的矿化,有利于养分的释放,但对土壤活性有机碳(DOC和MBC)无促进甚至有抑制作用。土壤有机碳的矿化速率和累积矿化率(量),在淹水条件下和水田土壤中比在好气条件和旱地土壤中高,其原因之一可能是取样制样过程中土样经历的干湿交替过程促进了有机碳的降解。  相似文献   

14.
秸秆还田对小麦玉米轮作田土壤有机碳质量的影响   总被引:5,自引:0,他引:5  
利用小麦-玉米轮条件下不同秸秆还田方式进行定位试验,对不同秸秆还田方式下土壤有机碳和活性有机碳含量进行了6a11季的连续监测,结果表明:单施化肥和秸秆还田配施化肥均能提高土壤有机碳含量;3种还田方式均能显著提高活性有机碳和碳库管理指数,表现为玉米秸秆还田>两季秸秆还田>小麦秸秆还田;3种秸秆还田处理的土壤有机碳增长速率为玉米秸秆还田>两季秸秆还田>小麦秸秆还田。小麦季玉米秸秆还田对有机碳活性提升效果优于两季秸秆还田和玉米季小麦秸秆还田。  相似文献   

15.
砂姜黑土玉米秸秆有机碳的矿化特征   总被引:1,自引:1,他引:1  
 【目的】探讨不同温度(10℃、20℃、30℃)、不同秸秆加入量(秸秆全量和过量)条件下,玉米秸秆还田对土壤有机碳矿化特征及其环境因子的响应机制。【方法】采用室内恒温控湿好气培养试验,对安徽淮北砂姜黑土在不同温度(10℃、20℃、30℃)条件下,设置50 g土样中加秸秆0.3 g(处理Ⅰ)、1.5 g(处理Ⅱ)、3.0 g(处理Ⅲ)及不加秸秆(CK)的处理,进行240 d的矿化培养。【结果】温度对有机碳矿化影响显著,在对照(CK)和秸秆加入量相同的处理中,有机碳的矿化累积量均随温度(10—30℃)升高而增加;温度较低(<20℃)时,CK、Ⅰ、Ⅱ、Ⅲ各处理的有机碳矿化温度系数(Q10)平均值约为1.229、1.251、1.572、1.399,温度较高(>20℃)时,CK、Ⅰ、Ⅱ、Ⅲ的Q10平均值约1.006、1.249、1.401、1.374,Q10值在温度较低时大于温度较高时,说明低温条件下,有机碳矿化速率对升温更敏感。同一温度条件下,不同处理秸秆加入量越大,有机碳矿化累积量越高,有机碳矿化的日变化量也越大。本试验中,一级动力学方程能较好地描述了不同处理土壤有机碳的矿化累积动态。土壤有机碳的潜在矿化量(C0)随温度变化不明显,在同一温度条件下,秸秆加入量越大,C0值越大。【结论】一级动力学方程能较好地描述不同处理土壤有机碳的矿化累积动态。不同温度、不同秸秆还田量及温度和秸秆还田量的交互作用,对玉米秸秆矿化过程中土壤有机碳含量的影响均达到显著水平。  相似文献   

16.
不同土地利用类型对土壤有机碳矿化过程的影响   总被引:3,自引:0,他引:3  
[目的]分析不同土地利用方式对土壤有机碳矿化的影响,并研究其与土壤理化性质和土壤剖面深度的关系。[方法]选择淮南市4种典型的土地利用类型(草地、复垦林地、淮河农田、乔木林地,分别以A、B、C、D表示)作为研究对象,采集60份共4类淮南土样,通过恒温密闭培养30 d(25℃)及测定各相关因子获得基本数据,探讨不同土壤类型、不同剖面深度(0~100 cm)和相应理化性质下的土壤有机碳矿化动态变化特征。[结果]4种不同土地利用类型,土壤有机碳矿化过程存在相同的变化规律,且表现出明显的阶段性特征,即在前期随时间延长大幅下降,而中后期缓慢下降并趋于平缓;其矿化速率由大到小依次为C、B、A、D,D监测区地表土壤有机碳矿化速率一直处于较低值,C监测区地表矿化速率显著高于其他3类监测区(P0.05);不同土壤剖面深度的矿化速率在第20天左右达到最低值,之后都有缓慢上升的现象;微生物生物量碳含量、土壤质地(砂粒含量)与土壤有机碳矿化速率存在极显著相关性(P0.01);淮南市土壤有机碳矿化累积量可以运用一级动力学方程较好地进行模拟和检验。[结论]该研究为区域碳平衡、农业生产、温室效应等研究提供理论依据。  相似文献   

17.
以百菌清为研究对象,进行不同因素对百菌清残留的影响模拟试验。分别对于不同的ph值和不同的含水量,试验在开始的前3天百菌清在不同含水量处理组中的残留量减少速度都很快,在3~7 d之间残留量减少的速度稍有减缓,7 d之后土壤中的百菌清残留量进入一个平稳缓慢的减少过程。不同含水量土壤中百菌清的残留规律表明,土壤中的百菌清残留量均随着时间的增加而呈现逐渐减少趋势。不同p H值土壤中百菌清的残留规律表明,土壤中的百菌清残留量均随着时间的增加而呈现逐渐减少趋势。  相似文献   

18.
[目的]了解柑橘果园土壤有机碳矿化在不同温度下对不同氮肥施用量的影响关系,为构建果园生态系统的碳循环模型提供参数。[方法]采用室内模拟试验,在10、20、30℃3个温度条件下,研究施肥施用对柑橘果园土壤有机碳矿化的影响。[结果]3种温度处理下,各施氮处理土壤有机碳矿化速率都表现为培养前期快速下降,培养后期保持相对稳定的趋势。在整个培养过程中,3种温度条件下各施氮处理的土壤CO2累积排放量为1328.25~2219.42mg/kg,100mg/kg(N4)处理土壤有机碳矿化量最大,CK处理最低,100mg/kg(N4)和80mg/kg(N3)2个高氮处理显著高于低氮50mg/kg(N2)、30mg/kg(N1)处理。土壤有机碳矿化速率随温度升高而增长,不同的土壤施氮条件下土壤有机碳矿化的温度敏感性不同,N2处理土壤有机碳矿化的温度敏感性最低,N4处理最高。柑橘果园土壤有机碳矿化受高施氮量影响较大,低施氮影响不明显。[结论]随着施氮量的增加土壤有机碳矿化的温度敏感性增加,氮肥施用和温度的共同作用可能使柑橘林向大气中排放的CO2增加。  相似文献   

19.
为了探讨融雪时间与土壤碳素含量之间的关系,2007-2008年,在青藏高原东部的一个高山雪床,沿着融雪梯度设置3个融雪部位(早融部位、中间部位和晚融部位),每个部位随机取土样15个,每个月取样一次,以测定土壤中有机碳的含量,分析其在融雪梯度上的变化。结果表明,早融部位与晚融部位之间的融雪时间相差约1个月。在生长季(5-10月)中的每个月,早融部位的有机碳含量均最高,月均值达14.4g/kg;晚融部位的有机碳含量最低,月均值只有9.9g/kg。和早融部位相比,2a内晚融部位的有机碳含量(月平均值)降低了4.5g/kg,而中间部位的有机碳含量则居于早融与晚融部位之间。就任一部位而言,在生长季中,随着时间的推移,土壤有机碳表现出先降低后增加的趋势。这说明,融雪时间亦即积雪厚度对土壤有机碳的含量有较大的影响。  相似文献   

20.
[目的]为了对绿洲棉田土壤有机碳、全氮的分布状况进行研究。[方法]以天山北坡玛纳斯河流域绿洲棉田为研究区,以弃耕地为对照,采用地统计学方法,研究连续23年种植棉花地的土壤0~30、30~60和60~100 cm土层土壤有机碳和全氮的分布特征。[结果]玛纳斯河流域绿洲棉田土壤有机碳、全氮含量呈垂直分布,且随着土壤深度的增加而降低,并且0~30 cm土层明显高于30 cm以下土层,土壤有机碳储量呈现增加的趋势;弃耕地土壤有机碳、全氮亦呈垂直分布,且随着土壤深度的增加而含量降低,有机碳含量差异明显,并且弃耕地土壤有机碳含量呈逐月下降趋势,而棉田土壤有机碳储量变化呈先减少后增加,即棉花生长初期,0~30和30~100 cm土层有机碳储量降低,到花期最低;而随着棉花进入生殖生长后期,有机碳储量呈现增加趋势;弃耕地有机碳储量因没有植株凋落物的输入而呈现逐月降低的趋势,二者有机碳含量差异明显。[结论]绿洲棉田土壤有机碳、全氮含量明显高于弃耕地,土壤有机碳储量呈现增加的趋势,且主要发生在0~30 cm土层,在30~100 cm土层中有机碳、全氮含量变化差异不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号