首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

2.
对不同施肥条件下23年小麦连作地和苜蓿连作地土壤矿质氮分布和累积进行研究,探讨种植浅根系和深根系植物对硝态氮淋溶的影响。结果表明,不施肥(CK)和单施磷(P)肥,小麦和苜蓿连作地土壤硝态氮主要集中在0—60 cm土层,0—60 cm土层以下硝态氮含量变化稳定并小于2 mg/kg。氮肥、磷肥和有机肥配施(NPM)时,小麦连作地土壤硝态氮累积在20—100 cm和140—320 cm土层,年累积速率可达42.12 kg/(hm2.a);苜蓿连作土壤硝态氮主要集中在0—60 cm土层,仅在200—300 cm土层出现轻微累积,年累积速率仅为1.01 kg/(hm2.a)。在不施肥和单施磷肥下,种植小麦或苜蓿对土壤硝态氮残留量影响不显著,而氮、磷和有机肥配施时,小麦连作地土壤硝态氮残留量迅速增加,并与不施肥、单施磷肥处理有显著差异;苜蓿连作地土壤硝态氮残留量虽有少量增加,但与不施肥、单施磷肥处理无显著差异。不施肥、单施磷肥和氮、磷和有机肥配施,小麦连作、苜蓿连作地土壤剖面铵态氮含量主要在10—20 mg/kg之间波动,在土壤剖面无明显的累积现象,铵态氮残留量受施肥和作物种类的影响不显著。  相似文献   

3.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

4.
Extraction of soil nitrate nitrogen (NO3 ?-N) and ammonium nitrogen (NH4 +-N) by chemical reagents and their determinations by continuous flow analysis were used to ascertain factors affecting analysis of soil mineral N. In this study, six factors affecting extraction of soil NO3 ?-N and NH4 +-N were investigated in 10 soils sampled from five arable fields in autumn and spring in northwestern China, with three replications for each soil sample. The six factors were air drying, sieve size (1, 3, and 5 mm), extracting solution [0.01 mol L?1 calcium chloride (CaCl2), 1 mol L?1 potassium chloride (KCl), and 0.5 mol L?1 potassium sulfate (K2SO4)] and concentration (0.5, 1, and 2 mol L?1 KCl), solution-to-soil ratio (5:1, 10:1, and 20:1), shaking time (30, 60, and 120 min), storage time (2, 4, and 6 weeks), and storage temperature (?18 oC, 4 oC, and 25 oC) of extracted solution. The recovery of soil NO3 ?-N and NH4 +-N was also measured to compare the differences of three extracting reagents (CaCl2, KCl, and K2SO4) for NO3 ?-N and NH4 +-N extraction. Air drying decreased NO3 ?-N but increased NH4 +-N concentration in soil. Soil passed through a 3-mm sieve and shaken for 60 min yielded greater NO3 ?-N and NH4 +-N concentrations compared to other treatments. The concentrations of extracted NO3 ?-N and NH4 +-N in soil were significantly (P < 0.05) affected by extracting reagents. KCl was found to be most suitable for NO3 ?-N and NH4 +-N extraction, as it had better recovery for soil mineral N extraction, which averaged 113.3% for NO3 ?-N and 94.9% for NH4 +-N. K2SO4 was not found suitable for NO3 ?-N extraction in soil, with an average recovery as high as 137.0%, and the average recovery of CaCl2 was only 57.3% for NH4 +-N. For KCl, the concentration of extracting solution played an important role, and 0.5 mol L?1 KCl could fully extract NO3 ?-N. A ratio of 10:1 of solution to soil was adequate for NO3 ?-N extraction, whereas the NH4 +-N concentration was almost doubled when the solution-to-soil ratio was increased from 5:1 to 20:1. Storage of extracted solution at ?18 °C, 4 °C, and 25 °C had no significant effect (P < 0.05) on NO3 ?-N concentration, whereas the NH4 +-N concentration varied greatly with storage temperature. Storing the extracted solution at ?18 oC obtained significantly (P < 0.05) similar results with that determined immediately for both NO3 ?-N and NH4 +-N concentrations. Compared with the immediate extraction, the averaged NO3 ?-N concentration significantly (P < 0.05) increased after storing 2, 4, and 6 weeks, respectively, whereas NH4 +-N varied in the two seasons. In conclusion, using fresh soil passed through a 3-mm sieve and extracted by 0.5 mol L?1 KCl at a solution-to-soil ratio of 10:1 was suitable for extracting NO3 ?-N, whereas the concentration of extracted NH4 +-N varied with KCl concentration and increased with increasing solution-to-soil ratio. The findings also suggest that shaking for 60 min and immediate determination or storage of soil extract at ?18 oC could improve the reliability of NO3 ?-N and NH4 +-N results.  相似文献   

5.
减氮配施有机物质对土壤氮素淋失的调控作用   总被引:2,自引:1,他引:1  
采用室内土柱模拟试验方法,研究不同氮肥施用下1m土体中氮素的分布和移动特征,揭示土壤氮素动态变化规律。结果表明:FN(农民习惯施无机氮用量)、RN(根据土壤养分供应和作物需求确定的推荐无机氮用量)显著增加了土壤上层NH_4^+-N和NO_3^--N向下层淋失。RN+HA(与推荐无机氮纯养分相等的锌腐酸尿素)和RN40%+OMB(推荐无机氮肥减60%基础上配施自制有机调理物质)可延长上层土壤NH_4^+-N峰值出现时间,降低下层NH_4^+-N。淋溶结束后,等氮量下增施HA较RN降低60cm以下NH_4^+-N残留29.7%~54.2%;降低60—80cm NO_3^--N累积17.4%。RN40%+OMB处理无机氮肥用量最小,0—20cm的NH_4^+-N最高,40—100cm稳定在2.0mg/kg左右;0—20,20—40cm土层NO_3^--N较RN+HA增加12.3%和2.0%,显著降低40cm以下NO_3^--N残留。RN+HA和RN40%+OMB较RN的土壤总无机氮残留分别减少7.4%和20.2%,降低表观淋失率。因此,RN40%+OMB可较好地抑制氮素下移,降低氮素淋失风险,为减少氮素淋失、明确合理氮肥施用方式提供科学依据。  相似文献   

6.
通过分析裂区设计下的6个处理,即小麦季深耕和旋耕2个主处理×玉米季免耕播种、行间深松和行内深松3个副处理:(1)旋耕+免耕播种(RT—NT);(2)旋耕+行间深松(RT—SBR);(3)旋耕+行内深松(RT—SIR);(4)深耕+免耕播种(DT—NT);(5)深耕+行间深松(DT—SBR);(6)深耕+行内深松(DT—SIR),对土壤养分含量和作物产量影响,筛选适宜于小麦—玉米轮作体系的耕作模式。结果表明,各处理土壤养分含量在小麦、玉米两季中均随土层深度增加而降低。小麦季,旋耕处理0—10cm土层土壤全氮、碱解氮、有效磷含量、硝态氮含量显著高于深耕处理;但深耕增加当季30—40cm土层土壤有机质、全氮、碱解氮、有效磷、硝态氮、铵态氮含量。玉米季,DT—NT处理0—30cm土层有机质含量较RT—NT处理增加40.1%~64.3%。RT—SBR、RT—SIR处理显著提升土壤0—30cm全氮含量,其中RT—SBR处理0—10cm土层全氮含量最高,为1.4g/kg。RT—SIR处理显著增加0—20cm土壤碱解氮含量,较RT—NT显著增加15.0%~25.3%。在0—40cm土层,DT—SBR处理的有效磷含量最高,而RT—SBR处理的速效钾含量最高。DT—SIR处理显著提升20—50cm土层硝态氮和铵态氮含量,其中硝态氮含量为8.5~30.4mg/kg,铵态氮含量为2.6~8.9mg/kg。与小麦季相比,玉米季提升10—20cm土层有机质含量、0—50cm土层的碱解氮、有效磷、速效钾含量以及40—50cm土层的硝态氮、铵态氮含量。DT—SBR和DT—SIR处理穗长、百粒重、收获指数和产量显著高于其他处理,且二者产量较RT—NT处理显著增加6.4%~10.8%。玉米季DT—SIR处理的肥料偏利用率和经济效益最高。综上所述,深耕+行内深松处理有利于增加土壤养分含量,且增产效果较好,在本研究中最优。  相似文献   

7.
Lineal extension of Gaeumannomyces graminis var. tritici hyphae along roots of intact wheat plants growing in soils was measured. Hyphal growth rates were lower in soils treated with NH4+-N than with NO3?-N. In a soil that is suppressive to the take-all disease, the controlling influence of NH4+-N was eliminated by soil fumigation (methyl bromide), and reintroduced to fumigated soil by additions of 1% nonsterile soil. Effects of fumigation on hyphal growth were absent in a nonsuppressive soil, and in NO3?-treatments of the suppressive soil. When inocula of selected groups of wheat rhizoplane microflora were reintroduced into a fumigated or a soil-reinoculated soil via a root-food base, the Pseudomonas spp. consistently appeared more suppressive in NH4+-N treatments than the general bacterial flora, Bacillus spp. spores, streptomycetes, and fungi.  相似文献   

8.
通过大田试验,研究黄淮平原潮土区不同轮作方式对不同土层土壤速效养分和小麦产量构成因素及产量的影响.采用随机区组设置连续的小麦-玉米(WM-WM-WM)、1周期小麦-玉米+1周期小麦-大豆(WM-WS-WM)、1周期小麦-玉米+1周期小麦-夏花生(WM-WP-WM)、连续的小麦-夏花生(WP-WP-WP)和连续的小麦-大...  相似文献   

9.
Pot experiments were conducted on three soils differing in their ammonium (NH4 +) fixation capacity [high = 161 mg NH4-nitrogen (N) kg?1 soil; medium = 31.5 mg NH4-N kg?1 soil; and no = no NH4-N was additionally fixed], and the effect of N fertilizer forms and doses on wheat (Triticum aestivum L.) was investigated. Grain yields responded to almost all forms of N fertilizer with 80, 160, and 240 kg N ha?1 in the high, medium, and no NH4 + fixing soil process, respectively. Agronomic efficiency of applied N fertilizers was significantly greater in the no NH4 + fixing soil. Thousand grain weights (TGW) of wheat grown on the high and medium NH4 + fixing soil decreased with increasing N. Grain protein increased with increasing NH4 + fixation capacity. Nitrogen doses and the forms of N fertilizers affected grain protein at a significance level. The combination of urea + ammonium nitrate (NH4NO3) was most effective in increasing grain protein content.  相似文献   

10.
Aerobic incubations to estimate net nitrogen (N) mineralization typically involve periodic leaching of soil with 0.01 M calcium chloride (CaCl2), so as to remove mineral N that would otherwise be subject to immobilization. A study was conducted to evaluate the accuracy of leaching for analysis of exchangeable ammonium (NH4+)-N and nitrate + nitrite (NO3?+ NO2)-N, relative to conventional extractions using 2 M potassium chloride (KCl). Ten air-dried soils were used, five each from Illinois and Brazil, that had been amended with NH4+-N (1 g kg?1) and NO3-N (0.6 g kg?1). Both methods were in good agreement for inorganic N analysis of the Brazilian Oxisols, whereas leaching was significantly lower by 12–48% in recovering exchangeable NH4+-N from Illinois Alfisols, Mollisols, and Histosols. The potential for underestimating net N mineralization was confirmed by a 12-wk incubation experiment showing 9–86% of mineral N recoveries from three temperate soils as exchangeable NH4+.  相似文献   

11.
宁夏引黄灌区稻田氮素浓度变化与迁移特征   总被引:3,自引:0,他引:3  
过量施氮与不合理灌水是农田面源污染加剧的主要原因。为了寻求较优的水氮管理模式以促进农业生产和减少农田退水对黄河水体的污染, 在宁夏引黄灌区典型稻田中开展了不同水氮条件下稻田氮素迁移转化规律研究。结果表明: 不同水氮条件下稻田田面水NH4+-N 与NO3--N 浓度伴随施肥出现明显峰值, NO3--N 峰值出现时间较NH4+-N 晚, 且变化较平缓。3 次追肥时期和整个生育期田面水NH4+-N 平均浓度与施氮量和灌水量都呈显著相关, 田面水NO3--N 平均浓度与施氮量呈显著正相关, 与灌水量相关性不显著。稻田30 cm与60 cm 深度的直渗水NH4+-N 浓度受施肥影响较大, 与田面水NH4+-N 浓度变化规律相似, 90 cm 处直渗水NH4+-N 浓度峰值出现较为滞后, 且浓度较上层土体低, 120 cm 处直渗水NH4+-N 浓度大体呈现持续上升趋势,整个生育期直渗水NH4+-N 平均浓度与施氮量呈显著相关, 仅30 cm 处NH4+-N 平均浓度与灌水量呈负相关, 其他土层深度不显著。30 cm 与60 cm 直渗水NO3--N 浓度在首次灌水后急剧下降, 在施肥后有较小幅度上升, 90 cm 与120 cm 直渗水NO3--N 浓度下降缓慢, 仅30 cm 处NO3--N 平均浓度与施肥量显著正相关。总的结果表明减少施肥或灌水均可达到减少农田氮素淋失的目的。  相似文献   

12.
Changes in soil solution composition and concentrations of exchangeable cations and mineral N in undisturbed cores of pasture soil were investigated in two experiments following applications of sheep urine to the cores. The major cations applied in the urine were K+ and Na+, and the major anions were HCO3? and Cl?. Addition of urine increased concentrations of exchangeable K+, Na+ and NH4+ and measured ionic strength of the soil solution throughout the surface 15 cm of soil, demonstrating that the urine moved through the core by macropore flow immediately following addition. Immediately following urine application the ionic strength in soil solution in the surface 2.5 cm of soil increased from 4–6 MM to 24–41 mM. Hydrolysis of urine-urea was extremely rapid, and in less than 1 d high concentrations of NH4+-N (i.e. 270–370 mg N kg?1) had accumulated in the surface 0–2.5 cm of the urine patch, and soil pH had risen by over one unit. Nitrification then proceeded and, after approximately 15 d, NO3? became the dominant form of mineral N present. During nitrification, soil pH declined and the ionic strength of the soil solution increased substantially with NO3? becoming the dominant anion present in solution. There were concomitant increases in the concentrations of Ca2+ and, to a lesser extent, Mg2+ in the soil solution as NO3? concentrations increased. After approximately 30 d, concentrations of exchangeable NO3? had risen to 250–330 mg N kg?1, soil solution NO3? concentrations had increased to about 80 mmol, dm?3, and ionic strength in the soil solution had increased to 130–140 mM. These results demonstrate the dominating effect of N transformations in causing large fluctuations in the pH, ionic composition and ionic strength of the soil solution in the urine patch. It was concluded that nutrient availability in the patch was affected directly by nutrient addition in urine, and also probably indirectly through the fluctuations in soil solution pH and ionic strength that occur.  相似文献   

13.
Corn requires high nitrogen (N) fertilizer use, but no soil N test for fertilizer N requirement is yet available in Quebec. Objectives of this research were (1) to determine the effects of soil nitrate (NO3 ?)-N, soil ammonium (NH4 +)-N, and N fertilizer rates on corn yields and (2) to determine soil sampling times and depths most highly correlated with yields and fertilizer N response under Quebec conditions. Soil samples were taken from 0- to 30-cm and 30- to 60-cm depths at seeding and postseeding (when corn height reached 20 cm) to determine soil NH4 + and NO3 ? in 44 continuous corn sites fertilized with four rates of N in two replications using a quick test (N-Trak) and a laboratory method. The N-Trak method overestimated soil NO3 ?-N in comparison with the laboratory method. Greater coefficients of determination were observed for soil NO3 ?-N analyses at postseeding compared with seeding.  相似文献   

14.
The role of rhizoplane-inhabiting Pseudomonas spp as inhibitors of take-all on wheat was investigated. Apparent numbers of pseudomonads in wheat rhizoplanes and numbers that were antagonistic in vitro toward Gaeumannomyces graminis var, tritici did not differ when wheat was supplied with NH+4-N or NO?3-N. More intense antagonism was expressed by colonies selected from soil treated with NH+4-N than with NO?3-N, and from isolation media prepared at pH 5.5 rather than at 7.0. Antagonists were not recovered from methyl bromide-treated soil. Highly antagonistic pseudomonads were recovered from a wheat-monoculture soil which is considered suppressive toward the pathogen in the field, and were not recovered from a “nonsuppressive” soil. Pseudomonad antagonism ratings were inversely correlated with take-all severity in the suppressive soil, but not in the nonsuppressive soil. Pseudomonads were considered to be antagonists of G. graminis on rhizoplanes of wheat in a soil exhibiting the “take-all decline” phenomenon, but the significance of this interaction remains to be determined.  相似文献   

15.
The objective of this study was to investigate the effect of adding flue gas desulphurization gypsum (FGDG) on the transformation and fate of nitrogen during co-composting of dairy manure and pressmud of a sugar refinery. The ammonia absorption of FGDG was investigated. The changes in compost temperature, pH, electrical conductivity (EC), moisture, organic matter, the C/N ratio, Kjeldahl N, NH4+-N, NO2?-N, NO3?-N were assessed. The addition of FGDG did not significantly affect compost temperature, pH, EC, moisture, and organic matter degradation. However, the addition of FGDG significantly increased the NH4+-N content in the compost during the thermophilic phase, and the NH4+-N maximal content in the compost with FGDG (CP+G) was 59.9% more than that in the compost without FGDG (CP–G). FGDG was thought to create the formation of (NH4)2SO4 and the cation exchange between NH4+ and Ca2+. The NO2?-N content in the CP+G peaked on day 15, and was not observed in the CP–G. In the final compost products, the NO3?-N concentration in the CP–G was more than that in the CP+G, which was 1451 (CP–G) and 1109 mg·kg?1 (CP+G) dry material. This might be due to the NO2? accumulation in the CP+G, which accelerated N loss in the form of N2O. There is a strong correlation between N2O emission and NO2?-N accumulation in the composting process. Compared with the original N content in the compost mixture, the N loss in CP–G and CP+G were 15.0 and 10.8%, respectively. These results revealed that NH4+-N conservation effect was improved during the thermophilic phase and the total N loss was mitigated by adding FGDG into composting materials. FGDG could be utilized as a potential amendment to conserve nitrogen during composting.  相似文献   

16.
为解决区域土壤质地类型针对性氮肥施用问题,在轻壤土和黏壤土上分别设置不施氮肥,氮肥基追比3∶7,4∶6,5∶5,6∶4和7∶3处理,研究小麦产量、水氮利用效率以及土壤含水量、贮水量、NH_4~+-N、NO_3~--N动态变化规律。结果表明:轻壤质土壤氮肥基追比4∶6的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 265.3 kg/hm~2,27.6 kg/(hm~2·mm),34.4 kg/kg。黏壤质土壤氮肥基追比5∶5的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 363.2 kg/hm~2,28.3 kg/(hm~2·mm),34.8 kg/kg。小麦不同生育期各土层含水量垂直分布变化较大,轻壤质土壤含水量在9.3%~26.2%,而黏壤质为9.7%~27.6%;小麦全生育期内土壤贮水量呈先升高后降低趋势,黏壤质土壤贮水量高于轻壤质。氮素追施量越多土壤表层NH_4~+-N与NO_3~--N含量越高,且随土层加深土壤NH_4~+-N与NO_3~--N含量降低,受降水影响轻壤质土壤NH_4~+-N与NO_3~--N更易于向土层深处淋溶,成熟期黏壤质各土层的NH_4~+-N和NO_3~--N含量均多于轻壤质。说明黏壤质土壤保水保氮肥能力强于轻壤质,氮肥基追比可以适当增加。  相似文献   

17.
坡缕石包膜对尿素氮行为的影响   总被引:2,自引:1,他引:2  
采用静态吸收和土柱淋溶试验方法,分析对比了3种不同用量坡缕石包膜尿素与普通尿素施入土壤后对尿素氮行为的影响,结果表明:在土壤中施用坡缕石包膜尿素较普通尿素减少10.38%~26.24%的氨挥发损失,减少5.88%~27.74%的氮素(NO3--N+NH4+-N)淋溶损失,20%的坡缕石包膜尿素能显著提高土柱土壤NH4+-N含量,3种坡缕石包膜尿素都能极显著提高土柱土壤NO3--N含量.坡缕石包膜后能减少尿素氨的挥发,降低NH4+-N和NO3--N的淋失,提高土壤NH4+-N和NO3--N含量,以20%的坡缕石包膜尿素的综合生态效应最好.  相似文献   

18.
The effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N transformations and composition of ammonia-oxidizing bacteria (AOB) communities was investigated at the centimeter scale in a microcosm experiment under laboratory conditions. After 28 days, samples were collected from soil treated with urea or urea and DMPP at increasing distance from the fertilizer zone; this distance ranged from 0 to 5 cm in both horizontal and vertical directions. The results showed that DMPP application significantly increased soil pH and NH 4 + -N and mineral N (NH 4 + -N, NO 3 ? -N, and NO 2 ? -N) concentrations but decreased (NO 3 ? + NO 2 ? )-N concentration, and such effect was decreased by increasing the distance from the fertilizer zone. Fingerprint profiles of denaturing gradient gel electrophoresis showed that the number of bands decreased by increasing the distance from the fertilizer zone due to decreasing NH 4 + -N concentrations in the urea treatment. Compared to urea applied alone, DMPP application increased NH 4 + -N concentrations and decreased AOB diversity from 0 to 3 cm but promoted diversity from 3 to 5 cm distance from the fertilizer zone. A phylogenetic analysis showed that AOB communities were dominated by Nitrosospira cluster 3. Therefore, the nitrification inhibitor DMPP modified the composition of AOB communities by increasing the distance from the fertilizer zone and this probably was related to the changes in soil pH and inorganic N concentration.  相似文献   

19.
Sandy loam soil, with added glucose, was incubated anaerobically under N2 and subjected to repeated 1-h C2H2 reduction assays. In the presence of 1% glucose the addition of 50 μg NH4+ ?N/g or of 20 μg NO?3 N/g (untreated soil contained 1.2 μg NH+4?N and 7.10 μg NO?3-N/g) caused at least some suppression of nitrogenase activity. Activity developed when the KCl-extractable soil inorganic nitrogen concentration dropped below 35 μg/g. In the presence of 0.1 or 0.05% glucose the addition of 5 μg NH+4?N/g caused some suppression of nitrogenase activity. However, activity developed when the soil NH4+-N concentration dropped below about 4 μg/g. With 0.1% glucose and 5 μg added NO?2 N/g, activity did not develop until the soil NO?2 -N concentration dropped to zero. Added NO?3 N was rapidly reduced and denitrified to NO?2- N, N2O-N and NH+4 N and furthermore caused some inhibition of CO2 evolution. The data from NH4?-addition experiments are consistent with a nitrogenase repression/ derepression threshold of 4 and 35μg NH+4-N/g at 0.05 and 1% glucose concentrations, respectively. The data from NO?2- and NO?3-addition experiments suggest a combination of repression and toxicity effects in the presence of added NO?3 N.  相似文献   

20.
Inhibition of nitrification as a mitigation tool to abate nitrogen (N) losses and improve N use efficiency (NUE) is a promising technology. Nitrification inhibitor (dicyandiamide, DCD) was evaluated in two consecutive wheat-maize rotations (2015–2017), with two different N fertilizer levels applied in wheat (160, 220 kg N ha?1) and maize (180, 280 kg N ha?1). More NH4+-N contents (101% and 102% in wheat and 74% and 73% in maize) and less NO3-N contents (37% and 43% in wheat and 46% and 57% in maize) were observed at both N levels treated with DCD compared to without DCD. Higher pH, lower EC and reduced NO3-N accumulation were the other benefits of DCD. The NO3-N accumulation within the 0–200 cm soil profile was significantly less at both N levels with DCD (66 mg kg?1 and 121 mg kg?1) compared to without DCD (96 mg kg?1 and 169 mg kg?1). Application of DCD also improved the growth and yield in both crops. Increase in NUE from 38% to 49% in wheat and 27% to 33% in maize with DCD at higher N level was also observed. Overall, the effectiveness of DCD in retarding the nitrification process was higher in wheat than maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号