首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen dioxide gas was rapidly absorbed by soil. After a 15 min incubation at 25°C, soil at a moisture content of 16% absorbed 99% of the NO2 introduced into the gas-phase volume of a closed system. The presence of microorganisms hatl no influence on the rate of absorption of the gas by soil. The absorption of NO2 by sandy clay loam soil was not an oxygen- or temperature-dependent process nor did it depend upon the moisture content of the soil. These physical factors acquired significance only in determining the initial rate of absorption of the gas and the rate at which NO2 diffused through the soil. Exposure of soil to NO2 resulted in substantial increases in the levels of NO inf2 sup? N in the soil. Chemical oxidation of the NO inf2 sup? N resulted in an increase in NO inf3 sup? N levels. During a 14-day incubation, NO inf2 sup? N concentrations in sterile soil exposed to an atmosphere containing 100 μg ml?1 of NO2 decreased from 190 μg g?1 of soil to 105 μg g?1 with an accompanying increase in NO inf3 sup? N from 2 μg g? 1 to 63 μg g?1 of soil. Nitrogen dioxide severely inhibited the growth of both aerobic and anaerobic asymbiotic N2-fixing bacteria in soil. After a 48 h incubation at 25°C, soil aggregates exposed to an atmosphere containing 100 μg ml?1 of NO2 contained 88% and 98% fewer aerobic and anaerobic N2-fixing bacteria, respectively. C2H2-reduction measurements showed that nitrogenase synthesis and activity in artificial soil aggregates amended with 2% glucose were inhibited by 20% and 48%, respectively, when exposed to atmospheric concentrations of 35 and 3.5 μg ml?1 of NO2, respectively.  相似文献   

2.
The effect of 50, 100, 150, and 400 μg sodium pentachlorophenate (Na-PCP) per gram soil was studied in nonsterile soil incubated under aerobic and anaerobic conditions, and in sterilized soil inoculated withAzotobacter sp. isolated from the soil. N2 fixation was determined by acetylene reduction. Pentachlorophenate at a concentration of 50 μg g?1 had an inhibitory effect in nonsterile soil incubated aerobically while strong inhibition of dinitrogen fixation in nonsterile soil occurred in the presence of 100 μg g?1 and above. The EC50 values for the inhibition of nitrogenase activity in nonsterile soil incubated aerobically and anaerobically and in sterilized soil inoculated withAzotobacter sp. suspensions were 49.8±1.4 μg Na-PCP g?1, 186.8±2.8 μg Na-PCP g?1, and 660.8±29.3 μg Na-PCP g?1, respectively.  相似文献   

3.
Immobilization of N was measured in a fumigated and in an unfumigated soil by adding (15NH4)2SO4 and following the disappearance of inorganic label from the soil solution and its simultaneous conversion to soil organic N. Calculations based on the measurement of organically-bound 15N gave more consistent values for immobilization than did calculations based on the measurement of the disappearance of label from solution. The fumigated soil immobilized 6.6 μg N g?1 N g?1 soil in 10 days at 25°C, the unfumigated control 4.8 μg. The corresponding gross mineralization rates were 34.9 and 5.6 μg N g?1 soil in 10 days.Addition of 58 μg N as (15NH4)2SO4 to the fumigated soil increased the quantity of the ynlabelled NH4-N extracted at the end of 10 days from 33.8 to 37.8 μg Ng?1 soil, i.e. there was a positive Added Nitrogen Interaction (ANI). The added labelled N produced this ANI, not by increasing the rate of mineralization of organic N, but by standing proxy for unlabelled N that otherwise would have been immobilized.A procedure for calculating biomass N from the size of the flush of mineral N caused by fumigation is proposed. Biomass N (BN) is calculated from the relationship BN = F'N/0.68 where F'N is [(N in fumigated soil incubated for 10 days — (N in unfumigated soil incubated for 10 days)].  相似文献   

4.
The effect of several anaerobic and aerobic cycles of varying duration on N2O emission and labelled N loss was investigated in (15NH4)2SO4 amended soil suspensions. No N2O was evolved from the continuously-anaerobic treatment. The continuously-aerobic treatment produced approximately 0.8 μg N2O-N g?1 dry soil in 56 days. Alternate anaerobic-aerobic cycles increased the net N2O evolution with 7.2 μg N2O-N g?1 dry soil produced in 56 days from the 7-day anaerobic, 7-day aerobic treatment. The net N2O evolution increased further when the duration of the anaerobic and aerobic periods was increased from 7-7 days to 14-14 days (15.7μg N2O-N g?1 dry soil in 56 days), although the total 15N loss from the system was approximately the same for the two treatments. The results of this study show that N2O evolution from soils is likely to be greater under fluctuating moisture conditions than under either continuously well-aerated conditions, or continuously excess-moisture conditions.  相似文献   

5.
Denitrification losses from a horticultural soil as affected by mineral N-fertilization To investigate denitrification in the Ap-horizon from a horticultural cambisol as affected by mineral N-fertilization, measurements of N2O-release from the soil surface and N2O-production in the upper 10 cm soil layer were carried out. The acetylene inhibition technique was used. The loamy sand was amended with 86 and 186 kg N·ha?1 (ammonium nitratecalcium carbonate mixture). The field was cropped with celeriac (Apium graveolens L. var. rapaceum). Denitrification rates as well as soil temperature, moisture, nitrate and watersoluble carbon were measured from mid July until the end of October. In both N treatments denitrification rates were low, but higher rates could be measured in the higher N-treatment. They reached amounts of 0.6 to 134.3 g N2O-N·ha?1day?1. Estimated N-loss by denitrification totalled about 3.5 in the low and 4.9 kg N·ha?1 in the high N-treatment for the whole sampling period (107 days). Spatial variability of denitrification rates was high (39–283%). The relationship between soil temperature, moisture, nitrate content as well as watersoluble carbon and denitrification rate was shown by regression analysis.  相似文献   

6.
The effect of added Pb on the respiration and dehydrogenase activity of two sandy soils, a clay soil and a peat soil, (all with different physico-chemical properties), was studied.A concentration of 375 μg Pb· g? inhibited the respiration of the sandy soil by ca. 15%, 1500 μg Pb· g?ca. 50%. In the clay soil 1500 μg Pb· g? caused a 15% reduction in respiration. The inhibition of respiration in the sandy soil was still ca. 30% 40 months after the addition of Pb. Respiration of the peat soil was not affected by even 7500 μg Pb· g?.Dehydrogenase activity was affected by Pb in a similar way to soil respiration. In the sandy soil a considerable reduction occurred, while in the clay and peat soils dehydrogenase activity was not reduced.It was concluded, that a relationship exists between the inhibitory effects of Pb and the buffering capacity of the soil as expressed by its cation-exchange capacity. Because of these different effects of the same Pb concentration on the various soil types, no single value for the permitted concentration of lead pollution in soil could be established.  相似文献   

7.
Yak and Tibetan sheep graze extensively on natural grasslands in the Qinghai-Tibetan Plateau, and large amounts of excrement are directly deposited onto alpine grasslands. However, information on greenhouse gas (GHG) emissions from this excrement is limited. This study evaluated the short-term effects of yak and Tibetan sheep dung on nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from alpine steppe soil at a water holding capacity (WHC) of 40 or 60 % and from alpine meadow soil at a WHC of 60 or 80 % under laboratory conditions. Cumulative N2O emissions over a 15-day incubation period at low soil moisture conditions ranged from 111 to 232 μg N2O–N kg soil?1 in the yak dung treatments, significantly (P?<?0.01) higher than that of sheep dung treatments (28.7 to 33.7 μg N2O–N kg soil?1) and untreated soils (1.04–6.94 μg N2O–N kg soil?1). At high soil moisture conditions, N2O emissions were higher from sheep dung than yak dung and non-treated soils. No significant difference was found between the yak dung and non-treated alpine meadow soil at 80 % WHC. Low N2O emission in the yak dung treatment from relatively wet soil was probably due to complete denitrification to N2. Yak dung markedly (P?<?0.001) increased CH4 and CO2 emissions, likely being the main source of these two gases. The addition of sheep dung markedly (P?<?0.001) elevated CO2 emissions. Dung application significantly (P?<?0.01) increased global warming potential, particularly for alpine steppe soil. In conclusion, our findings suggest that yak and Tibetan sheep dung deposited on alpine grassland soils may increase GHG emissions.  相似文献   

8.
The symbioses between Trifolium subterraneum, mycorrhizal fungi and Rhizohium are affected by (NH4)2SO4 and by the nitrification inhibitors 2-chloro-6 (trichloromethyl) pyridine (N-Serve) and 2-trichloromethyl pyridine (2TMP). At 50 μg · g?1 soil N-Serve and 2TMP had toxic effects on plant growth, measured as leaf expansion, root length and dry weight. Lower concentrations of N-Serve also produced some toxic symptoms. The addition of (NH4)2SO4 to the soil at 2 and 6 m-equiv NH+4 per pot, resulted in reduced root length and nodulation. Shoot dry weight was reduced at 6 m-equiv NH+4 per pot. In the presence of (NH4)2SO4 the toxic effects of the nitrification inhibitors on plant growth were less.Both nitrification inhibitors reduced development of mycorrhizal entry-points and extent of root colonization (% infection). Percentage infection of the root system was also reduced by (NH4)2SO4. Development of nodules on the lateral roots was increased in the presence of N-Serve at 5 and 15 μ · g?1. This effect, however, was accompanied by a marked reduction in N2ase activity. Smaller increases in nodulation were apparent with 2TMP and were associated with variable N2ase activity.  相似文献   

9.
A field experiment was conducted with wetland rice (Oryza sativa cv. IR-36) in a sandy clay loam soil (Entisol) to study the effect of inoculation with a soil-based mixed culture of four diazotrophic cyanobacteria,Aulosira fertilissima, Nostoc muscorum, N. commune andAnabaena spp., on the N-flux in inorganic NH4 ++NO3 ?+ NO2 ?), easily oxidizable, hydrolysable and non-hydrolysable forms of N in soil during vegetative growth periods of the crop. Effects on grain and straw yield and N uptake by the crop were estimated. The effects of applying urea N and N as organic sources, viz.Sesbania aculeata, Neem (Azardirachta indica) cake and FYM, each at the rate of 40 kg N ha?1, to the soil were also evaluated. Inoculation significantly increased the release of inorganic N, evidenced by its increased concentrations either in soil or in soil solution. However, such increases rarely exceeded even 4% of total N gained in different froms in the soil system by inoculation during the vegetative growth stages of the rice plant, when the nutritional requirement of the plants is at a maximum. Most of the N2 fixed by cyanobacteria remained in the soil as the hydrolysable form (about 85%) during this period. Inoculation caused an insignificant increase in grain (8%) and straw (11%) yield, which was, however, accompanied by a significant increase in N uptake by the grain (30%) and an increase in total uptake of 15.3 kg N ha 1. Such beneficial effects of inoculation varied in magnitude with the application of organic sources, with farmyard manure (FYM) being the most effective. Application of urea N, on the other hand, markedly reduced such an effect.  相似文献   

10.
Root samples of 11 non-cultivated monocotyledonous and 7 dicotyledonous species taken during a wet summer had low mean nitrogenase activities of 10.2 and 7.1 nmol C2H4·g?1 DW·h?1 after preincubation at pO2 0.02, respectively. Maxima of 139–169 nmol·g?1·h?1 were observed with Agrostis vulgaris and Agropyron repens on a sandy soil poor in Corg. Three of 6 early, but none of 4 late fodder maize cultivars had a very low activity up to 0.5 nmol·g?1h?1. Oat, rye and wheat roots from plots with organic or mineral N fertilizers had activities between 1.3 and 7.3 nmol·g?1h?1 at flowering, which were not correlated with their Azospirillum populations (102-107·g?1 after preincubation). Winter wheat and barley roots given 0, 40, 80 and 120 kg. ha?1 NH4NO3-N in 0–3 applications had mean activities of 0.08, 4.06, 0.09 and 0.08 nmol or 1.77, 2.67, 0.36 and 0.23 nmol C2H4g?1·h?1 after flowering, respectively. An appreciable part of this activity could be removed by root washing. In preincubated rhizosphere soil of wheat and barley populations of N2-fixing, facultative anaerobic Klebsiella and Enterobacter spp. were 10–100 times higher than those of Azospirillum sp., both being higher in O N than in 80 kg N·ha?1 trials.  相似文献   

11.
Abstract

Some cyanobacteria strains have biofertilization and/or bioconditioning effects in soils as a result of their ability to fix dinitrogen or produce exocellular polysaccharides. The objective of the present study was to screen indigenous cyanobacteria strains with the potential to improve the N fertility and structural stability of degraded soils, and evaluate their ameliorative effectiveness in semiarid soils of the Eastern Cape, South Africa. Soils from Guquka, Hertzog and Qunu villages, and Fort Cox College were used in the screening study. The results showed that only three cyanobacteria strains (3g, 3v and 7e) out of 97 isolated strains were heterocystous, with appreciable nitrogenase activity and the ability to produce exocellular polysaccharides. Nostoc strains 3g and 3v had a greater ability to produce exocellular polysaccharides, but low potential to fix dinitrogen (4.7 and 1.3?nmol C2H4?μg?1?chl?h?1, respectively). Strain 7e had the greatest ability to fix dinitrogen (16.1?nmol C2H4?μg?1?chl?h?1), but produced fewer exocellular polysaccharides. The ability of strains 3g and 7e to influence maize dry matter (DM) and soil C and N contents was tested in a nitrogen-poor soil with Nostoc strain 9v as a reference strain. Potted soils with and without growing maize plants were inoculated with the different cyanobacteria strains in a glasshouse at a rate of 6?g?m?2 soon after maize emergence. Harvesting and soil sampling were done 6?weeks after inoculation. Inoculation with strains 3g and 7e increased maize DM and N uptake significantly, on par with the reference strain. These increases were consistent with increases in nitrate-N observed at harvest time in inoculated cropped and non-cropped soils. Strain 7e resulted in greater increases in soil nitrate-N, tissue N and uptake than strain 3g, perhaps because of its greater ability to fix dinitrogen. Cropping with maize reduced soil total C and N, possibly owing to its negative effects on cyanobacteria establishment. These results suggest that indigenous cyanobacteria strains screened for greater N2-fixing ability have the potential to improve the productivity of N-poor soils in semiarid regions in South Africa.  相似文献   

12.
Sandy loam soil, with added glucose, was incubated anaerobically under N2 and subjected to repeated 1-h C2H2 reduction assays. In the presence of 1% glucose the addition of 50 μg NH4+ ?N/g or of 20 μg NO?3 N/g (untreated soil contained 1.2 μg NH+4?N and 7.10 μg NO?3-N/g) caused at least some suppression of nitrogenase activity. Activity developed when the KCl-extractable soil inorganic nitrogen concentration dropped below 35 μg/g. In the presence of 0.1 or 0.05% glucose the addition of 5 μg NH+4?N/g caused some suppression of nitrogenase activity. However, activity developed when the soil NH4+-N concentration dropped below about 4 μg/g. With 0.1% glucose and 5 μg added NO?2 N/g, activity did not develop until the soil NO?2 -N concentration dropped to zero. Added NO?3 N was rapidly reduced and denitrified to NO?2- N, N2O-N and NH+4 N and furthermore caused some inhibition of CO2 evolution. The data from NH4?-addition experiments are consistent with a nitrogenase repression/ derepression threshold of 4 and 35μg NH+4-N/g at 0.05 and 1% glucose concentrations, respectively. The data from NO?2- and NO?3-addition experiments suggest a combination of repression and toxicity effects in the presence of added NO?3 N.  相似文献   

13.
Sludge derived from cow manure anaerobically digested to produce biogas (methane; CH4) was applied to maize (Zea mays L.) cultivated in a nutrient-low, alkaline, saline soil with electrolytic conductivity 9.4 dS m?1 and pH 9.3. Carbon dioxide (CO2) emission increased 3.1 times when sludge was applied to soil, 1.6 times when cultivated with maize and 3.5 times in sludge-amended maize cultivated soil compared to the unamended uncultivated soil (1.51 mg C kg?1 soil day?1). Nitrous oxide (N2O) emission from unamended soil was -0.0004 μg nitrogen (N) kg?1 soil day?1 and similar from soil cultivated with maize (0.27 μg N kg?1 soil day?1). Application of sludge increased the N2O emission to 4.59 μg N kg?1 soil day?1, but cultivating this soil reduced it to 2.42 μg N kg?1 soil day?1. It was found that application of anaerobic digested cow manure stimulated maize development in an alkaline saline soil and increased emissions of CO2 and N2O.  相似文献   

14.
Abstract

Two experiments were conducted to evaluate the inhibitory effects of 2-chloro-6 (trichloromethyl) pyridine (nitrapyrin) and dicyandiamide on nitrous oxide (N2O), a greenhouse gas, emission from soils amended with ammonium sulfate. In the two experiments, samples of an Andosol and a Gray Lowland soil were kept in glass vessels sealed with a butyl rubber cap and incubated at 25°C. In the first experiment, nitrapyrin (1 µg g?1 dry soil) and dicyandiamide (10 µg g?1 dry soil) were applied to samples of a water-saturated Andosol and a Gray Lowland soil to which ammonium sulfate had been applied at a rate of 0.1 mg N g?1 dry soil. Nitrapyrin decreased N2O emissions from the Andosol and the Gray Lowland soil by 71% and 24%, respectively. Dicyandiamide decreased N2O emissions from the Andosol and Gray Lowland soil by 31% and 18%, respectively. In the second experiment, nitrapyrin (1 µg g?1 dry soil) was applied to samples of an Andosol at 51% water-filled pore space to which ammonium sulfate had been applied at rates of 0.01, 0.1 and 0.5 mg N g?1 dry soil. Nitrapyrin decreased N2O emissions by 62%, 83% and 74%, respectively. Changes in the NH+ 4 and NO? 2 + NO? 3 concentrations in soil showed that nitrapyrin and dicyandiamide slowed down the nitrification process, but did not completely stop the process at any time. The results reveal the potential of nitrification inhibitors to decrease N2O emission from fertilized soil in a wide range of moisture conditions and nitrogen levels.  相似文献   

15.
The movement of sand by erosion is a common feature of drylands during droughts and periods of sparse vascular plant cover. We examined the effects of sand deposition on the bioavailability of N in cyanobacterial-dominant soil crusts during and after a severe drought. Crusts were sampled from two depths on stony and stone-free surfaces with and without sandy deposits. All sites supported an extensive cover (up to 51%) of N-fixing cyanobacteria and cyanolichens. During drought, sand-covered crusts had up to three-times more mineral N (NH4+ and NO3) and twice the mineralisable N, at both depths, than sand-free samples. Mineralisable N was always greater in the surface soil layer both during and after drought. During the drought, two common N-fixing cyanobacteria (Scytonema cf. hofman-bangii, Stigonema ocellatum) were significantly more abundant on uncovered than sand-covered surfaces. Increased N bioavailability likely results from autolysis and subsequent breakdown of N-enriched cyanobacterial cell material mediated by changes in the soil surface microenvironment. Our work suggests that landscape-level processes of sand deposition have a marked effect on soil nutrient pools by enhancing the accumulation of plant-available N on cyanobacterial crusted surfaces. Inappropriate land management or the loss of cyanobacterial soil crusts during drought would compromise the long-term bioavailability of soil N.  相似文献   

16.
A high soil nitrogen (N) content in irrigated areas quite often results in environmental problems. Improving the management practices of intensive agriculture can mitigate greenhouse gas (GHG) emissions. This study compared the effect of maize stover incorporation or removal together with different mineral N fertilizer rates (0, 200 and 300 kg N ha?1) on the emission of nitrous oxide (N2O) and carbon dioxide (CO2) on a sprinkler-irrigated maize (Zea mays L.). The trail was conducted in the Ebro Valley (NE Spain) in a high nitrate-N soil (i.e. 200 g NO3–N kg?1). Nitrous oxide and CO2 emissions were sampled weekly using a semi-static closed chamber and quantified using the photoacoustic technique in 2011 and 2012. Applying sidedress N fertilizer tended to increase N2O emissions whereas stover incorporation did not have any clear effect. Nitrification was probably the main process leading to N2O. Denitrification was limited by the low soil moisture content (WFPS <?54%), due to an adequate irrigation management. Emissions ranged from ??0.11 to 0.36% of the N applied, below the IPCC (2007) values. Nitrogen fertilization tended to reduce CO2 emission, but only in 2011. Stover incorporation increased CO2 emission. Nitrogen use efficiency decreased with increasing mineral fertilizer supply. The application of N in high N soils of the Ebro Valley is not necessary until the soil restores a normal mineral N content, regardless of stover management. This will combine productivity with keeping N2O and CO2 emissions under control provided irrigation is adequately managed. Testing soil NO3 ?–N contents before fertilizing would improve N fertilizer recommendations.  相似文献   

17.
A loam from the Frilsham and one from the Wickham Series were incubated at 50 and 90 per cent of their water contents at saturation with 100 μg NH4NO3-Ng?1 soil in the presence and absence of C2H2 (0.5 per cent, v/v). Acetylene inhibited nitrification in both soils, but had no effect on mineralization of N. No denitrification (measured as the production of N2O in the presence of C2H2) occurred during incubation at 50 per cent saturation. At 90 per cent saturation, denitrification resulted in a loss of 28.4 and 36.7 μg Ng?1 after 48 h from the Frilsham and Wickham soils, respectively. The concurrent inhibition of nitrification had no effect on the extent of denitrification at this time. In the Wickham soil, NO3? was exhausted after 168 h incubation in the presence of C2H2 and denitrification was underestimated by 13 μg Ng?. The data suggested that concurrent inhibition of nitrification during measurement of denitrification using the C2H2 inhibition technique is most likely to affect the estimate of denitrification loss when NO3?supply is limited by the inhibition of nitrification.  相似文献   

18.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

19.
Sodium chloride, at rates up to 100 mg g?1, was added to a Sassafras sandy loam amended with finely-ground alfalfa to determine the effect of NaCl on CO2 evolution, ammonification, and nitrification in a 14-week study. A NaCl concentration of 0.25 mg g?1 significantly reduced CO2 evolution by 16% in unamended soil and 5% in alfalfa-amended soil. Increasing NaCl progressively reduced CO2 evolution, with no CO2 evolved from the soil receiving 100 mg NaCl g?1. A 0.50 mg NaCl g?1 rate was required before a significant reduction in decomposition of the alfalfa occurred. The NO?2-N + NO?3-N content of the soil was significantly reduced from 40 to 37 μg g?1 at 0 and 0.25 mg NaCl g?1, respectively in the unamended soil. In the alfalfa amended soil, nitrification was significantly reduced at 5 mg NaCl g?1. At 10 mg NaCl g?1, nitrification was completely inhibited, there being only 6 and 2 μg NO?2-N + NO?3-N g?1 in the alfalfa amended and unamended soil, respectively. In the alfalfa amended soil NH+4-N accumulated from 6 μg g?1 at the 0 NaCl rate to a maximum of 54 μg g?1 with 25 mg NaCl g?1. These higher NH+4-N values resulted in a 0.5 unit increase in the pHw over that of the 0 NaCl rate in the alfalfa amended soil. At NaCl concentrations above 25 mg g?1 there was a reduction in NH+4-N. The addition of alfalfa to the soil helped to alleviate the adverse affects of NaCl on CO2 evolution and nitrification.  相似文献   

20.
Bacteria, Pseudomonas paucimobilis, were inoculated at two concentrations (6.56 × 104 g?1 and 6.56 × 106g?1) into sterilized soil amended with 700 μg glucose-C g?1. Two levels of NH+4-N (11.0μg g?1 and 81.0 μg g?1) were used. The subsequent development was followed for three days by measurement of several biological, chemical and physiological parameters.The amount of bacterial biomass-C (μg g?1 soil) became twice as great in high as in low N treatments, and significantly decreased between 39.5 and 63.5 h for the high inoculum, high N level treatment due to decreasing cell size. By the end of the experiment the cumulative respired carbon was twice as great and more inorganic P was immobilized for high compared to low N treatments and all available NH+4-N was taken up by the final sample time. Soil ATP concentrations were twice as large in high N treatments but the turnover times were twice as long compared to low N systems. The yield coefficient (Y), calculated from respiration and biomass-C values, equalled 0.61 while substrate was plentiful. Nitrogen limitation did not alter the efficiencey with which glucose was transformed into biomass, but rather controlled the total amount of glucose used and biomass produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号