首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Runner hyphae of Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker on seminal roots of wheat seedlings were photographed and their length measured. As well, their length was estimated using the line-intercept method. The correlation of 0.904 between measured and estimated lengths of hyphae was highly significant. This line intercept method was used to estimate the density (length/unit area) of hyphae on roots of plants growing in the presence and absence of a soil suppressive to G. graminis var. tritici. Estimations were made eight times during 28 days growth at 15°C. In fumigated soil (non-suppressive) inoculated with 0.1% ground oat grain infested with G. graminis var. tritici, the density of hyphae on roots started to increase at five days compared with 15 days when soil there was a 10.8% cover of the root surface after 15 days when the hyphae had reached maximum density. Suppression to G. graminis var. tritici is normally detected by a difference in disease rating of roots at 28 days but this study has shown that suppression can be demonstrated by the difference in the density of hyphae if roots are examined between seven and 19 days.  相似文献   

2.
The growth of isolates of Phialophora radicicola var. radicicola, P. radicicola var. graminicola, Gaeumannomyces graminis var. graminis, G. graminis var. tritici and Leptosphaeria narmari was compared on the coleoptiles and roots of wheat seedlings. Fungal growth was measured as the extent and density of dark runner hyphae. All except P. radicicola var. graminicola grew on coleoptiles and all grew on roots although only G. graminis var. tritici extensively colonized the root stele. Growth rate on roots was positively correlated with that on agar, P. radicicola var. graminicola and L. narmari growing at about half the rate of the other fungi; hyphal density was high for P. radicicola var. graminicola but relatively low for the other fungi. For P. radicicola var. radicicola, P. radicicola var. graminicola and G. graminis var. tritici growing from buried inocula, the extent and density of hyphae up roots towards the seed was similar to that down, but G. graminis var. tritici caused chocolate-brown stelar discoloration up roots only.Root invasion by P. radicicola var. radicicola, P. radicicola var. graminicola and G. graminis var. tritici was described from sections. Each gave a different pattern of hyphae and host response within an inoculum layer, and progressive changes occurred away from the inoculum. Studies of the rate of penetration by each fungus and the rate and pattern of death of cortical cells explained the differences between fungi. G. graminis var. tritici penetrated living cells in advance of other soil micro-organisms, and hence by hyaline hyphae inducing much lignituber formation as a host resistance reaction. P. radicicola var. graminicola penetrated only senescent or dead cells in association with other soil microorganisms, and hence by dark hyphae, inducing little lignituber formation. P. radicicola var. radicicola was intermediate in all these respects. The high hyphal density of P. radicicola var. graminicola was due to the colonization of cortical cells and spaces by dark, clearly visible, rather than hyaline hyphae, which are invisible in unstained roots. Cell death in the outer cortex explained the observed progressive restriction of growth by all fungi to the inner cortex with increasing distance from the inoculum. Spread by G. graminis var. tritici up roots was ectotrophic relative to the stele but down roots hyphae spread rapidly within the stele. Stelar reactions suggested as resistance mechanisms occurred up roots only. Their absence down roots is attributed to infection disrupting stelar transport.  相似文献   

3.
Seminal roots of wheat and barley seedlings were inoculated with G. graminis var tritici on regions 0, 5- and 15-days old, and assessed for intensity and extent of infection after standard times. Wheat roots were most heavily infected on young regions, whereas barley roots were most heavily infected on old ones. The effect of root age in wheat was similar in both unsterile and aseptic conditions, so it could not be ascribed to saprophytic rhizosphere micro-organisms interacting with G. graminis.The contrasting results for wheat and barley are explained by a single hypothesis, based on decreasing host-resistance in the root cortex but increasing resistance at or near the endodermis as the roots age. It is suggested that, under some conditions, even small amounts of non-pathogenic root cortex death can enhance infection by G. graiminis. This interpretation may explain several aspects of take-all and its biological control by other dark mycelial parasites.  相似文献   

4.
Take-all of wheat caused by Gaeumannomyces graminis var. tritici was less when soils in glasshouse pots were fertilized with NH4+-N than with NO3?-N. The form of N did not alter countable populations of microorganisms in the rhizosphere or rhizoplane, but altered the numbers of bacteria and streptomycetes that inhibited the pathogen's growth in vitro. The pH of the medium used to isolate these microorganisms, whether similar or dissimilar to the pH of the rhizosphere, had some influence both upon countable populations and upon the proportions of antagonists. Highest counts of the rhizoplane microflora were on agar media with a pH similar to that of the soil. Most antagonists were isolated from a soil that is physically and chemically conducive to parasitism of wheat roots by Gaeumannomyces, but which contains a microflora suppressive toward the parasitic colonization of the roots. Isolates of the general bacterial flora, of Pseudomonas spp. and of streptomycetes, but not of Bacillus spp. inhibited the in vitro growth of G. graminis.  相似文献   

5.
Interactions between the biocontrol fungus Clonostachys rosea IK 726 and a tomato/Glomus intraradices BEG87 symbiosis were examined with and without wheat bran, which served as a food base for C. rosea. In soil without wheat bran amendment, inoculation with C. rosea increased plant growth and altered shoot nutrient content resulting in an increase and decrease in P and N content, respectively. Inoculation with G. intraradices had no effect on plant growth, but increased the shoot P content. Dual inoculation with G. intraradices and C. rosea followed the pattern of C. rosea in terms of plant growth and nutrient content. Wheat bran amendment resulted in marked plant growth depressions, which were counteracted by both inoculants and dual inoculation increased plant growth synergistically. Amendment with wheat bran increased the population density of C. rosea and reduced mycorrhizal fungus colonisation of roots. The inoculants were mutually inhibitory, which was shown by a reduction in root colonisation with G. intraradices in treatments with C. rosea and a reduction in colony-forming units (cfu) of C. rosea in treatments with G. intraradices, irrespective of wheat bran amendment. Moreover, both inoculants markedly influenced soil microbial communities examined with biomarker fatty acids. Inoculation with G. intraradices increased most groups of microorganisms irrespective of wheat bran amendment, whereas the influence of C. rosea on other soil microorganisms was affected by wheat bran amendment. Overall, inoculation with C. rosea increased and decreased most groups of microorganisms without and with wheat bran amendment, respectively. In conclusion, despite mutual inhibition between the two inoculants this interaction did not impair their observed plant growth promotion. Both inoculants also markedly influenced other soil microorganisms, which should be further studied in relation to their plant growth-promoting features.  相似文献   

6.
Glasshouse experiments have shown that the prior colonisation of wheat roots by Gaeumannomyces graminis var. graminis, a fungus closely related to the wheat and oat take-all fungi but non-pathogenic to temperate cereals, reduced take-all infection along the roots. Cross-protected wheat plants produced grain yields significantly greater than those of unprotected plants but not significantly different to those of healthy wheat plants. A Phialophora-like fungus from grass roots did not confer the same degree of protection. There is some evidence that the cross-protection mechanism may be a specific host response nduced by var. graminis. The possible use of var. graminis in the biological control of take-all is discussed.  相似文献   

7.
The effect of soils suppressive to Gaumannomyces graminis var. tritici (Ggt) on the severity of root and crown rots caused by Rhizoctonia solani, Gibberella zeae, Pythium irregulare, Cochliobolus sativus and Fusarium culmorum was tested in pot bioassays. An induced suppressive soil was obtained from the rhizosphere of wheat plants grown at 15°C for 28 days in fumigated soil inoculated with live inoculum (colonized oat grain) of Ggt.Root rot caused by R. solani was significantly less in soil amended with either induced or naturally suppressive soil. Disease caused by the other pathogens was also reduced by the induced suppressive soil, with the least reduction occurring with F. culmorum.Colonization of the surfaces of seminal roots of wheat plants by Gaeumannomyces graminis var. graminis (Ggg) and a Phialophora-like fungus (Plf 119) was also studied using the line-intercept method. In non-suppressive soil the maximum area of the primary seminal root colonized by Ggg was 7.4 per cent and by Plf 119 was 3.3 per cent. Colonization of roots by Ggg and Plf 119 was reduced substantially by the addition of induced suppressive soil.  相似文献   

8.
Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and bacteria from the genus Paenibacillus (P. macerans and P. polymyxa) were examined in a greenhouse pot experiment with Cucumis sativus with and without organic matter amendment (wheat bran). P. polymyxa markedly suppressed AM fungus root colonization irrespective of wheat bran amendment, whereas P. macerans only suppressed AM fungus root colonization in combination with wheat bran amendment. Dual inoculation with P. macerans and G. intraradices in combination with wheat bran amendment also caused severe plant growth suppression. Inoculation with G. intraradices was associated with increased levels of dehydrogenase activity and available P in the growth substrate suggesting that mycorrhiza formation accelerated the decomposition of organic matter resulting in mobilization of phosphorus. Inoculation with both Paenibacillus species increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the AM fungus biomarker 16:1ω5, which was reduced, though not significantly. Similarly, inoculation with G. intraradices increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the Gram-positive bacteria biomarker 15:0 anteiso, which was overall decreased by G. intraradices inoculation. In combination with wheat bran amendment G. intraradices inoculation caused a 39% reduction in the amount of 15:0 anteiso in the treatment with P. polymyxa, suggesting that G. intraradices suppressed P. polymyxa in this treatment. In conclusion, plant growth promoting species of Paenibacillus may have suppressive effects of AM fungi and plant growth, especially in combination with organic matter amendment. The use of an inert plant growth media in the present study allowed us to study rhizosphere microbial interactions in a relative simple substrate with limited interference from other soil biota. However, the results obtained in the present work mainly show potential interactions and should not be directly extrapolated to a soil situation.  相似文献   

9.
The systemic effect of root colonization by the arbuscular mycorrhizal fungus Glomus mosseae on infection of barley by Gaeumannomyces graminis var. tritici (Ggt) was studied. In split-root systems of barley one side was inoculated with G. mosseae and the other side was inoculated with Ggt.Root infection by Ggt was systemically reduced when barley plants showed high degrees of mycorrhizal root colonization, whereas a low mycorrhizal root colonization exhibited no effect on Ggt infection. Our results show a clear systemic bioprotectional effect depending on the degree of root colonization by the mycorrhizal fungus. At a higher mycorrhizal colonization rate the concentration of salicylic acid (SA) was increased in roots colonized by the mycorrhizal fungus but no systemic increase of SA could be measured in non-mycorrhizal roots of mycorrhizal plants, indicating that the systemic bioprotectional effect against Ggt is not mediated by salicylic acid.  相似文献   

10.
Fluorescent pseudomonads isolated from a soil suppressing Fusarium wilt significantly reduced take-all (Gaeumannomyces graminis var. tritici) in wheat and Ophiobolus patch (G. graminis var. avenae) in Agrostis turfgrass. The bacteria were mixed into a conducive soil at a concentration of 107 colony-forming units (cfu)g?1 soil at sowing. There were significantly fewer (P ? 0.05) diseased wheat roots in the treatments with the bacteria and pathogen than in those with the pathogen alone. Dry weights of the tops of wheat and Agrostis turfgrass were significantly greater (P ? 0.01) in treatments inoculated with the bacteria in the presence of the pathogens compared to controls with the pathogens alone. Dry weights of the tops of plants from treatments inoculated with the bacteria alone were not significantly different to those of healthy wheat non-inoculated with the bacteria, showing that the fluorescent pseudomonads did not stimulate plant growth. At the end of the experiments, the bacterial isolates (genetically-marked with rifampicin resistance) were recovered from wheat roots and rhizosphere soil at concentrations of 105–107cfu g?1 fresh weight of roots or oven-dried rhizosphere soil.Many of the fluorescent pseudomonads and some non-fluorescent pseudomonads showed in vitro antibiosis on quarter-strength potato dextrose agar (QPDA) against the pathogens. However, there was no correlation between in vitro antibiosis on agar plates and suppression of disease in pot experiments. Further, while some isolates of G. graminis var. tritici and var. avenae were inhibited by certain bacterial isolates, other isolates of the same fungus were not similarly inhibited by the same isolates of bacteria. Most of the fluorescent pseudomonads that produced inhibition zones (>5mm) against G. graminis var. tritici on QPDA did not do so on King's medium B, where fluorescent siderophores were formed. In vitro antibiosis is, therefore, a poor criterion for selecting effective bacterial antagonists of the wheat take-all fungus. All of the fluorescent pseudomonads tested produced siderophores in low-Fe media while a non-fluorescent pseudomonad and the fungal pathogens did not produce siderophores of comparable activity. The addition of 500 μg FeEDTA g?1 with a lower stability constant did not. The evidence suggests that iron competition at the rhizoplane or in the rhizosphere is one mechanism of suppression.  相似文献   

11.
《Applied soil ecology》2009,42(3):336-341
This study investigated the interactions between the arbuscular mycorrhizal fungus (AMF) Glomus mosseae and the plant growth-promoting fungi (PGPF) Penicillium simplicissimum GP17-2 and Trichoderma harzianum GT3-2 in relation to their colonization of roots and the rhizosphere of cucumber (Cucumis sativus L.), and their effect on plant growth and suppression of the damping-off pathogen Rhizoctonia solani. Combined inoculation of T. harzianum with G. mosseae increased the percentage of AMF root colonization, but the presence of P. simplicissimum had no significant effect on mycorrhizal formation. The existence of G. mosseae decreased the population development of T. harzianum in and/or around the roots, however, growth of P. simplicissimum was not affected. Both PGPF isolates were effective in increasing the plant shoot and root dry weight, G. mosseae, however, was not. Nevertheless, co-inoculation of G. mosseae with T. harzianum synergistically enhanced plant growth. A comparable additive effect on plant growth was not observed when P. simplicissimum was combined with G. mosseae. Treating plants with the PGPF either simultaneously with the pathogen or prior to pathogen infection suppressed damping-off disease. G. mosseae was significantly effective in reducing disease severity when inoculated prior to the pathogen but not when inoculated simultaneously with the pathogen. Interestingly, the levels of disease protection achieved by the single inoculation of P. simplicissimum, T. harzianum or G. mosseae were significantly increased by combined inoculation of each PGPF with G. mosseae.  相似文献   

12.
The extent of damage to the host plant caused by Gaeumannomyces graminis var. tritici (Ggt) and var. graminis (Ggg) is a result of a net effect of host susceptibility and mycelium infectivity. The disease severity on cereal roots caused by G. graminis (Gg) fungi varies considerably depending on the genetic subtypes. Results of our rhizobox placement experiments additionally showed a subtype-specific effect of the spatial distance between host and fungus on the infection. The highest pathogenicity of each subtype was found in different zones of the root system: pathozones of different subtypes alternated along the root. The extent of the pathozone profiles did not depend on the infectivity of the inoculum and plant age. However, disease severity was shown to be affected by defence reactions of the host plant. An attack of a fungal subtype that is easily recognized by the host plant leads to defence reactions like increased root growth, thus minimizing the damage to the shoot. Detailed analysis showed that a Ggt subtype had a high potential for colonizing root laterals. It formed concentric zones of high colonization efficiency at a distance of ca. 5 cm around the shoot.  相似文献   

13.
The effect of Bacillus thuringiensis (B.t.) inoculation on plant growth and on the intra- and extraradical mycorrhizal development of lettuce roots colonized by Glomus mosseae or Glomus intraradices was examined in an inert, soil-less substrate. Histochemical determination of succinate dehydrogenase (SDH) and alkaline phosphatase (ALP) activities which indicate active fungal metabolism was carried out at two phosphorus (P) levels. The presence of B.t. increased extra- and intraradical colonization [measured as frequency (%F), intensity (%I) and percentage of arbuscules (%A)] for both arbuscular mycorrhizal fungi (AMF) rather than plant growth or nutrition regardless P level. Under the lowest level of P fertilization, B.t. enhanced to a similar extent the extra- and intraradical development of both endophytes, but the proportion of fungal tissue showing SDH or ALP was increased in G. intraradices-colonized plants. [SDH: 458% (M) and 512% (A); ALP: 358% (M) and 300% (A)]. P supply decreased G. intraradices colonization to a higher extent than G. mosseae. Nevertheless, the totality of G. intraradices structures developed in P-amended medium showed intraradical o extraradical activity, while in G. mosseae-colonized roots, SDH and ALP activities highly decreased relative to fungal tissue determined by TB staining as affected by P. Our results show that bacterial inoculation compensates the negative effect of P on the intraradical fungal growth and vitality. P amendment reduced in a higher extent G. intraradices infection intensity (non-vital and vital staining) and G. mosseae activity (ALP staining). Thus, big differences in the proportion of SDH-active infection showing ALP activity in mycelium developed by each endophyte were noted at the highest P level. Physiological plant parameters such as photosynthetic activity did not explain specific changes on each arbuscular-mycorrhizal fungus as affected by P or B.t. inoculation. The increased extraradical mycelium development and metabolic fungal activity as a result of B.t. inoculation positively affected N and P plant content and photosynthetic rate in G. intraradices-colonized plants under the lowest P conditions. In general, the increased metabolically active fungal biomass in co-inoculated plants was irrespective of P level and was not related to the P plant uptake from the inert soil-less substrate. These results show the bacterial effect increasing the physiological and metabolic status of AM endophytes, which not only confirms but also extends previous findings on arbuscular mycorrhizae-bacteria interactions. The present study emphasizes the ecological and practical importance of rhizosphere free-living bacteria as mycorrhizae-helper microorganisms.  相似文献   

14.
The effectiveness of reforestation programs on degraded soils in the Mediterranean region is frequently limited by a low soil availability and a poor plant uptake and assimilation of nutrients. While organic amendments can improve the nutrient supply, inoculation with mycorrhizal fungi can enhance plant nutrient uptake. A pot experiment was conducted in 2004 to study the influence of inoculation with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) or with a mixture of three AM fungi (G. intraradices, G. deserticola Trappe, Bloss. & Menge, and G. mosseae (Nicol & Gerd.) Gerd. & Trappe) and of an addition of composted sewage sludge or Aspergillus niger–treated dry‐olive‐cake residue on plant growth, nutrient uptake, mycorrhizal colonization, and nitrate reductase (NR) activity in shoot and roots of Juniperus oxycedrus L. Six months after planting, the inoculation of the seedlings with G. intraradices or a mixture of three AM fungi was the most effective treatment for stimulating growth of J. oxycedrus. There were no differences between the two mycorrhizal treatments. All treatments increased plant growth and foliar N and P contents compared to the control plants. Mycorrhizal inoculation and organic amendments, particularly fermented dry olive cake, increased significantly the NR activity in roots.  相似文献   

15.
Evaluation of the performance of inoculants in undisturbed and unsterilized soils, where diverse communities of microorganisms are present, is a necessary step before using arbuscular mycorrhizal fungi (AMF) in agricultural technology. The effects of inoculation with Glomus mosseae on arbuscular mycorrhizal colonization, growth, and nitrogen (N) uptake of wheat plants in unsterilized tilled and untilled soils from the Argentinean Pampas with different levels of N fertilization were assessed. The fertilization and inoculation effects depended on the tillage treatments. In no-tillage, the colonization was greater than in conventional tillage, but it was reduced by the N fertilization. In conventional tillage, the inoculation with G. mosseae increased colonization. Both conventional tillage and N fertilization promoted wheat root growth. Inoculation did not affect root growth but enhanced N concentration in roots when fertilizer was not applied.  相似文献   

16.
Twelve Azospirillum brasilense strains isolated from wheat (Triticum aestivum L.) roots were compared for root colonization, growth stimulation, and nitrogen (N) supply to young wheat plants cv. Klein Chamaco grown in sterile nutrient solutions without N. All the strains inoculated colonized both the root surface and interior, and most strains stimulated root and shoot growth, although the degree of stimulation was different for the different strains. Some strains increased the total N content of roots and tops at the end of the experiment, in one case up to 80% of the uninoculated plants, while others produced no effect on N content. No correlation could be found between growth stimulation or the amount of N supplied to the plant with the degree of root colonization. When the most efficient strain for N fixation was inoculated to different wheat cultivars, it stimulated growth and supplied N to the five cultivars tested, although the degree of root colonization, growth stimulation and N supply showed differences among the cultivars. Our results suggest that there exists the potential of A. brasilense to supply N to wheat plants in considerable amounts, although an adequate strain are still to be identified.  相似文献   

17.
通过小麦/蚕豆间作盆栽试验,研究比较了单作和间作条件下不同氮、钾营养水平对小麦氮、钾养分吸收和小麦白粉病发生的影响。结果表明:小麦蚕豆间作提高小麦子粒产量74.7%~133.9%,低氮条件下,间作提高小麦氮吸收量14.7%~169%;在高氮条件下,间作提高氮吸收量的优势降低;间作提高小麦钾吸收量32%~69%,增施钾肥提高小麦钾吸收量25.5%~57.3%。小麦间作蚕豆能明显减轻小麦白粉病的发生,间作平均防效达42.1%~83.1%;小麦白粉病的发生与小麦茎叶的氮吸收量呈显著正相关关系,r=0.623*~0.702*.*。  相似文献   

18.
Take-all, caused by Gaeumannomyces graminis var. tritici, is an important soilborne disease of wheat worldwide. Pseudomonas fluorescens producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are biocontrol agents of take-all and provide natural suppression of the disease during wheat monoculture known as take-all decline. To identify factors that could contribute to the effectiveness of 2,4-DAPG producers in take-all suppression, P. fluorescens strains Q8r1-96 (genotype D) and Q2-87V1 (genotype B; reduced antibiotic production) were tested against three pathogen isolates differing in sensitivity to 2,4-DAPG (LD5, ARS-A1 and R3-111a-1) and two wheat cultivars (Tara and Buchanan). The antibiotic sensitivity of the pathogen and cultivar significantly affected the level of take-all suppression by Q8r1-96 and Q2-87V1; suppression was greatest with LD5 and Tara. Q8r1-96 suppressed ARS-A1 and R3-111a-1 on Tara but not Buchanan, and Q2-87V1 failed to suppress either pathogen isolate on either cultivar. Q8r1-96 colonized the rhizosphere of Tara and Buchanan grown in soil similarly, but 2,4-DAPG accumulation was higher on the roots of Buchanan than Tara. 2,4-DAPG at 7.5 μg mL−1 reduced the growth of roots of both cultivars, and 10 μg mL−1 caused brown necrosis and tissue collapse of seedling roots and reduced root hair development. The half-life of 2,4-DAPG in the rhizosphere was estimated to be 0.25 days. These results suggest that several interconnected factors including sensitivity of G. graminis var. tritici to 2,4-DAPG, wheat cultivar, fluctuations in populations of 2,4-DAPG producers, and antibiotics accumulation in the rhizosphere will impact the robustness of take-all suppression by P. fluorescens in the field.  相似文献   

19.
The survival of Ophiobolus graminis (Sacc.) Sacc. in buried wheat straw, but not of Cercosporella herpotrichoides Fron, was prolonged when nitrogen was added to soil. Five isolates of C. herpotrichoides survived similarly despite differences in their abilities to decompose cellulose and wheat straw. However, survival of O. graminis, at different temperatures, was entirely consistent with its cellulolytic activity. Unlike O. graminis, C. herpotrichoides survived up to 19 weeks in buried agar discs. These differences suggest contrasting means of survival of the pathogens.Both fungi showed short-term saprophytic activity in soil, growing into autoclaved wheat straws or coleoptiles only during the first few days after burial. An apparently increased competitive saprophytic colonization of straws at 10 than at 21°C, however, was largely an artefact of the “Cambridge Method” and not an indication of increased competitive saprophytism. Burial in unsterilized soil reduced the decomposition-rate of straws colonized by Chaetomium globosum Kunze and increased that of straws colonized by C. herpotrichoides. It also caused O. graminis to form lysis-resistant hyphae from previously unadapted ones.  相似文献   

20.
The wide use of pesticides in modern agriculture may cause side effects on the non-target microflora. Data on the fungicide Tebuconazole effects on Azospirillum-wheat association are scarce. We analyzed the effects of Tebuconazole on: (a) Azospirillum brasilense Sp245 growth in pure culture, (b) A. brasilense Sp245 colonization of Triticum aestivum cv ProINTA Oasis roots, (c) A. brasilense Sp245-inoculated seedlings growth under normal and water stress conditions in the presence of 20% polyethylene glycol 8000. Seeds were separated in Tebuconazole-free and Tebuconazole-treated lots. Inoculated and non-inoculated seedlings were grown in hydroponics in the dark at 20 °C for 72 h. Root surface, coleoptile length, fresh and dry (DW) weights in both tissues and diazotrophic bacterial most probable number in roots were determined. Water contents and shoot-to-roots DW ratio were calculated. Neither Azospirillum growth nor root colonization was affected by Tebuconazole. Under normal growth conditions most of the growth parameters analyzed, revealed a clear positive effect of A. brasilense on wheat seedlings up to 72 h treatments. The characteristic Azospirillum enhancing effects observed on roots remained unaltered by Tebuconazole. The present study shows that Tebuconazole is compatible with A. brasilense Sp245-wheat inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号