首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
河套灌区参考作物蒸发蒸腾量估算方法研究   总被引:2,自引:0,他引:2  
参考作物蒸发蒸腾量(ET0)是计算作物需水量的基础,一般用FAO推荐的Penman-Monteith公式(PM公式)计算。但是在河套灌区部分地区缺少辐射数据的观测,因而无法利用PM公式计算ET0。本文选用河套灌区临河气象站1990—2012年的气象资料,分析了利用PM公式计算参考作物蒸发蒸腾量ET0与气象要素的关系,发现对ET0影响最大的气象因素为净辐射,其次为饱和水气压差和平均温度。建立了基于饱和水气压差、温度和风速的ET0估算公式,验证结算显示相关系数、纳什效率系数和总量平衡系数分别为0.96、0.92、1.00。在风速缺测的条件下,也建立了基于饱和水汽压差和温度的ET0估算公式。以上两个公式为河套灌区缺资料条件下ET0的估算提供了简单且准确的估算方法。  相似文献   

2.
加孜拉 《安徽农业科学》2014,(25):8866-8869
根据喀什噶尔河流域2个气象台站的历史气候资料以及P-M公式,计算流域各地逐年参考作物蒸散量,采用线性回归方法,分析了近50年各站气候要素、年参考作物蒸散量的变化特征及参考作物蒸散量变化的气候成因。结果表明,全流域平均气温、日照时数、空气相对湿度呈升高趋势,年平均风速呈减小的趋势,降水量变化不明显;年参考作物蒸散量与平均气温、日照时数、风速呈正相关关系,与平均相对湿度呈负相关关系,与降水量没有直接的相关性;受各气候要素变化的综合影响,近50年喀什噶尔河流域的参考作物蒸散量总体呈减小趋势,这与全球和我国大部分地区的变化基本一致。  相似文献   

3.
石羊河流域参考作物蒸发蒸腾量空间分布规律的研究   总被引:1,自引:0,他引:1  
根据甘肃省石羊河流域及周边的17个站近50年的观测资料,应用1998年FAO灌溉排水丛书第56分册最新推荐的Penman-Monteith公式计算各站历年参考作物蒸发蒸腾量ET0,分析了海拔高度与ET0的相关性.石羊河流域ET0值空间变化比较大,从山区到绿洲平原ET0多年平均值呈递增趋势.同时借助地理信息系统软件MapGIS6.5和Arcyiew3.1建立了石羊河流域参考作物蒸发蒸腾量的空间分布式模型,本研究只考虑了海拔高度对参考作物蒸发蒸腾量的空间分布的影响,暂未对坡地上的辐射及温度进行校正.  相似文献   

4.
石羊河流域参考作物蒸发蒸腾量空间分布规律的研究   总被引:9,自引:0,他引:9  
根据甘肃省石羊河流域及周边的17个站近50年的观测资料,应用1998年FAO灌溉排水丛书第56分册最新推荐的Penman-Monteith公式计算各站历年参考作物蒸发蒸腾量Ero,分析了海拔高度与Ero的相关性。石羊河流域Ero值空间变化比较大,从山区到绿洲平原Ero多年平均值呈递增趋势。同时借助地理信息系统软件MapGIS6.5和Arcview3.1建立了石羊河流域参考作物蒸发蒸腾量的空间分布式模型,本研究只考虑了海拔高度对参考作物蒸发蒸腾量的空间分布的影响,暂未对坡地上的辐射及温度进行校正。  相似文献   

5.
[目的]用Penman - Monteith(P -M)简化公式代替标准的Penman - Monteith公式计算参考作物的潜在蒸腾量.[方法]通过2008 -2010年鄯善试验站的气象资料,对Penman - Monteith简化公式(忽略饱和差项)计算的参考作物潜在腾发量(ET0)与FAO推荐的P-M公式计算的参考作物潜在腾发量(ET0(PM))进行比较.[结果]Penman - Monteith简化公式计算的ET0年值略小于Penman - Monteith公式计算的年值,其绝对偏差为75 ~114 mm,相对偏差为10.5; ~14.3;,变异系数分别为0.04和0.06,简化公式的计算稳定性略好于标准的PM公式.两种方法计算的参考作物潜在腾发强度的月变化相近,统计分析的标准差分别为0.80和0.83,变异系数分别为0.23和0.2.空气动力学项中的饱和差项是Penman - Monteith简化公式和标准Penman - Monteith公式的主要差别,通过回归分析表明两种公式计算的参考作物潜在腾发量具有显著的线性相关性,各月a值很接近,差值最大为0.08,最小仅为0.0041,较好的说明了空气动力学项中的饱和差项对参考作物潜在腾发量的影响较小.[结论]在极端干旱区可利用Penman - Monteith简化公式代替标准的Penman - Monteith公式计算参考作物的潜在蒸腾量.  相似文献   

6.
[目的]运用投影寻踪回归分析法建立苹果树蒸腾量的预测模型,为更方便更好地预测苹果树蒸腾量提供指导。[方法]根据2009年5~9月气象站观测数据,对气温、相对湿度、风速、太阳辐射、大气压、土壤温度、叶温和水面蒸发量进行分析,并应用投影寻踪回归分析法建立了各气象因子与苹果树蒸腾量的预测模型。[结果]气象数据分析表明,大气水势随着气温增高呈减小的趋势,但随着气温降低和湿度增加而增加。气温、净辐射与作物叶水势均呈抛物线关系。随着净辐射的增大,作物消耗的水量增大,叶水势降低。由叶水势与土壤含水率关系可知,当土壤含水率减少时,苹果根系难以吸收到足够的水分,不能满足叶片蒸腾耗水的需求,导致叶片含水量偏低,叶水势也随着下降。苹果叶水势随着土壤含水率的降低而降低。[结论]运用投影寻踪回归分析法建立了气象因子对苹果树蒸腾量的预测模型,且预测精度较高。  相似文献   

7.
选取漳河灌区1974—2014年逐日气象数据,运用Excel软件和SPSS 24.0软件对4项主控因子和参考作物蒸发蒸腾量(ET0)进行趋势分析和通径分析。结果表明,多年平均气温(T)和平均相对湿度(RH)均呈显著性上升趋势,多年日照时数(n)和ET0呈不显著性下降趋势,多年平均风速(u)呈显著性下降趋势。日平均相对湿度(RH)与ET0呈负相关,其余主控因子与ET0均为正相关,日照时数(n)和平均风速(u)的相关性最高。日照时数(n)的决定系数、对回归方程R2的贡献和对ET0的直接效果均为各主控因子中最大,是影响ET0的决策变量。  相似文献   

8.
柑橘树液流变化规律及其影响因素   总被引:1,自引:0,他引:1  
介绍了热平衡茎流计的原理,以宜昌市柑橘树为原料,通过野外盆栽试验,应用包裹式茎流计和便携式气象仪分别测量了柑橘树茎液流的日变化和同期的气象变化过程,并用Stata软件对树茎液流与主要气象因子的关系进行了相关分析。结果表明:(1)柑橘树茎液流速率在晴天多云和阴天的变化均呈现多峰曲线,白天变化比较明显,夜间由于没有辐射且温度低、湿度大,几乎没有液流;(2)柑橘树液流速率与太阳净辐射、大气温度、土壤温度呈正相关,而与大气相对湿度和瞬时风速呈负相关,其中太阳净辐射和大气温度为主要影响因子,大气相对湿度次之,土壤温度和瞬时风速与柑橘植株液流速率的相关性很小,可以忽略;(3)柑橘树蒸腾速率与液流速率的决定系数达到了0.886,表明用包裹式茎流计测定的液流量来估计蒸发蒸腾量是有效可行的。  相似文献   

9.
为聊城市估算和科学分析作物需水量提供依据,选取1961—2015年聊城市8个气象观测站点的逐日气象资料,应用Penman-Monteith法计算该地区参考作物蒸散量(ET0),并与气象因子进行相关性分析。结果表明:参考作物蒸散量的日值为3.04mm,年内极大值呈下降趋势,极小值呈上升趋势;月值1月最小(30.88 mm),6月最大(164.48 mm);春、夏、秋、冬各季值分别为332 mm、435 mm、237 mm和102mm;年值为1108mm;不同尺度的参考作物蒸散量呈下降趋势。参考作物蒸散量与日气象因子气温、风速、日照时数呈正相关,与相对湿度呈负相关,其中与最高气温的典型相关系数最高,达0.841 3。不同尺度的参考作物蒸散量下降的主要影响因素为平均风速和日照时数。  相似文献   

10.
为了研究气象因子对"滴灌小麦-青贮玉米"复播体系ET_0的影响,本文以2017年石河子地区4—10月("滴灌小麦-青贮玉米"复播体系生育期)的气象因子为基础,应用彭曼公式计算出每日的ET_0值,采用相关分析法分析了逐日气象因子与ET_0,以及累积气象因子和累积ET_0值之间的相关关系。结果表明:参考作物蒸发蒸腾量ET_0的大小受气象因子影响,在"滴灌小麦-青贮玉米"复播体系中4、5、9、10月份ET_0值较小,6、7、8月份ET_0值较大;参考作物蒸发蒸腾量ET_0与最高温度、最低温度、平均温度呈正相关关系,与相对湿度呈负相关关系,但其相关性较差;单个累积气象因子与累积ET_0之间存在极显著的相关性,可用单个累积气象因子简化ET_0值的计算。  相似文献   

11.
目的蒸散发(ET)包括蒸发(E)和蒸腾(T), 是生态系统降雨(P)返回大气的最主要形式, 在气候变化背景下, 了解大兴安岭北部多年冻土区的寒温带兴安落叶松林的ET特征及其分配状况, 有助于进一步理解北方森林对气候变化的响应模式。方法在2015年7月10日至8月10日期间, 利用模型与野外实测的方法对寒温带兴安落叶松林蒸发(E)、蒸腾(T)及蒸散发(ET)进行研究。E包括林地蒸发(Ef)和林冠截留(Ec), 而林分蒸腾总量(Ttot)则为优势木(Td)、中等木(Ti)、劣势木(Ts)蒸腾量之和。分析非降水和降水日的ET及其组分特征和分配, 探讨水汽通量对气象因子的响应。结果非降雨和降雨日的ET及其组分的日变化均呈单峰格局, 且非降雨日曲线的日峰值均高于降雨日。非降雨日, Ef、Td、Ti、Ts和ET分别为10.3、25.6、15.2、10.8和66.3mm; 降雨日, Ef、Ec、Td、Ti、Ts和ET则分别为2.2、24.3、11.2、5.1、3.8和47.8mm。非降雨日, Ef/ET为15.5%, 而Ttot/ET为78.0%, 其中Td/ET、Ti/ET和Ts/ET分别贡献38.7%、23.0%和16.4%;降雨日, Ef/ET低至4.6%, Ec/ET则可以达到50.9%, 而Ttot/ET降低至42.2%, 其中Td/ET、Ti/ET和Ts/ET分别为23.5%、10.6%和8.0%;表明非降雨日ET以T为主(具体为Td), 降雨日则以E(具体为Ec)为主。观测期间94.7%的P主要以ET形式返回大气, 其中由T贡献57%, E贡献38%。总体上, 无论降雨与否, ET与23m处净辐射(Rn)的相关性均高于其与水汽压亏缺(VPD)的相关性, Ttot与二者的相关性则差异不大, 而Ef的表现则与ET相反, 说明Rn是生态系统能量循环和物质交换的最主要驱动力, Ttot同时主要受到Rn和VPD的约束, 而Ef优先受VPD的限制。结论兴安落叶松优势木的蒸腾能力强于中等木和劣势木, 以往研究多采用Td(或包括较大径级的Ti)为林分尺度上推计算过程的基准值的方法会高估林分整体的蒸腾能力, 实际误差的大小取决于林分的分化程度以及是否降雨等因素。非降雨日的气象条件更有利于植被-大气界面的水汽交换, 降雨的发生会影响生态系统ET的分配模式。   相似文献   

12.
为探究山杏蒸腾耗水规律与环境因子的关系,以内蒙古自治区呼和浩特市清水河县山杏造林树种作为研究对象,测定了山杏蒸腾速率,并结合太阳辐射、空气温度、空气相对湿度、水汽压亏缺、风速等因子,研究了山杏蒸腾速率与环境因子的连日动态变化。结果表明:①山杏蒸腾速率表现出明显的昼夜变化规律,变化趋势呈现双峰曲线,第一个峰值为148.82 g·h-1,第二个峰值为144.75 g·h-1,并存在“午休现象”,白天蒸腾速率较高,夜晚蒸腾速率较低且变化幅度相对平缓。②山杏蒸腾速率与太阳辐射、空气温度、水汽压亏缺、风速成极显著正相关,与空气相对湿度成极显著负相关,并且与环境因子的响应存在时滞性。③各环境因子对蒸腾速率的影响程度顺序为太阳辐射>空气温度>水汽压亏缺>空气相对湿度>风速。  相似文献   

13.
为探究山杏蒸腾耗水规律与环境因子的关系,以内蒙古自治区呼和浩特市清水河县山杏造林树种作为研究对象,测定了山杏蒸腾速率,并结合太阳辐射、空气温度、空气相对湿度、水汽压亏缺、风速等因子,研究了山杏蒸腾速率与环境因子的连日动态变化。结果表明:①山杏蒸腾速率表现出明显的昼夜变化规律,变化趋势呈现双峰曲线,第一个峰值为148.82 g·h-1,第二个峰值为144.75 g·h-1,并存在“午休现象”,白天蒸腾速率较高,夜晚蒸腾速率较低且变化幅度相对平缓。②山杏蒸腾速率与太阳辐射、空气温度、水汽压亏缺、风速成极显著正相关,与空气相对湿度成极显著负相关,并且与环境因子的响应存在时滞性。③各环境因子对蒸腾速率的影响程度顺序为太阳辐射>空气温度>水汽压亏缺>空气相对湿度>风速。  相似文献   

14.
晋西黄土区苹果树液流特征及其与环境因子的关系   总被引:1,自引:0,他引:1  
为研究晋西黄土残塬沟壑区苹果园的水分利用特征,对黄土残塬沟壑区苹果园主要生长季(4-9月)苹果的树干液流速率进行测定,并与环境要素进行对比分析。结果表明:(1)苹果树干液流速率值的季节动态表现为6月 > 5月 > 9月 > 7月 > 8月 >4月,4-9月典型晴天的液流日变化均表现为单峰曲线,液流速率的峰值依次为1496、1736、1607、1537、1474、1674 cm3·cm-2·h-1。(2)液流速率在白天和夜间表现出较大的差别,有较明显的昼夜节律性。(3)苹果树干液流与太阳辐射(PY)、净辐射(Rn)、大气水分亏缺(VPD)均存在正相关关系,与大气相对湿度(RH)存在负相关关系,液流速率与气象因子PY、Rn、VPD、RH的相关系数分别为0789、0783、0619和-0482。研究结果对于加强果园的经营管理水平,提高苹果果品与产量具有重要意义。  相似文献   

15.
Knowledge of evapotranspiration (ET) and energy partitioning is useful for optimizing water management, especially in areas where water is scarce. A study was undertaken in a furrow-irrigated vineyard (2015) and a drip-irrigated vineyard (2017) in an arid region of north-west China to compare vineyard ET and energy partitioning and their responses to soil water content (SWC) and leaf area index (LAI). ET and soil evaporation (E) and transpiration (T) were determined using eddy covariance, microlysimeters, and sap flow. Seasonal average E/ET, T/ET, crop coefficient (Kc), evaporation coefficient (Ke), and basal crop coefficient (Kcb) were 0.50, 0.50, 0.67, 0.35, and 0.29, respectively, in the furrow-irrigated vineyard and 0.42, 0.58, 0.57, 0.29, and 0.43 in the drip-irrigated vineyard. The seasonal average partitioning of net radiation (Rn) into the latent heat flux (LE), sensible heat flux (H) and soil heat flux (G) (LE/Rn, H/Rn, and G/Rn), evaporative fraction (EF) and Bowen ratio (β) were 0.57, 0.26, 0.17, 0.69 and 0.63, respectively, in the furrow-irrigated vineyard and 0.46, 0.36, 0.17, 0.57 and 0.97 in the drip-irrigated vineyard. The LE/Rn, H/Rn, EF, and β were linearly correlated with LAI. The E, Kc, Ke, E/ET, LE/Rn, LEs/Rn (ratio of LE by soil E to Rn), H/Rn, EF and β were closely correlated with topsoil SWC (10 cm depth). Responses of ET and energy partitioning to the LAI and SWC differed under the two irrigation methods. Drip irrigation reduced seasonal average E/ET and increased average T/ET. From the perspective of energy partitioning, seasonal average H/Rn increased whereas LE/Rn, especially LEs/Rn, decreased. Compared with furrow irrigation, drip irrigation decreased the proportion of unproductive water consumption thereby contributing to enhanced water use efficiency and accumulation of dry matter.  相似文献   

16.
根据辽西半干旱区阜新、朝阳站上世纪50年代至今的气象资料,采用FAO推荐的Penm an-Monte ith公式计算参考作物潜在腾发量(ET0),统计并分析生长季与非生长季辽西地区的ET0、气象因子变化与及其影响ET0变化的主要气象因子。结果表明:阜新地区ET0表现为随时间的增长趋势,而朝阳表现为随时间逐年减少趋势,80年代至今阜新、朝阳变化趋势显著。阜新、朝阳ET0与各气象因子的相关性大体一致。在辽西地区影响ET0显著的气象因子顺序为:风速太阳辐射最高温度降水量,20世纪80年代至今风速的显著性变化是辽西半干旱区ET0之间差异的主要原因。  相似文献   

17.
采用太子河流域内8个气象站1960~2005年间气象资料,应用penman-montieth公式计算了46年间逐月参考作物腾发量(ET0),对参考作物腾发量及气象因素的年际变化特征、月际变化特征及趋势进行了分析,应用统计检验方法分析了影响流域参考作物腾发量变化的主要气象因素。结果表明:近46年间太子河流域ET0值呈现缓慢下降趋势,年内ET0值分布以5~6月份最高,1月份最低,影响ET0的主要气象因素按影响程度强弱依次为日照、风速、温度、相对湿度。  相似文献   

18.
2020-05ml 目录     
    目的   理解林木蒸腾日内变化及其对主要环境因子的响应规律,进一步阐释短时间尺度下环境条件调控森林蒸腾的机理。    方法   以宁夏六盘山香水河小流域华北落叶松人工林为研究对象,在2018年生长季(5—10月)连续监测样树的树干液流变化,并同步观测气象条件和土壤湿度,分析小时尺度的林分蒸腾对环境因子的响应,并建立多因素影响的蒸腾模型。    结果   (1)在小时尺度上,林分蒸腾量(T)对太阳辐射(Rs)和饱和水汽压差(VPD)的响应均呈二次多项式函数关系;随Rs和VPD的增加,T均先增加,当Rs和VPD分别达到666.7 W/m2和1.86 kPa后达到峰值,然后逐渐减小。(2)T对土壤可利用水分(REW)的响应符合趋于饱和的指数关系,T随REW的增加表现为先增加,当REW > 0.3后,T逐渐趋于稳定。(3)在确定T响应Rs、VPD和REW的类型并耦合形成蒸腾模型后,利用生长季内的奇数天小时观测值进行拟合参数,并用偶数天小时观测值进行验证,得到T响应多因素变化的耦合模型:T = (? 6.347 0 × 10? 5\begin{document}${R_{\rm{s}}^2}$\end{document}? 0.637 0Rs ? 208.734 8) × (? 0.003 2VPD2 + 0.013 8VPD + 0.001 7) × (? 0.008 1 ? 0.004 6(1 ? exp(? 12.469 6REW))),该模型在校准阶段(R2 = 0.74,纳什效率系数(NSE)= 0.82)和验证阶段(R2 = 0.77,NSE = 0.84)均表现出较好的模拟效果。    结论   在小时尺度上,林分蒸腾量可以由耦合了太阳辐射、饱和水汽压差和土壤可利用水分影响的耦合模型进行较好的预测。本研究结果可为精确预测变化环境下的华北落叶松林分日内蒸腾提供理论基础,同时模型的构建方法可为其他区域和其他树种的林分蒸腾模型的建立提供参考依据。   相似文献   

19.
雒新萍  王可丽  江灏  孙佳  朱庆亮 《安徽农业科学》2011,39(25):15737-15738,15778
[目的]研究2000~2008年黑河流域潜在蒸散量的时空变化。[方法]利用2000~2008年黑河流域21个气象站的逐日气候资料,结合FAO Penman-Monteith模型,分析了黑河流域9年来潜在蒸散量(ET0)的时空变化特征,并对其主要气候影响因子进行了探讨。[结果]黑河流域春、夏、秋、冬四季和年的ET0序列变化呈现缓慢上升趋势,但并未达到显著性水平;多年平均ET0空间分异特征明显,表现为从东北荒漠向西南山区逐渐减少,且多年季节变化依照夏、春、秋、冬季的顺序递减,逐月变化呈单峰变化趋势,峰值出现在7月。相对湿度、平均风速和水汽压是影响研究区内ET0变化的主要气候因子,而平均气温对ET0的影响作用不显著。[结论]该研究为制定流域规划、地区水利规划及排灌工程提供理论依据。  相似文献   

20.
缙云山典型树种树干液流日际变化特征及与气象因子关系   总被引:2,自引:1,他引:1  
运用Granier热扩散探针方法,于2012—2015年8—9月对重庆缙云山自然保护区内3个典型优势木(杉木、马尾松、四川山矾)的树干液流进行测定,并运用微型气象站同步监测太阳辐射(ES)、大气温度(T)、大气相对湿度(RH)、风速(W)、饱和水汽压差(VPD)等气象因子及土壤含水量(SWC),分析3个树种的树干液流在日尺度及典型天气条件(晴、阴、雨)下的差异和特征及其与气象因子的关系。结果表明:树种间导水能力差异表现为四川山矾>马尾松>杉木,阔叶树种蒸腾速率高于针叶树种;3个树种树干液流日变化规律均呈现“昼高夜低”的单峰走势;液流启动时间和达到峰值时间均为山矾最早,杉木最晚;典型天气条件下3个树种液流量均呈现晴天>阴天>雨天,与晴天液流量相比较,阴、雨天液流量减少幅度为41%至86%;白天树干液流贡献率表现为晴天(94.74%~98.04%)>阴天(93.63%~96.71%)>雨天(81.43%~85.43%),夜晚树干液流贡献率表现为雨天(14.57%~18.27%)>晴天(3.29%~6.37%)>阴天(1.96%~5.26%);导致雨天夜间液流贡献率最大的因子为SWC;影响3个树种树干液流的主要气象因子为ES和VPD;T、RH、W对3个树种的影响程度都很小,且略有不同。气象因子与杉木、马尾松、四川山矾的树干液流多元回归方程决定系数分别为0.873、0.873、0.903。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号