首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four ruminally and duodenally cannulated steers (703.4 +/- 41 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of field pea inclusion level on intake and site of digestion in beef steers fed medium-concentrate diets. Steers were offered feed ad libitum at 0700 and 1900 daily and were allowed free access to water. Diets consisted of 45% grass hay and 55% by-products based concentrate mixture and were formulated to contain a minimum of 12% CP (DM basis). Treatments consisted of (DM basis) 1) control, no pea; 2) 15% pea; 3) 30% pea; and 4) 45% pea in the total diet, with pea replacing wheat middlings, soybean hulls, and barley malt sprouts in the concentrate mixture. Experimental periods consisted of a 9-d dietary adjustment period followed by a 5-d collection period. Grass hay was incubated in situ, beginning on d 10, for 0, 2, 5, 9, 14, 24, 36, 72, and 98 h; and field pea and soybean hulls for 0, 2, 5, 9, 14, 24, 36, 48, and 72 h. Total DMI (15.0, 13.5, 14.1, 13.5 +/- 0.65 kg/d) and OM intake (13.4, 12.0, 12.6, 12.0 +/- 0.58 kg/d) decreased linearly (P = 0.10) with field pea inclusion. Apparent ruminal (17.5, 12.0, 0.6, 6.5 +/- 4.31%) and true ruminal CP digestibility (53.5, 48.7, 37.8, 46.2 +/- 3.83) decreased linearly (P < 0.10) with increasing field pea. Neutral detergent fiber intake (8.9, 7.9, 7.8, 7.0 +/- 0.3 kg/d) and fecal NDF output (3.1, 2.9, 2.6, 2.3 +/- 0.2 k/d) decreased linearly (P < 0.03) with increasing field pea. No effects were observed for microbial efficiency or total-tract digestibility of OM, CP, NDF, and ADF (P > or = 0.16). In situ DM and NDF disappearance rates of grass hay and soybean hulls decreased linearly (P < 0.05) with increasing field pea. Field pea in situ DM disappearance rate responded quadratically (P < 0.01; 5.9, 8.4, 5.5, and 4.9 +/- 0.52%/h, for 0, 15, 30, and 45% field pea level, respectively). Rate of in situ CP disappearance of grass hay decreased linearly (P < 0.01) with increasing field pea level. Field pea is a suitable ingredient for beef cattle consuming medium-concentrate diets, and the inclusion of up to 45% pea in by-products-based medium-concentrate growing diets decreased DMI, increased dietary UIP, and did not alter OM, NDF, or ADF digestibility.  相似文献   

2.
Effects of increasing level of field pea (variety: Profi) on intake, digestion, microbial efficiency, and ruminal fermentation were evaluated in beef steers fed growing diets. Four ruminally and duodenally cannulated crossbred beef steers (367+/-48 kg initial BW) were used in a 4 x 4 Latin square. The control diet consisted of 50% corn, 23% corn silage, 23% alfalfa hay, and 4% supplement (DM basis). Treatments were field pea replacing corn at 0, 33, 67, or 100%. Diets were formulated to contain a minimum of 12% CP, 0.62% Ca, 0.3% P, and 0.8% K (DM basis). Each period was 14 d long. Steers were adapted to the diets for 9 d. On d 10 to 14, intakes were measured. Field pea was incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Bags were inserted in reverse order, and all bags were removed at 0 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to compare treatments. There were no differences in DMI (12.46 kg/d, 3.16% BW; P > 0.46). Ruminal dry matter fill (P = 0.02) and mean ruminal pH (P = 0.009) decreased linearly with increasing field pea level. Ruminal ammonia-N (P < 0.001) and total VFA concentrations (P = 0.01) increased linearly with increasing field pea level. Total-tract disappearance of OM (P = 0.03), N (P = 0.01), NDF (P = 0.02), and ADF (P = 0.05) increased linearly with an increasing field pea level. There were no differences in total-tract disappearance of starch (P = 0.35). True ruminal N disappearance increased linearly (P < 0.001) with increasing field pea level. There were no differences in ruminal disappearance of OM (P = 0.79), starch (P = 0.77), NDF (P = 0.21), or ADF (P = 0.77). Treatment did not affect microbial efficiency (P = 0.27). Field pea is a highly digestible, nutrient-dense legume grain that ferments rapidly in the rumen. Because of their relatively high level of protein, including field peas in growing diets will decrease the need for protein supplementation. Based on these data, it seems that field pea is a suitable substitute for corn in growing diets.  相似文献   

3.
Fourteen Holstein steers (446 +/- 4.4 kg of initial BW) with ruminal, duodenal, and ileal cannulas were used in a completely randomized design to evaluate effects of whole or ground canola seed (23.3% CP and 39.6% ether extract; DM basis) on intake, digestion, duodenal protein supply, and microbial efficiency in steers fed low-quality hay. Our hypothesis was that processing would be necessary to optimize canola use in diets based on low-quality forage. The basal diet consisted of ad libitum access to switchgrass hay (5.8% CP; DM basis) offered at 0700 daily. Treatments consisted of hay only (control), hay plus whole canola (8% of dietary DM), or hay plus ground canola (8% of dietary DM). Supplemental canola was provided based on the hay intake of the previous day. Steers were adapted to diets for 14 d followed by a 7-d collection period. Total DMI, OM intake, and OM digestibility were not affected (P > or = 0.31) by treatment. Similarly, no differences (P > or = 0.62) were observed for NDF or ADF total tract digestion. Bacterial OM at the duodenum increased (P = 0.01) with canola-containing diets compared with the control diet and increased (P = 0.08) in steers consuming ground canola compared with whole canola. Apparent and true ruminal CP digestibilities were increased (P = 0.01) with canola supplementation compared with the control diet. Canola supplementation decreased ruminal pH (P = 0.03) compared with the control diet. The molar proportion of acetate in the rumen tended (P = 0.10) to decrease with canola supplementation. The molar proportion of acetate in ruminal fluid decreased (P = 0.01), and the proportion of propionate increased (P = 0.01), with ground canola compared with whole canola. In situ disappearance rate of hay DM, NDF, and ADF were not altered by treatment (P > or = 0.32). In situ disappearance rate of canola DM, NDF, and ADF increased (P = 0.01) for ground canola compared with whole canola. Similarly, ground canola had greater (P = 0.01) soluble CP fraction and CP disappearance rate compared with whole canola. No treatment effects were observed for ruminal fill, fluid dilution rate, or microbial efficiency (P > or = 0.60). The results suggest that canola processing enhanced in situ degradation but had minimal effects on ruminal or total tract digestibility in low-quality, forage-based diets.  相似文献   

4.
Two metabolism (4 x 4 Latin square design) experiments were conducted to evaluate the effects of corn condensed distillers solubles (CCDS) supplementation on intake, ruminal fermentation, site of digestion, and the in situ disappearance rate of forage in beef steers fed low-quality switchgrass hay (Panicum virgatum L.). Experimental periods for both trials consisted of a 9-d diet adaptation and 5 d of collection. In Exp. 1, 4 ruminally and duodenally cannulated steers (561 +/- 53 kg of initial BW) were fed low-quality switchgrass hay (5.1% CP, 40.3% ADF, 7.5% ash; DM basis) and supplemented with CCDS (15.4% CP, 4.2% fat; DM basis). Treatments included 1) no CCDS; 2) 5% CCDS; 3) 10% CCDS; and 4) 15% CCDS (DM basis), which was offered separately from the hay. In Exp. 2, 4 ruminally and duodenally cannulated steers (266.7 +/- 9.5 kg of initial BW) were assigned to treatments similar to Exp. 1, except forage (Panicum virgatum L.; 3.3% CP, 42.5% ADF, 5.9% ash; DM basis) and CCDS (21.6% CP, 17.4% fat; DM basis) were fed as a mixed ration, using a forage mixer to blend the CCDS with the hay. In Exp. 1, ruminal, postruminal, and total tract OM digestibilities were not affected (P = 0.21 to 0.59) by treatment. Crude protein intake and total tract CP digestibility increased linearly with increasing CCDS (P = 0.001 and 0.009, respectively). Microbial CP synthesis tended (P = 0.11) to increase linearly with increasing CCDS, whereas microbial efficiency was not different (P = 0.38). Supplementation of CCDS to low-quality hay-based diets tended to increase total DM and OM intakes (P = 0.11 and 0.13, respectively) without affecting hay DMI (P = 0.70). In Exp. 2, ruminal OM digestion increased linearly (P = 0.003) with increasing CCDS, whereas postruminal and total tract OM digestibilities were not affected (P > or = 0.37) by treatment. Crude protein intake, total tract CP digestibility, and microbial CP synthesis increased (P < or = 0.06) with increasing level of CCDS supplementation, whereas microbial efficiency did not change (P = 0.43). Ruminal digestion of ADF and NDF increased (P = 0.02 and 0.008, respectively) with CCDS supplementation. Based on this data, CCDS used in Exp. 2 was 86.7% rumen degradable protein. The results indicate that CCDS supplementation improves nutrient availability and use of low-quality forages.  相似文献   

5.
Twelve ruminally cannulated Jersey steers (BW = 534 kg) were used in an incomplete Latin square design experiment with a 2 x 2 factorial arrangement of treatments to determine the effects of wet corn gluten feed (WCGF) and total DMI level on diet digestibility and ruminal passage rate. Treatments consisted of diets formulated to contain (DM basis) steam-flaked corn, 20% coarsely ground alfalfa hay, and either 0 or 40% WCGF offered once daily for ad libitum consumption or limited to 1.6% of BW (DM basis). Two consecutive 24-d periods were used, each consisting of 18 d for adaptation, 4 d for collection, and a 2-d in situ period. Rumens of all steers were evacuated once daily at 0, 4, 8, and 12 h after feeding. Chromic oxide (10 g/[steer*d]) was fed as a digestibility marker, and steers were pulse-dosed with Yb-labeled alfalfa hay to measure ruminal particulate passage rate. Dacron bags containing 5 g of steam-flaked corn, WCGF, or ground (2-mm screen) alfalfa hay were placed into the rumens of all steers and removed after 3, 6, 12, or 48 h. Wet corn gluten feed increased percent apparent total-tract digestion of OM (P < 0.01), NDF (P < 0.01), and starch (P < 0.03), decreased (P < 0.01) ruminal total VFA concentration, increased (P < 0.01) ruminal NH3 concentration, and increased (P < 0.01) ruminal pH. Wet corn gluten feed also increased (P < 0.01) ruminal passage rate of Yb. Limit feeding decreased (P < 0.01) percent apparent total-tract digestion of both OM and NDF, ruminal total VFA concentration (P < 0.01), and ruminal fill (P < 0.01), but increased (P < 0.01) ruminal NH3 concentration. Apparent total-tract digestion of starch was not affected (P = 0.70) by level of DMI. A DMI level x hour interaction (P < 0.01) occurred for ruminal pH. Limit feeding increased ruminal pH before and 12 h after feeding, but decreased ruminal pH 4 h after feeding compared with diets offered ad libitum. A diet x DMI level interaction (P < 0.02) occurred for in situ degradation of alfalfa hay, with dietary addition of WCGF increasing (P < 0.02) the extent of in situ alfalfa hay degradation in steers fed for ad libitum consumption. This study suggests that WCGF increases OM and NDF digestion, and that limit feeding diets once daily might depress OM and NDF digestion, possibly due to decreased stability of the ruminal environment.  相似文献   

6.
Six Angus crossbred cow-calf pairs (653 +/- 35 kg and 157 +/- 10 kg initial BW for cows and calves, respectively) were used to evaluate the influence of a fiber-based creep feed on intake, ruminal fermentation, digestion characteristics, and microbial efficiency in nursing beef calves. Cow-calf pairs were stratified by calf age and assigned randomly to one of two treatments: control (no supplement) or supplemented. Supplemented calves received 0.9 kg of a 49% soy hulls, 44% wheat middlings, 6% molasses, and 1% limestone supplement (DM basis) daily. All calves were cannulated in the rumen and duodenum and given ad libitum access to chopped brome hay (Bromus inermus L; 7.43% CP, 40.96% ADF, and 63.99% NDF; DM basis). Supplementation was initiated on May 1 (88 +/- 10.3 d calf age). Three sampling periods were conducted throughout the study (June 14 to 25, July 5 to 16, and August 9 to 20). Supplement and forage were offered at 0800 daily. Total, hay, and milk OM intakes of nursing calves were not affected by supplementation (2,014 vs. 2,328 +/- 288.8, 1,486 vs. 1,029 +/- 3,06.9, and 528 vs. 575 +/- 87.0 g/d, respectively). Milk OM intake was less (P < 0.09) in August than in June and July (635, 691, and 345 +/- 110.6 g/d for June, July, and August, respectively). A supplementation x month interaction occurred (P < 0.10) for total-tract OM digestion. Supplementation did not affect (P > 0.40) total-tract OM digestibility during June and August; however, during July, total-tract OM digestibility was lower (P = 0.03) for the control calves. Ruminal ammonia concentration, total VFA, and butyrate molar proportion increased (P < 0.05), whereas acetate proportion decreased (P = 0.01) in supplemented calves. Microbial efficiency was not influenced by supplementation (11.8 vs. 12.0 g/kg of OM truly fermented for control and supplemented calves, respectively). These data indicate that fiber-based supplements can be used as creep feed without negative effects on OM intake, total-tract OM digestibility, and ruminal fermentation characteristics in nursing beef calves.  相似文献   

7.
Tarentaise heifers fitted with a rumen cannula (539 +/- 7.5 and 487 +/- 15.7 kg avg initial BW in Exp. 1 and 2, respectively) were used in two Latin square metabolism experiments having 2 x 2 factorial treatment arrangements to determine the effects of supplementation with Aspergillus oryzae fermentation extract (AO) or laidlomycin propionate (LP) on intake, digestion, and digestive characteristics of Neotyphodium coenophialum-infected (IF) or uninfected (FF) tall fescue (Festuca arundinacea) hay diets consumed ad libitum. Heifers were housed in individual stanchions in a metabolism facility with ambient temperatures controlled to range between 26.7 and 32.2 degrees C daily. Total feces and urine were collected for 5 d following a 21-d dietary adaptation period. In situ DM and NDF disappearance and ruminal fermentation characteristics were also determined. In Exp. 1, DMI was 24% greater (P < 0.01) by heifers offered FF than by those offered IF (6.7 vs 5.4 kg/d). Heifers fed 2 g/d AO tended (P = 0.09) to consume 4% more DM than those fed a diet without AO. Degradable DM and NDF fractions of IF were greater (P < 0.01) than those of FF, but AO supplementation did not affect situ disappearance (P > or = 0.42). In Exp. 2, DMI was 18.9% greater (P < 0.01) by heifers offered FF than by those offered IF (6.6 vs 5.5 kg/d). Heifers fed LP (50 mg/d) consumed 10.6% less (P < 0.05) DM than those not fed LP (5.7 vs 6/5 kg/d). Digestibility of NDF tended to be greater (P = 0.08) and digestibility of ADF was greater (P < 0.05) from FF than from IF. Conversely, apparent N absorption (%) was greater (P < 0.05) from IF than from FF. Heifers fed LP had lower (P < 0.05) ADF digestibility than those not fed LP. In situ degradable DM and NDF fractions were greater (P < 0.01) from IF than from FF. Diets supplemented with LP had higher (P < 0.01) indigestible DM and NDF fractions than those without LP. Propionic acid and total VFA concentrations were greater (P < 0.05) from heifers offered FF than from those offered IF and from heifers fed LP than from those not fed LP. Therefore, it appears the major effect of N. coenophialum was a reduction in forage intake and total-tract fiber digestibility in certain situations. Response to the feed additives was similar whether heifers were offered IF or FF and no evidence was apparent that either additive would improve performance substantially by animals consuming low-quality fescue hay diets.  相似文献   

8.
Five ruminally, duodenally, and ileally cannulated steers (376 +/- 8.1 kg of initial BW) were used in a 5 x 5 Latin square to evaluate effects of cooked molasses block supplementation and inclusion of fermentation extract (Aspergillus oryzae) or brown seaweed meal (Ascophyllum nodosum) on intake, site of digestion, and microbial efficiency. Diets consisted of switchgrass hay (6.0% CP; DM basis) offered ad libitum, free access to water, and one of three molasses blocks (0.341 kg of DM/d; one-half at 0600 and one-half at 1800). Treatments were no block (control), block with no additive (40.5% CP; POS), block plus fermentation extract bolused directly into the rumen via gelatin capsules (2.0 g/d; FS), fermentation extract included in the block (2.0 g/d; FB), and seaweed meal included in the block (10 g/d; SB). Steers were adapted to diets for 14 d followed by a 7-d collection period. Overall treatment effect on hay OM intake tended (8.1 vs. 7.6 +/- 0.5 kg/d; P = 0.14) to increase with block supplementation. Total OM intake (8.4 vs. 7.6 +/- 0.5 kg/d; P = 0.01) increased in steers consuming block compared with control. Apparent and true ruminal OM digestibility increased (P = 0.05) with block consumption. Steers fed SB had greater (P = 0.10) true ruminal OM digestibility compared with steers fed POS (61.0 vs. 57.9 +/- 1.6%). True ruminal CP digestibility increased (P = 0.01) with block supplementation compared with control (37.5 vs. 23.6 +/- 3.7%). Addition of fermentation extract did not affect intake or digestion. Treatments did not alter ruminal pH, total VFA, or individual VFA proportions; however, ruminal ammonia increased (P = 0.01) with block supplementation. In situ disappearance rates of hay DM (3.14 +/- 0.44 %/h), NDF (3.18 +/- 0.47 %/h), and ADF (3.02 +/- 0.57 %/h) were not altered by treatment. Seaweed block increased (P = 0.01) slowly degraded CP fraction compared with POS (39.5 vs. 34.0 +/- 2.07%). Similarly, SB increased (P = 0.01) the extent of CP degradability (74.2 vs. 68.9 +/- 1.81%). No treatment effects (P = 0.24) were observed for microbial efficiency. Block supplementation increased intake, and use of brown seaweed meal seemed to have beneficial effects on forage digestibility in low-quality forage diets.  相似文献   

9.
Two experiments were conducted to compare ruminal, physiological, and performance responses of forage-fed cattle consuming grain-based supplements without (NF) or with the inclusion (10%; DM basis) of a rumen-protected PUFA (PF) or SFA source (SF). Supplements were offered and consumed at 0.6% of BW/animal daily (DM basis). In Exp. 1, DMI and ruminal in situ forage degradability were evaluated in 3 Angus × Hereford cows fitted with ruminal cannulas and allocated to a 3 × 3 Latin square design. Within each experimental period, hay was offered in amounts to ensure ad libitum access from d 1 to 13, DMI was recorded from d 8 to 13, and cows were limited to receive 90% of their average hay DMI (d 1 to 13) from d 14 to 21. On d 16, polyester bags containing 4 g of ground hay (DM basis) were incubated within the rumen of each cow for 0, 4, 8, 12, 24, 36, 48, 72, and 96 h. Hay and total DMI were reduced (P < 0.05) in cows receiving PF compared with cows receiving SF and NF. No treatment effects were detected (P > 0.48) for ruminal disappearance rate and effective ruminal degradability of hay DM and NDF. In Exp. 2, preconditioning DMI, ADG, carcass traits, and plasma concentrations of cortisol, fatty acids, acute-phase proteins, and proinflammatory cytokines were assessed in 72 Angus × Hereford steers receiving supplement treatments during a 28-d preconditioning period. All steers were transported to a commercial growing lot after preconditioning (d 1) and were later moved to an adjacent commercial finishing yard (d 144), where they remained until slaughter. No treatment effects were detected (P ≥ 0.52) for preconditioning ADG and G:F, but DMI tended (P = 0.09) to be reduced in steers receiving PF compared with those receiving NF and SF. Plasma PUFA concentrations were greater in steers receiving PF compared with those receiving NF and SF (P = 0.01). After transportation, concentration of tumor necrosis factor-α increased for steers receiving NF, did not change for steers receiving SF, but decreased for steers receiving PF (treatment × day interaction, P < 0.01). Steers fed PF had greater (P = 0.02) ADG compared with those fed NF during the growing phase. Carcass yield grade and marbling were greater (P < 0.05) for steers fed PF compared with those fed NF. In conclusion, PUFA supplementation did not affect ruminal forage degradability but did impair DMI in beef cows. Further, PUFA supplementation to steers during preconditioning reduced plasma concentrations of tumor necrosis factor-α after transportation, and benefited growing lot ADG and carcass marbling.  相似文献   

10.
The objectives of this study were to evaluate the influence of supplemental whole flaxseed level on intake and site and extent of digestion in beef cattle consuming native grass hay. Nine Angus heifers (303 +/- 6.7 kg of BW) fitted with ruminal and duodenal cannulas were used in a triplicated 3 x 3 Latin square. Cattle were given ad libitum access to chopped native grass hay (9.6% CP and 77.5% NDF, OM basis). All animals were randomly allotted to 1 of 3 experimental treatments of hay plus no supplement (control); 0.91 kg/d whole flaxseed (23.0% CP, 36.3% NDF, and 25.5% total fatty acid, OM basis); or 1.82 kg/d whole flaxseed on a DM basis. Supplemental flaxseed tended to decrease (linear, P = 0.06) forage OM intake. However, total OM intake did not differ (P = 0.29) with increasing levels of flaxseed. Total duodenal OM flow increased (linear, P = 0.05) with additional flaxseed in the diet, and no differences (P = 0.29) were observed for microbial OM flow. True ruminal OM disappearance was not affected (P = 0.14) by supplemental flaxseed. Apparent lower tract OM digestibility increased (linear, P = 0.01) with level of whole flaxseed. Apparent total tract OM digestibility was not different (P = 0.41) among treatments. Nitrogen intake increased (linear, P < 0.001) with supplemental flaxseed. In addition, total duodenal N flow tended (P = 0.08) to increase with additional dietary flaxseed. However, true ruminal N digestibility did not differ (P = 0.11) across treatment. Supplemental whole flaxseed did not influence ruminal (P = 0.13) or total tract (P = 0.23) NDF digestibility. Ruminal molar proportion of propionate responded quadratically (P < 0.001) with increasing levels of whole flaxseed. An increase in the duodenal supply of 18:3n-3 (P < 0.001), total unsaturated fatty acids (P < 0.001), and total fatty acids (P < 0.001) was observed with additional dietary whole flaxseed. Apparent postruminal 18:3n-3 disappearance tended to decrease (P = 0.07) as intake of flaxseed increased. Overall, the inclusion of 1.82 kg/d of flaxseed does not appear to negatively influence nutrient digestibility of a forage-based diet and therefore can be used as an effective supplement to increase intestinal supply of key fatty acids important to human health.  相似文献   

11.
Three studies were conducted to evaluate the feasibility of field peas as a protein source in diets for beef cattle. In the first study, 4 cultivars of field pea were incubated in situ to determine rate and extent of CP disappearance. Results indicate that field pea cultivars vary in CP content (22.6, 26.1, 22.6, and 19.4%, DM basis for Profi, Arvika, Carneval, and Trapper, respectively). Soluble protein fraction ranged from 34.9% for Trapper to 54.9% for Profi. Degradable CP fraction was greater (P = 0.01) for Trapper compared with the other cultivars, and no differences (P ≥ 0.25) were observed among Profi, Arvika, and Carneval. Rate of CP degradation differed (P ≤ 0.03) for all cultivars, with Profi being the greatest and Trapper the smallest (10.8, 10.0, 8.1, and 6.3 ± 1.4%/h for Profi, Carneval, Arvika, and Trapper, respectively). Estimated RDP was not different (P = 0.21) for all 4 cultivars. In the second study, 30 crossbred beef steers (301 ± 15 kg) were individually fed and used to evaluate effects of field pea processing (whole, rolled, or ground) on steer performance. Diets contained 40% field pea grain. Growing steers consuming whole field pea had greater ADG (P = 0.08) than those consuming processed field pea (1.69, 1.52, and 1.63 ± 0.05 kg/d, for whole, rolled, and ground, respectively). However, DMI (kg/d and as % of BW) and G:F were not different (P ≥ 0.24). In the third study, 35 individually fed gestating beef cows (694 ± 17 kg) were used to evaluate the use of field pea as a protein supplement for medium quality grass hay (9.3% CP). Treatments consisted of whole field peas at 1) 0 g (CON), 2) 680 g (FP680), 3) 1,360 g (FP1360), and 4) 2,040 g (FP2040), and 5) 1,360 g of 74% barley and 26% canola meal (BCM). Total intake (forage + supplement) of gestating beef cows increased with increasing field pea level (linear, P = 0.01; supplemented vs. nonsupplemented, P = 0.01). In summary, protein quantity and rate of ruminal protein degradation vary across sources of field peas used in this study. Additionally, because of source variability, nutrient analysis and animal requirements should be considered when field pea is incorporated into beef cattle diets. Processing field pea does not improve performance of growing steers. Supplementation of field pea to gestating cows consuming medium-quality grass hay increased total DMI. Overall, our data indicate field pea can be used in a wide variety of beef cattle diets.  相似文献   

12.
Objectives of this research were to evaluate effects of increasing level of barley supplementation on forage intake, digestibility, and ruminal fermentation in beef steers fed medium-quality forage. Four crossbred ruminally cannulated steers (average initial BW = 200 +/- 10 kg) were used in a 4 x 4 Latin square design. Chopped (5 cm) grass hay (10% CP) was offered ad libitum with one of four supplements. Supplements included 0, 0.8, 1.6, or 2.4 kg of barley (DM basis) and were fed in two equal portions at 0700 and 1600. Supplements were fed at levels to provide for equal intake of supplemental protein with the addition of soybean meal. Forage intake (kg and g/kg BW) decreased linearly (P < 0.01), and total intake increased linearly (P < 0.03) with increasing level of barley supplementation. Digestible OM intake (g/kg BW) increased linearly (P < 0.01) with increasing level of barley supplementation; however, the majority of this response was observed with 0.8 kg of barley supplementation. Treatments had only minor effects on ruminal pH, with decreases occurring at 15 h after feeding in steers receiving 2.4 kg of barley supplementation. Total-tract digestibility of DM, OM, NDF, and CP were increased (P < 0.04) with barley supplementation; however, ADF digestibility was decreased by 1.6 and 2.4 kg of barley supplementation compared with controls. Ruminal ammonia concentrations decreased linearly (P < 0.01) at 1 through 15 h after feeding. Total ruminal VFA concentrations were not altered by dietary treatments. Ruminal proportions of acetate and butyrate decreased (P < 0.10) in response to supplementation. Rate, lag, and extent (72 h) of in situ forage degradability were unaffected by treatment. Generally, these data are interpreted to indicate that increasing levels of barley supplementation decrease forage intake, increase DM, OM, and NDF digestibility, and indicate alteration of the ruminal environment and fermentation patterns.  相似文献   

13.
The objective of this study was to evaluate the effects of physically effective NDF (peNDF) in goat diets containing alfalfa hay as the sole forage source on feed intake, chewing activity, ruminal fermentation, and nutrient digestibility. Four rumen-fistulated goats were fed different proportions of chopped and ground alfalfa hay in a 4 × 4 Latin square design. Diets were chemically similar but varied in peNDF content: low, moderate low, moderate high, and high. Dietary peNDF content was determined using the Penn State Particle Separator with 2 sieves (8 and 19 mm) or 3 sieves (1.18, 8, and 19 mm). The dietary peNDF content ranged from 1.9 to 11.7% using the 2 sieves and from 15.2 to 20.0% using the 3 sieves. Increasing forage particle length increased intake of peNDF, but decreased DMI linearly (P = 0.05). Ruminating and total chewing time (min/d) were increased linearly (P = 0.001 and 0.007, respectively) with increased dietary peNDF, resulting in a linear reduction (P < 0.001) in the duration of time that ruminal pH was less than 5.8 (10.9, 9.0, 1.2, and 0.3 h/d, respectively). Increasing dietary peNDF tended to increase the molar proportion of propionate linearly (P = 0.08) and decrease the molar proportion of butyrate (P = 0.09), but did not affect total VFA concentration. Increasing dietary peNDF linearly decreased the apparent digestibility of OM, NDF, and ADF in the total tract (P = 0.009, 0.003, and 0.008, respectively). This study demonstrated that increasing the dietary peNDF contained in alfalfa hay forage stimulated chewing activity and improved ruminal pH status, but reduced nutrient intake and efficiency of feed use.  相似文献   

14.
Four Holstein steers (282 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to evaluate the influence of dietary urea level (0, 0.4, 0.8, and 1.2%, DM basis) in a steam-flaked barley-based finishing diet on digestive function. There were no treatment effects (P > 0.20) on ruminal digestion of OM and ADF. Increasing dietary urea level increased (linear, P < 0.01) ruminal starch digestion. Ruminal degradability of protein in the basal diet (no supplemental urea) was 60%. Increasing dietary urea level did not increase (P > 0.20) ruminal microbial protein synthesis or nonammonia N flow to the small intestine. There were no treatment effects (P > 0.20) on total-tract ADF digestion. Total tract digestion of OM (quadratic, P < 0.01) and starch (linear, P < 0.05) increased slightly with increasing urea level. Urea supplementation increased (linear, P < 0.01) ruminal pH 1 h after feeding; however, by 3 h after feeding, ruminal pH was lower (cubic, P < 0.05) with urea-supplemented diets. Urea supplementation did not affect (P > 0.20) ruminal molar proportions of acetate and propionate. One hundred twenty crossbred steers (252 kg; approximately 25% Brahman breeding) were used in an 84-d feeding trial (five pens per treatment) to evaluate treatment effects on growth performance. Daily weight gain increased (linear, P = 0.01) with increasing urea level, tending to be maximal (1.53 kg/d; quadratic, P = 0.13) at the 0.8% level of urea supplementation. Improvements in ADG were due to treatment effects (linear, P < 0.01) on DMI. Urea supplementation did not affect (P > 0.20) the NE value of the diet for maintenance and gain. Observed dietary NE values, based on growth performance, were in close agreement with expected based on tabular values for individual feed ingredients, averaging 100.4%. We conclude that with steam-flaked barely-based finishing diets, ruminal and total-tract digestion of OM and ruminal microbial protein synthesis may not be increased by urea supplementation. In contrast, ADG was optimized by dietary inclusion of 0.8% urea. Urea supplementation may not enhance the net energy value of steam-flaked barely-based finishing diets when degradable intake protein is greater than 85% of microbial protein synthesis.  相似文献   

15.
Concentrated separator by-product (CSB) is produced when beet molasses goes through an industrial desugaring process. To investigate the nutritional value of CSB as a supplement for grass hay diets (12.5% CP; DM basis), 4 ruminally and duodenally cannulated beef steers (332 +/- 2.3 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial arrangement of treatments. Factors were intake level: ad libitum (AL) vs. restricted (RE; 1.25% of BW, DM basis) and dietary CSB addition (0 vs. 10%; DM basis). Experimental periods were 21 d in length, with the last 7 d used for collections. By design, intakes of both DM and OM (g/kg of BW) were greater (P < 0.01; 18.8 vs. 13.1 +/- 0.69 and 16.8 vs. 11.7 +/- 0.62, respectively) for animals consuming AL compared with RE diets. Main effect means for intake were not affected by CSB (P = 0.59). However, within AL-fed steers, CSB tended (P = 0.12) to improve DMI (6,018 vs. 6,585 +/- 185 g for 0 and 10% CSB, respectively). Feeding CSB resulted in similar total tract DM and OM digestion compared with controls (P = 0.50 and 0.87, respectively). There were no effects of CSB on apparent total tract NDF (P = 0.27) or ADF (P = 0.35) digestion; however, apparent N absorption increased (P = 0.10) with CSB addition. Total tract NDF, ADF, or N digestion coefficients were not different between AL- and RE-fed steers. Nitrogen intake (P = 0.02), total duodenal N flow (P = 0.02), and feed N escaping to the small intestine (P = 0.02) were increased with CSB addition. Microbial efficiency was unaffected by treatment (P = 0.17). Supplementation with CSB increased the rate of DM disappearance (P = 0.001; 4.9 vs. 6.9 +/- 0.33 %/h). Restricted intake increased the rate of in situ DM disappearance (P = 0.03; 6.4 vs. 5.3 +/- 0.33 %/h) compared with AL-fed steers. Ruminal DM fill was greater (P = 0.01) in AL compared with RE. Total VFA concentrations were greater (P = 0.04) for CSB compared with controls; however, ammonia concentrations were reduced (P = 0.03) with CSB addition. At different levels of dietary intake, supplementing medium-quality forage with 10% CSB increased N intake, small intestinal protein supply, and total ruminal VFA.  相似文献   

16.
Nine Angus x Gelbvieh heifers (average BW = 347 +/- 2.8 kg) with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of soybean oil or corn supplementation on intake, OM, NDF, and N digestibility. Beginning June 8, 1998, heifers continually grazed a 6.5-ha predominantly bromegrass pasture and received one of three treatments: no supplementation (Control); daily supplementation of cracked corn (Corn) at 0.345% of BW; or daily supplementation (0.3% of BW) of a supplement containing cracked corn, corn gluten meal, and soybean oil (12.5% of supplemental DM; Oil). Soybean oil replaced corn on a TDN basis and corn gluten meal was included to provide equal quantities of supplemental TDN and N. Three 23-d periods consisted of 14 d of adaptation followed by 9 d of sample collections. Treatment and sampling period effects were evaluated using orthogonal contrasts. Other than crude fat being greater (P = 0.01) for supplemented heifers, chemical and nutrient composition of masticate samples collected via ruminal evacuation did not differ (P = 0.23 to 0.56) among treatments. Masticate NDF and ADF increased quadratically (P < or = 0.003) and N decreased linearly (P = 0.0001) as the grazing season progressed. Supplementation did not influence (P = 0.37 to 0.83) forage OM intake, total and lower tract OM digestibility, ruminal and total tract NDF digestibility, or total ruminal VFA; however, supplemented heifers had lower ruminal molar proportions of acetate (P = 0.01), higher ruminal molar proportions of butyrate (P = 0.007), and greater quantities of OM digested in the rumen (P = 0.10) and total tract (P = 0.02). As the grazing season progressed, total tract OM and N and ruminal NH3 concentrations and NDF digestibility decreased quadratically (P < or = 0.04). Microbial N flow (P = 0.09) and efficiency (P = 0.04) and postruminal N disappearance (P = 0.02) were greater for Control heifers and declined linearly (P < or = 0.02) as the grazing season advanced. Depressed microbial N flow seemed to be more pronounced for Oil than for the Corn treatment. Although total digestible OM intake increased with supplementation, metabolizable protein supply was reduced in supplemented heifers. Therefore, feeding low levels of supplemental grain with or without soybean oil is an effective strategy to increase dietary energy for cattle grazing high-quality forages, but consideration should be given to reduced supply of metabolizable protein.  相似文献   

17.
Effects of dried distillers grains plus solubles (DDGS) on ruminal fermentation, degradation kinetics, and feeding behavior of steers offered annual (Eragrostis tef; TEFF) or perennial (Bothriochloa bladhii; OWB) grass hay were evaluated. Ruminally cannulated Angus crossbred steers (n = 6; body weight [BW] = 304 ± 11 kg) were assigned to a 4 × 6 unbalanced Latin square design with four treatments arranged as a 2 × 2 factorial: hay type (OWB or TEFF) and DDGS supplementation (0% or 0.5% BW [dry matter {DM} basis]). Steers had ad libitum access to hay. Periods consisted of a 14-d adaptation followed by 7 d of collection. Residues from the in situ incubations (0, 3, 6, 12, 24, 36, 48, 72, and 96 h post-feeding) were fitted to a first-order kinetics model using the NLIN procedure of SAS. The DDGS decreased (P < 0.01) TEFF DM intake (DMI) by 11.3%, while not affecting DMI of OWB. The greatest DMI was observed for steers supplemented with DDGS, regardless of forage, and least in steers consuming OWB without DDGS (hay type × DDGS; P = 0.03). Non-supplemented steers spent more (P < 0.01) time eating hay. Digestibility of DM tended (P = 0.06) to increase with DDGS supplementation. A hay type × DDGS interaction was observed (P ≤ 0.05) on ruminal effective degradable fractions. The rate of degradation, soluble fraction, and the potentially degradable fraction of organic matter (OM), neutral detergent fiber, and acid detergent fiber (ADF) increased (P ≤ 0.05), while the undegradable fraction of all components decreased (P ≤ 0.01) when steers were offered TEFF compared to OWB. Ruminal DM, OM, and ADF degradation lag-time increased (P ≤ 0.02) in steers offered OWB. Ruminal degradation kinetics were not (P ≥ 0.17) independently affected by DDGS supplementation. Average ruminal pH of steers offered TEFF (P < 0.01) and those offered DDGS (P < 0.01) were lower than OWB and non-supplemented steers. Total concentration of VFA tended (P = 0.09) to increase when DDGS was provided with OWB, while decreasing when TEFF was offered. The acetate:propionate increased (P < 0.01) with DDGS supplementation due to a decrease (P = 0.03) in propionate. Ruminal NH3-N was greater (P = 0.03) in steers offered TEFF compared to OWB, and those supplemented with DDGS (P = 0.03). An annual, in place of a conventional, perennial hay improved intake and digestion of nutrients, without affecting feeding behavior. The supplementation with DDGS appears to affect forage intake, ruminal degradation, and feeding behavior, although not independent of forage quality.  相似文献   

18.
Five ruminally and duodenally cannulated steers were fed bromegrass hay (H; 5.6% CP; 70.9% cell wall) substituted with 0, 15, 30, 45, or 60% soybean hulls (SH; 10.5% CP; 87.9% cell wall) at 90% of ad libitum DMI. Diets were made isonitrogenous (11% CP) by addition of isolated soybean protein (91.5% CP). Total ruminal VFA concentration, molar proportion of acetate, and molar acetate:propionate ratio increased (linear; P less than .02) with increasing level of SH substitution, but propionate (mol/100 mol) and ruminal fluid passage rate decreased (linear; P less than .01). Ruminal pH and ammonia concentration decreased more rapidly, and to a greater extent and duration, as level of SH increased; neither was decreased to levels considered detrimental to fiber digestion. Ruminal and total tract DM, OM, and cell wall digestibilities increased (linear; P less than .01), whereas total tract N digestibility decreased (linear; P = .03), as level of SH increased Total N flow to the duodenum increased (linear, P = .03) with increasing level of SH, and microbial N flow tended (cubic, P = .09) to increase. Microbial efficiencies were unchanged (P = .10) with SH level. True ruminal digestibilities of N did not differ (P greater than .10) among diets. Rate of in situ DM disappearance of H and SH was not influenced (P greater than .10) by SH substitution, although rate tended to be fastest with 30 and 45% SH (quadratic, P = .14). We infer from these data that SH can replace 60% of the DMI of a low-quality forage diet without decreasing OM or cell wall digestion.  相似文献   

19.
Sixteen ruminally cannulated, English-crossbred heifers (378 ± 28.4 kg) grazing small-grain pasture (SGP) were used in a completely randomized design to evaluate effects of supplementing different amounts of corn dried distillers grains with solubles (DDGS; 0, 0.2, 0.4, and 0.6% of BW; as-fed basis) on forage intake, digestibility, and rumen fermentation characteristics. The experiment was conducted from April 6 through April 20, 2007. Heifers grazed in a single SGP with supplements offered individually, once daily at 0700 h. Forage and total OM, CP, and NDF intake were not affected (P ≥ 0.21) by DDGS amount. Digestibility of NDF and ether extract (EE) increased linearly (P < 0.001) when heifers consumed more DDGS. Intake of DM (kg/d and g/kg of BW), ruminal volume (L), fluid dilution rate (%/h), fluid flow rate (L/h) turnover time (h), and particle dilution rate (SGP and DDGS) were not affected (P ≥ 0.32) by increasing DDGS supplementation amount. In situ DDGS CP kinetic parameters were not affected (P ≥ 0.25) by increasing DDGS supplementation amount. Forage masticate in situ soluble CP fraction and CP effective degradability increased quadratically (P = 0.01) with increasing DDGS supplementation amount. However, amount of DDGS did not affect forage masticate CP slowly degradable fraction (%; P = 0.39) or degradation rate (%/h; P = 0.63). Rate of in situ disappearance (%/h) for DDGS DM (P = 0.94), forage masticate DM (P = 0.89), and NDF (P = 0.89) were not affected by DDGS supplementation amount, nor was rumen undegradable intake protein (% of CP) for DDGS (P = 0.28) and forage masticate samples (P = 0.93). Ruminal concentration of VFA and ammonia and ruminal pH were not affected (P ≥ 0.21) by increasing DDGS amount. Results indicated that DDGS can be used in SGP supplements without negatively affecting forage intake, digestibility, or ruminal fermentation.  相似文献   

20.
Two experiments were conducted to evaluate the use of pulse grains in receiving diets for cattle. In Exp. 1, 8 Holstein (615 +/- 97 kg of initial BW) and 8 Angus-crossbred steers (403 +/- 73 kg of initial BW) fitted with ruminal and duodenal cannulas were blocked by breed and used in a randomized complete block design to assess the effects of pulse grain inclusion in receiving diets on intake, ruminal fermentation, and site of digestion. Experiment 2 was a 39-d feedlot receiving trial in which 176 mixed-breed steers (254 +/- 19 kg of initial BW) were used in a randomized complete block design to determine the effects of pulse grains on DMI, ADG, and G:F in newly received feedlot cattle. In both studies, pulse grains (field peas, lentils, or chickpea) replaced corn and canola meal as the grain component in diets fed as a total mixed ration. Treatments included 1) corn and canola meal (control); 2) field pea; 3) lentil; and 4) chickpea. Preplanned orthogonal contrasts were conducted between control vs. chickpea, control vs. field pea, and control vs. lentil. In Exp. 1, there were no differences among treatments for DMI (11.63 kg/d, 2.32% of BW daily, P = 0.63) or OM intake (P = 0.63). No treatment effects for apparent ruminal (P = 0.10) and total tract OM digestibilities (P = 0.40) were detected when pulse grains replaced corn and canola meal. Crude protein intake (P = 0.78), microbial CP flow (P = 0.46), total tract CP digestibility (P = 0.45), and microbial efficiency (P = 0.18) were also not influenced by treatment. Total-tract ADF (P = 0.004) and NDF (P = 0.04) digestibilities were greater with field pea vs. control. Total VFA concentrations were lower for field pea (P = 0.009) and lentil (P < 0.001) compared with control. Chickpea, field pea, and lentil had lower (P < or = 0.03) acetate molar proportion than control. Ruminal pH (P = 0.18) and NH3 (P = 0.14) were not different among treatments. In Exp. 2, calves fed chickpea, field pea, and lentil had greater overall DMI (7.59 vs. 6.98 kg/d; P < or = 0.07) and final BW (332 vs. 323 kg; P < or = 0.04), whereas chickpea and lentil had greater ADG (1.90 vs. 1.71 kg/d; P < or = 0.04) than control. Gain efficiency (P = 0.18) did not differ among treatments. Steers fed pulse grains had similar CP and OM digestibilities compared with a combination of corn and canola meal in receiving diets. Pulse grains are a viable alternative for replacement of protein supplements in receiving diets for beef cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号