首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

2.
Studies were undertaken on the effects of temperature (14/10 °C and 22/17 °C day/night) and plant age (15, 23, 31 and 40 day-old-plants) on the severity of downy mildew (Hyaloperonospora parasitica) on oilseed Brassica cultivars (temperature: Brassica juncea Montara, B. napus Atomic, ATR-Hyden, Hyola 432, Hyola 450 TT, Thunder TT; plant age: B. juncea Dune, B. napus Surpass 402 and Hyola 450 TT). For temperature studies, there were significant (P?<?0.001) effects of temperature, cultivar, and cultivar x temperature interaction. On cotyledons of susceptible cultivars (B. napus Hyola 450 TT and Thunder TT), plants were symptomatic at 22/17 °C by 48 h post inoculation (hpi) and with abundant sporulation evident by 72 hpi, and with all cotyledons of B. napus Thunder TT collapsed by 7 days post inoculation (dpi). However, at 14/10 °C, there were no symptoms on the same cultivars until 5 dpi, and sporulation only observed at 7 dpi. Percent disease index values (DI%) at 22/17 °C of B. juncea Montara and B. napus ATR-Hyden, Hyola 432, Atomic, Hyola 450 TT and Thunder TT were 4.5, 49.0, 51.4, 65.8, 86.3 and 96.0, respectively, with all except B. juncea Montara having significantly lower (P?<?0.001) disease at 14/10 °C with DI% values of 2.8, 30.4, 27.9, 31.1, 44.4 and 76.4, respectively. For plant age studies, there were significant (P?<?0.001) effects of plant age, cultivar, and cultivar x plant age interaction. DI% was significantly higher at 15 compared to 40 day-old-plants (dop) across all cultivars. B. juncea Dune showed greatest resistance, particularly on 40 dop, with DI% values of 25.8, 24.6, 22.9 and 7.5, for 15, 23, 31 and 40 dop, respectively. B. napus Surpass 402 showed high susceptibility on cotyledons of 15 dop but moderate resistance on leaves of other ages, with DI% values of 59.0, 31.2, 27.1 and 26.2 for 15, 23, 31 and 40 dop, respectively. B. napus Hyola 450 TT showed very high susceptibility at the cotyledon stage on 15 dop, but some resistance on 23 dop and more so on 31 and 40 dop, with DI% values of 84.0, 41.2, 35.4 and 32.9 for 15, 23, 31 and 40 dop, respectively. Together, these findings explain for the first time why development of downy mildew epidemics on susceptible cultivars occurs early in the growing season when warmer seasonal temperatures in autumn coincide with presence of seedlings; in contrast to later in the growing season on less susceptible older plants coinciding with cooler and less favourable winter temperatures. Increasing maximum and minimum temperatures associated with climate change have likely fostered the increased severity of downy mildew over the past 15 years.  相似文献   

3.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

4.
Botryosphaeria stem blight is an economically important disease of blueberry worldwide. In this study, factors affecting inoculum production, infection and disease progression of Neofusicoccum spp. in blueberries were investigated. Under laboratory conditions conidia of the main three Neofusicoccum species (N. australe, N. parvum and N. ribis) were released from pycnidia at 15–30 °C and under relative humidities (RHs) of 80–100%, with greatest numbers released by N. parvum. The greatest numbers of oozing pycnidia and conidial release occurred at higher temperatures (25–30 °C) and RHs (92–100%). Inoculation of green shoots with different N. parvum and N. ribis conidial concentrations (50 μL of 5 × 104?5 × 106 conidia/ mL) caused 100% incidence but lesion lengths increased with increasing concentrations. Wound age affected N. ribis lesion development, with lesions only observed for 0–7-day-old wounds in soft green shoots and 0–4-day-old wounds for both hard green shoots and trunks. Colonisation length decreased with increasing wound age. Lesions developed on wounded shoots when plants were exposed to 20 or 25 °C and 90 or 100% RH during the early infection processes; and in non-wounded shoots spot-like lesions were observed although N. ribis colonised the stem tissue. Seasons (summer, autumn and winter) had no effect on susceptibility of wounded plants to N. ribis. External lesions only developed in summer-inoculated plants and colonisation length was lower in winter-inoculated plants. Information on host and environmental factors that affect disease development determined by the study will be used to inform the development of control strategies.  相似文献   

5.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

6.
Bacterial diseases of bean cause economically important losses worldwide. The most important method for managing bacterial diseases on bean is the use of pathogen-free seed. In this study, 198 different dry bean seed samples of six different cultivars including Dermason, Cali, Sira, Battal, Bombay and Seker, were collected from 12 provinces of Central Anatolia Region of Turkey. All were tested to investigate the seedlots as primary inoculum sources of the major bacterial diseases. The data revealed that 22,72 %, 13,63 %, 11,11 %, 1,51 % and 0.5 % of seed samples tested were contaminated with five seedborne bacterial pathogens, Pseudomonas savastanoi pv. phaseolicola (Psp), Pseudomonas syringae pv. syringae (Pss), Xanthomonas axonopodis pv. phaseoli (Xap), X. axonopodis pv. phaseoli var. fuscans (Xapf) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), respectively. All bacterial strains isolated were identified based on morphological, physiological, biochemical, molecular and pathogenicity tests. The results showed that Psp and Pss were found together on cv. Cali; Psp and Xap on cv. Dermason and cv. Sira; and Pss and Xap on cv. Seker, cv. Dermason, and cv. Cali. Therefore, the results in the present study suggested that evaluation and selection of pathogen-free seeds are very important for preventing the spread of pathogens and effective management of seed borne bacterial diseases prevalent in bean growing regions; in addition to implementation of integrated crop production strategies such as crop rotation, sanitation, seed treatment, tolerant/resistant cultivar selection and proper bactericide application.  相似文献   

7.
Streptomyces griseorubens E44G is a chitinolytic bacterium isolated from cultivated soil in Saudi Arabia (a hot, arid climatic region). In vitro, antifungal potential of S. griseorubens E44G was assessed against the phytopathogenic fungus, Fusarium oxysporum f. sp. lycopersici (the causative agent of the Fusarium wilt disease of tomato). An inhibition zone of 24 mm was recorded. The chitinolytic activity of S. griseorubens E44G was proved when the colloidal chitin agar plate method was used. A thermostable chitinase enzyme of 45 kDa molecular weight was purified using gel filtration chromatography. The optimum activity was obtained at 60 °C and pH 5.5. The purified enzyme has shown a very pronounced activity against the phytopathogenic fungus, F. oxysporum. The molecular characterization of the chitinase gene indicated that it consists of 1218 bp encoding 407 amino acids. The phylogentic analysis based on the nucleotide DNA sequence and the deduced amino acids sequence showed high similarity percentages with other chitinases isolated from different Streptomyces species. In the field evaluation, application of both S. griseorubens E44G treatments significantly increased all tested growth and yield parameters and decreased the disease severity compared with the infected-untreated tomato plants suggesting potential as a biocontrol agent.  相似文献   

8.
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are important viruses of wheat (Triticum aestivum L.) in the Great Plains of United States. In addition to agronomic practices to prevent damage from these viruses, temperature sensitive resistance genes Wsm1, Wsm2 and Wsm3, have been identified. However, threshold temperatures for Wsm1 and Wsm3 have not been clearly defined. To better understand these two resistance genes, wheat lines C.I.15092 (Wsm1), KS96HW10–3 (Wsm1), and KS12WGGRC59 (Wsm3) were evaluated for WSMV resistance at 27, 30, 33 and 35 °C and for TriMV resistance at 18, 21, 24, 27, 30, 33 and 35 °C. The results showed that only C.I.15092 remained resistant at 30 °C for both viruses. This line also tolerated TriMV at 33 and 35 °C with less sever symptom and lower infection rates. Wheat lines KS96HW10–3 and KS12WGGRC59 hold resistance to TriMV up to 21 °C. Molecular marker results suggested that the resistance in C.I.15092 is most probably conditioned by the resistance gene Wsm1 and additional gene(s) other than Wsm2 and Wsm3.  相似文献   

9.
Internal fruit rot in bell pepper (Capsicum annuum L.) is mainly caused by members of the Fusarium lactis species complex (FLASC) and to a lesser extent by Fusarium oxysporum and Fusarium proliferatum. Despite the importance of the disease, there is hardly no information about growth, sporulation and germination dynamics of FLASC. In order to understand the dominance of FLASC as main pathogen of internal fruit rot, the effects of temperature (5 °C – 35 °C), water activity (aw 0.76–0.96), pH (pH 3 - pH 9) and oxygen concentration (2.5% - 20%) on growth and sporulation of all three Fusarium species were compared. In addition, germination kinetics were also investigated. FLASC showed optimal mycelium growth and sporulation in the narrow range of 25 °C, while both other strains were also tolerant for higher temperatures to 30 °C. FLASC was also characterized by a broad pH optimum from pH 3–7 while F. oxysporum (pH 4–7) and F. proliferatum (pH 5–8) were more demanding concerning pH. In addition, optimal sporulation occurred in the acid region for FLASC (pH 3) whilst neutral and alkaline pH were more favourable for the other species. Germination kinetics revealed that FLASC did not benefit from an earlier and/or faster germination process. A thorough understanding of the growth characteristics and dominance of FLASC as main pathogen for internal fruit rot is inevitable to develop sustainable control measures for the disease.  相似文献   

10.
‘Algerie’ is currently the most important loquat cultivar in Spain. The incidence and etiology of postharvest diseases affecting this cultivar were determined under local conditions. Latent and wound pathogens were evaluated for two consecutive seasons on commercially grown loquats from two orchards. Healthy loquats were either surface-disinfected or artificially wounded in the rind and placed in humid chambers at 20 °C for up to 5 weeks. Additionally, decay was assessed on commercially-handled loquats stored at 5 °C for up to 20 weeks. The most frequent disease was caused by Alternaria alternata, followed by Penicillium expansum. These two pathogens were present on fruit assessed for all types of infection. Moreover, decay caused by Botrytis cinerea was abundantly observed on both wounded and cold-stored fruit, while Colletotrichum gloeosporioides was frequently found on surface-disinfected fruit. Other pathogens that were observed causing latent infection to a lesser extent included Pestalotiopsis clavispora and Diplodia seriata. Common isolates were identified by macroscopic and microscopic morphology and/or DNA amplification and sequencing. Pathogenicity of selected isolates was demonstrated by fulfilling Koch’s postulates and disease development was assessed on artificially inoculated loquats stored at either 20 or 5 °C.  相似文献   

11.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease of wheat worldwide. Understanding the survival of Pst during the winter is critical for predicting Pst epidemics in the spring. We used a real-time quantitative PCR (qPCR) method to quantify Pst CYR32 biomass in infected wheat seedlings under several fluctuating temperature regimes (three average temperatures 0, ?5 and ?10 °C, each with two daily fluctuating amplitudes 8 and 13 °C). The survival of Pst CYR32 increased with increasing average temperature but also varied greatly with the amplitude – larger amplitude led to lower survival, particularly at 0 and ?5 °C. Nevertheless the survival at both amplitudes was still significantly greater than under the corresponding constant temperatures. There were small, albeit statistically significant, differences between the two cultivars (Xiaoyan 22, low winter-hardiness; Lantian 15, high winter-hardiness) in Pst CYR32 survival. This study indicated potential errors that could result from using daily average temperatures to predict Pst survival during the winter.  相似文献   

12.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

13.
The virulence spectrum of 300 isolates of Xanthomonas oryzae pv. oryzae (Xoo), representing 17 districts of Punjab, Pakistan was elucidated through inoculation on a set of six rice IRRI-differentials. The virulence level was assessed by using principal component and cluster analysis. Among six principal components (PCs), PC-1 exhibited 59.3 % of the total variance. The highly virulent isolates clusters on the positive side of the ordination away from the point of intersection of PC1 and PC2 and classifies the Xoo isolates from slow disease to the highest disease causing entities. The 300 isolates were categorized into 29 pathotypes (Pt1-29) wherein the highly virulent pathotype (Pt-1), comprises of 39 Xoo isolates were widespread in 12 districts. The majority of Xoo isolates were moderately to least virulent (21.7–43 %) and average disease progress curves confirmed the field reactions of these pathotype clusters for an efficient recognition of Xoo isolates. Interaction of the pathogen with differentials harboring different resistant genes was well investigated in the current study for future management approaches for which the surveillance of the new Xoo pathotypes may expedite the disease resistant rice breeding programme in the country.  相似文献   

14.
Western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is a quarantine pest of cherries (Prunus spp.) in western North America that is managed primarily using insecticides. Different insecticides could vary in efficacy and ability to control flies depending on environmental factors. Here, the objective was to determine if temperature and food availability affect the efficacies of spinosad and malathion against R. indifferens in the laboratory. Fourteen- to 18-day old flies were exposed to sweet cherries with dried residues of spinosad and malathion at 19 or 21 versus 27 °C with or without yeast extract + sucrose food (‘food’). Deaths and oviposition were recorded over four days. In spinosad treatments, fly kill was greater at 27 °C than at lower temperatures when there was no food, but in the malathion treatments, kill did not differ between temperatures and it was greatest when there was no food. In spinosad treatments, lower oviposition occurred at 19 or 21 °C than 27 °C, with differences larger when there was food. However, in malathion treatments, oviposition was not affected by temperature although it was lower when there was no food. Results imply temperature and food availability could be factors affecting R. indifferens control in cherries, but whether temperature is such a factor depends on the insecticide used.  相似文献   

15.
In 1972, bacterial leaf spot of onion (BLSO) was first recorded in Japan by Goto. The pathogen was considered as a pathovar of Pseudomonas syringae specifically causing disease on onion and Welsh onion, but it has not been taxonomically investigated in detail. In 2012 and 2014, a disease suspected as BLSO re-emerged on onion in Shizuoka and Hyogo Prefectures, Japan, respectively. A pathogenic bacterium isolated from the infected onions was thought to be the BLSO agent after preliminary examinations. Strains isolated from BLSO in 1969, 1986, 1987, 2012 and 2014 were characterized and compared with the causal agent of bacterial blight of leek (P. syringae pv. porri), which causes similar symptoms on Allium plants. The result of rep-PCR distinguished the BLSO agent from P. syringae pv. porri. Multilocus sequence analysis on housekeeping genes and hrp genes encoding the type-III secretion system revealed that the strains of the BLSO agent clustered independently of P. syringae pv. porri. The BLSO agent and P. syringae pv. porri also differed in utilization of erythritol, dl-homoserine, glutaric acid and other bacteriological characteristics and caused different reactions on onion, Welsh onions, chives, shallot, rakkyo, leek, garlic and Chinese chive. Thus, the BLSO agent clearly differs from P. syringae pv. porri and is considered to be a new pathovar of P. syringae. The name P. syringae pv. alliifistulosi is proposed with pathotype strain ICMP3414.  相似文献   

16.
Fungal species comprising the Fusarium graminearum species complex (FGSC) may cause disease in maize and wheat. Host preference within the FGSC has been suggested, in particular F. boothii towards maize ears. Therefore, the disease development and mycotoxin production of five FGSC species in maize and wheat grain was determined. Eighteen isolates representing F. acaciae-mearnsii, F. boothii, F. cortaderiae, F. graminearum and F. meridionale were used. Each isolate was inoculated on maize ears and wheat heads to determine host preferences. Disease severity and disease incidence was measured for maize and wheat, respectively. Fungal colonisation and mycotoxins, deoxynivalenol (DON), nivalenol and zearalenone, was also quantified. Isolates differed significantly (P < 0.05) in their ability to produce symptoms on maize ears, however, no significant differences between FGSC species were determined. Similarly, significant differences (P < 0.05) between isolates but not between FGSC species in disease incidence on wheat were determined. The isolates also differed significantly (P < 0.05) in their ability to colonise maize and wheat grain. No significant differences in fungal colonisation, among the five FGSC species, were determined in field grown maize. However, under greenhouse conditions, F. boothii was the most successful coloniser of maize grain (P < 0.05). In wheat, F. graminearum colonised the grain more successfully and produced significantly more (P < 0.05) DON than the other species. Fusarium boothii isolates were the best colonisers and mycotoxin producers in maize, and F. graminearum isolates in wheat. The selective advantage of F. boothii to cause disease on maize was supported in this study.  相似文献   

17.
Laboratory and nursery experiments were conducted to identify the causal agent of a needle blight of Pinus wallichiana, a species native to the Western Himalayas. The pathogen was identified as Myrothecium verrucaria, on the basis of morphological, cultural and molecular characterization. BLAST analysis of ITS sequences of the pathogen revealed maximum sequence identity of 99% with M. verrucaria. The sequence is the first of this fungus from P. wallichiana. Phylogenetic analysis grouped all M. verrucaria isolates in a single clade; M. roridum and M. inundatum clustered in separate clades. The pathogen grew optimally at 25 ± 1 °C on oat meal agar, pH 5.5. Inoculation experiments with M. verrucaria demonstrated pathogenicity on Pinus halepensis, Cedrus deodara and Cryptomeria japonica, in addition to Pinus wallichiana.  相似文献   

18.
Plant response to one type of stress can be affected by simultaneous exposure to a second stress, for example when abiotic and biotic stresses occur together. Ten rice genotypes comprising those with bacterial blight (BB) resistance (R) genes, drought quantitative trait loci (QTLs) plus a BB R gene, and BB susceptible genotypes, were subjected to mild and moderate drought stress and plants were inoculated with two Xoo strains (PXO99 and PXO145) to simulate the challenges rice crops face under simultaneous stress of drought and BB. Plant height and dry shoot biomass were significantly reduced by drought stress treatments. The BB disease lesion lengths varied according to rice genotypes and PXO99 Xoo multiplication and spread in planta was higher compared to that of PXO145, which generally decreased under mild drought stress. Rice genotype IRBB7 (Xa7) showed less Xoo spread and a reduced Xoo multiplication under drought stress compared to the well-watered control with PXO145. In contrast, in genotypes with a different BB R gene and/or drought QTLs [IRBB4 (Xa4), IR87705–6-9-B (Xa4 + qDYT 2.2 ), IR87707–445-B-B-B (Xa4 + qDYT 2.2  + qDYT 4.1 ) and IR87707–446-B-B-B (Xa4 + qDYT 2.2  + qDYT 4.1 )], Xoo multiplication and spread in planta was higher with drought stress. This study has shown that drought stress affected rice response to the BB pathogen and the response varied according to the rice genotype. It is concluded that evaluating rice varieties under combined abiotic and biotic stresses will be the best strategy to determine biotic stress resistance durability under climate change.  相似文献   

19.
Olive knot disease in Japan was first reported in Shizuoka Prefecture in 2014, and the causal agent was identified as Pseudomonas savastanoi pv. savastanoi. Subsequently, olive trees having knots were also found in Aichi and Kanagawa Prefectures in 2015, and the isolates from knots were also suspected to be P. savastanoi pv. savastanoi through preliminary examinations. Therefore, the Aichi and Kanagawa isolates were identified through comparison of isolates from three prefectures. Phylogenic analysis based on 16S rDNA and housekeeping genes (gyrB, rpoD, gltA and gap1) revealed that the isolates belonged to the same cluster as the pathotype strain, ICMP4352PT. The iaaM, H and L genes, which are involved in promotion of symptoms, and the ina gene coding the ice nucleation protein, were detected by PCR from all the isolates. In rep-PCR (ERIC and REP) analyses, the isolates yielded DNA fragment-banding patterns that were nearly identical to that of ICMP4352PT, but slight variations in banding patterns were observed among them. In a pathogenicity test, the isolates formed distinct knots on olive and pink jasmine. Phenotypic properties of the isolates were almost identical to those of ICMP4352PT, with the exception of d-sorbitol utilization. Consequently, Aichi and Kanagawa isolates from olive were identified as P. savastanoi pv. savastanoi, and several genetic diversities in terms of rep-PCR were found in the Japanese population of P. savastanoi pv. savastanoi, indicating their heterogeneity.  相似文献   

20.
Ability to detect Pseudocercospora macadamiae infection in macadamia husk at least four months before symptoms become visible will aid the development of disease control measures. This study examined the distinctness of P. macadamiae within the phylogenetic lineages of the genus Pseudocercospora. In addition, we developed two quantitative PCR (qPCR) assays, as rapid diagnostic tools, for early detection and quantification of P. macadamiae in planta. Phylogenetic analysis of concatenated sequences of four gene loci (large subunits, internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF-1α) and actin of 47 P. macadamiae isolates showed that P. macadamiae is a distinct species in the genus Pseudocercospora. P. macadamiae isolates were partitioned into subunits in the cluster but the grouping of the isolates was regardless of location. Nucleotide diversity (0.02) and the coefficient of genetic differentiation (0.07) were low in the P. macadamiae population. Two qPCR primer sets, based on ITS (PMI) and TEF-1α (PME) were designed that consistently amplified P. macadamiae in fungal cultures (Ct = 16.93 ± 0.11 and Ct = 21.20 ± 0.11, respectively) and in planta (Ct = 32.36 ± 0.28 and Ct = 38.07 ± 1.20, respectively). The PMI primers also detected species in the genus Pseudocercospora, while PME was more specific and robust for quantification of P. macadamiae. Both primer sets detected P. macadamiae in asymptomatic tissue samples and strongly differentiated various stages of disease progression, which revealed approximately 10-fold increase in fungal biomass between each consecutive stage of symptom development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号