首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared to conventional planting material, micropropagated plantlets are highly susceptible to Fusarium wilt because they are free from beneficial root inhabitants. We aimed to introduce mixtures of beneficial microbes in the plantlets in the rooting medium under in vitro conditions rather than by field applications. Endophytes and rhizobacteria from different banana cultivars and plantation areas were screened and characterized. Under in vitro conditions, banana tissue culture plantlets were bacterized with the prospective endophytes, Bacillus subtilis strain EPB56 and EPB10 and the rhizobacteria, Pseudomonas fluorescens strain Pf1 and effects of in vitro bacterization were investigated against Fusarium oxysporum f. sp. cubense race 1 under glasshouse and field conditions. Inoculation of bananas during micropropagation allowed for the omission of minerals and salts as well as vitamins from the growing media while resulting in plantlets close to double size compared to the controls with full strength media. All endophyte and rhizobacteria strains tested resulted in significant reductions in Fusarium infection in the glasshouse and field and in significantly better plant growth. The three-way combination of bacteria resulted in 78% disease reduction and more than doubled the yields compared to the untreated controls across two field experiments. Three-way inoculation led to yields of 23 and 24 kg/ bunch compared to chemical disease control (13; 15 kg/bunch) and untreated controls (10; 13 kg/bunch) in the two field experiments. Under glasshouse conditions, activity of defence enzymes was significantly increased by all inoculation treatments. Inoculation in vitro led to the establishment of the microorganisms in the plant system before delivering to the farming community. Micropropagation combined with the establishment of a beneficial microbial consortium should complement the micropropagated plants for easier adaptation under field conditions.  相似文献   

2.
In order to accelerate breeding and selection for disease resistance to Fusarium wilt, it is important to develop bioassays which can differentiate between resistant and susceptible cultivars efficiently. Currently, the most commonly used early bioassay for screening Musa genotypes against Fusarium oxysporum f. sp. cubense (Foc) is a pot system, followed by a hydroponic system. This paper investigated the utility of in vitro inoculation of rooted banana plantlets grown on modified medium as a reliable and rapid bioassay for resistance to Foc. Using a scale of 0 to 6 for disease severity measurement, the mean final disease severities of cultivars expressing different levels of disease reaction were significantly different (P ≤ 0.05). Twenty-four days after inoculation with Foc tropical race 4 at 106 conidia ml−1, the plantlets of two susceptible cultivars had higher final disease severities than that of four resistant cultivars. Compared with ‘Guangfen No.1’, ‘Brazil Xiangjiao’ is highly susceptible to tropical race 4 and its mean final disease severity was the highest (5.27). The plantlets of moderately resistant cultivar ‘Formosana’ had a mean final disease severity (3.53) lower than that of ‘Guangfen No.1’ (4.33) but higher than that of resistant cultivars: ‘Nongke No.1’, GCTCV-119, and ‘Dongguan Dajiao’ (1.87, 1.73, and1.53, respectively). Promising resistant clones acquired through non-conventional breeding techniques such as in vitro selection, genetic transformation, and protoplast fusion could be screened by the in vitro bioassay directly. Since there is no acclimatization stage for plantlets used in the bioassay, it helps to improve banana breeding efficiency.  相似文献   

3.
The aim of this research was to study levels of resistance to Fusarium basal rot in onion cultivars and related Allium species, by using genetically different Fusarium isolates. In order to select genetically different isolates for disease testing, a collection of 61 Fusarium isolates, 43 of them from onion (Allium cepa), was analysed using amplified fragment length polymorphism (AFLP) markers. Onion isolates were collected in The Netherlands (15 isolates) and Uruguay (9 isolates), and received from other countries and fungal collections (19 isolates). From these isolates, 29 were identified as F. oxysporum, 10 as F. proliferatum, whereas the remaining four isolates belonged to F. avenaceum and F. culmorum. The taxonomic status of the species was confirmed by morphological examination, by DNA sequencing of the elongation factor 1-α gene, and by the use of species-specific primers for Fusarium oxysporum, F. proliferatum, and F. culmorum. Within F. oxysporum, isolates clustered in two clades suggesting different origins of F. oxysporum forms pathogenic to onion. These clades were present in each sampled region. Onion and six related Allium species were screened for resistance to Fusarium basal rot using one F. oxysporum isolate from each clade, and one F. proliferatum isolate. High levels of resistance to each isolate were found in Allium fistulosum and A. schoenoprasum accessions, whereas A. pskemense, A. roylei and A. galanthum showed intermediate levels of resistance. Among five A. cepa cultivars, ‘Rossa Savonese’ was also intermediately resistant. Regarding the current feasibility for introgression, A. fistulosum, A. roylei and A. galanthum were identified as potential sources for the transfer of resistance to Fusarium into onion.  相似文献   

4.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

5.
Fifteen novel microsatellite markers were isolated from Fusarium graminearum. The level of polymorphism at these novel and 13 previously published microsatellite markers was analysed in 33 F. graminearum strains from Europe, North America, and Nepal. The number of alleles for each of the novel markers ranged from 4 to 20 and gene diversity from 0.417 to 0.962. In comparison with the previously published markers, the resolution for distinguishing among different strains was slightly increased. Twenty-seven markers were also detectable in three F. culmorum strains and one F. crookwellense strain. None of the markers was detected in three F. avenaceum and four F. poae strains, underlining the potential use of these microsatellite markers for species differentiation.  相似文献   

6.
The mechanism by which Fusarium diseases of cymbidium plants are suppressed by a weakly virulent strain HPF-1 of Fusarium sp. was studied. Strain HPF-1 produced microscopic, necrotic local lesions on cymbidium leaves, causing minor damage to palisade tissues at the infection sites. This weakly virulent strain remained near the site of infection and did not develop further. It systemically and nonselectively suppressed some diseases of cymbidium such as yellow spot of leaves caused by Fusarium proliferatum and F. fractiflexum, bulb and root rot caused by F. oxysporum, and dry rot of bulbs and roots caused by F. solani. Because endogenous salicylic acid levels increased in cymbidium leaves inoculated with strain HPF-1, the mechanism of disease suppression is thought to be systemic acquired resistance.  相似文献   

7.
An extensive survey was carried out to collect Fusarium species colonizing the lower stems (crowns) of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) from different wheat growing regions of Turkey in summer 2013. Samples were collected from 200 fields representing the major wheat cultivation areas in Turkey, and fungi were isolated from symptomatic crowns. The isolates were identified to species level by sequencing the translation elongation factor 1-alpha (TEF1-α) gene region using primers ef1 and ef2. A total of 339 isolates representing 17 Fusarium species were isolated. The isolates were identified as F. culmorum, F. pseudograminearum, F. graminearum, F. equiseti, F. acuminatum, F. brachygibbosum, F. hostae, F. redolens, F. avenaceum, F. oxysporum, F. torulosum, F. proliferatum, F. flocciferum, F. solani, F. incarnatum, F. tricinctum and F. reticulatum. Fusarium equiseti was the most commonly isolated species, accounting for 36% of the total Fusarium species isolated. Among the damaging species, F. culmorum was the predominant species being isolated from 13.6% of sites surveyed while F. pseudograminearum and F. graminearum were isolated only from 1% and 0.5% of surveyed sites, respectively. Six out of the 17 Fusarium species tested for pathogenicity caused crown rot with different levels of severity. Fusarium culmorum, F. pseudograminearum and F. graminearum caused severe crown rot disease on durum wheat. Fusarium avenaceum and F. hostae were weakly to moderately virulent. Fusarium redolens was weakly virulent. However, F. oxysporum, F. equiseti, F. solani, F. incarnatum, F. reticulatum, F. flocciferum, F. tricinctum, F. brachygibbosum, F. torulosum, F. acuminatum and F. proliferatum were non-pathogenic. The result of this study reveal the existence of a wide range of Fusarium species associated with crown rot of wheat in Turkey.  相似文献   

8.
Interactions between Barley yellow dwarf virus (BYDV) and Fusarium species causing Fusarium head blight (FHB) in winter wheat cvs Agent (susceptible to FHB) and Petrus (moderately resistant to FHB) were studied over three years (2001–2003) in outdoor pot experiments. FHB developed more rapidly in cv. Agent than in cv. Petrus. The spread of FHB was greater in BYDV-infected plants than in BYDV-free plants. Thousand grain weight (TGW) was reduced more in Fusarium-infected heads of cv. Agent than in cv. Petrus. A highly significant negative correlation was found between disease index and TGW in cv. Agent (r = −0.916), while in cv. Petrus the correlation was less significant (r = −0.765). Virus infection reduced TGW in cv. Petrus more than in cv. Agent. In plants with both infections, TGW reductions in cv. Petrus corresponded to those of BYDV infection, and in cv. Agent TGW was more diminished than in BYDV infection. Effects of different treatments determined over three years on ergosterol contents in grain were generally similar to effects on disease indices. Grain weight per ear and ear weight of the different treatments of both cultivars largely corresponded with the TGW results. Deoxynivalenol (DON) content in grain of cv. Agent infected with Fusarium spp. was 11–25 times higher compared to the corresponding treatments in cv. Petrus. The DON content in grain of plants of the two cultivars infected with both pathogens was higher than that of plants infected only with Fusarium over the three years.  相似文献   

9.
Fusarium head blight in small grain cereals has emerged as a major problem in the Nordic countries. However, the impact of this disease in oats has been less investigated than in other cereals. For this reason we have studied the infection process (the optimal time of infection and infection pathways) of Fusarium graminearum in oats and its subsequent effects on kernel infection, deoxynivalenol (DON) content and germination capacity. In a field experiment the oat cultivar Morton was spray-inoculated at different developmental stages, and the highest kernel infection and DON content and lowest germination percentage were observed when inoculation took place at anthesis. Field grown oats affected by a natural Fusarium head blight epidemic and spray-inoculated field and greenhouse oats were used to study the infection pathway. Results showed that the fungus entered primarily through the floret apex into the floret cavity, where it could infect via the internal surfaces of the palea, lemma and caryopsis. Both visual symptoms and fungal infections started at the apical portions of the florets and progressed to the basal portions. Hyphae of F. graminearum grew more profusely on the anthers than on other floret parts during initial stages of infection. Disease development within the oat panicle was slow and is primarily by physical contact between adjoining florets, indicating that the long pedicels give Type II resistance in oats.  相似文献   

10.
Streptomyces griseorubens E44G is a chitinolytic bacterium isolated from cultivated soil in Saudi Arabia (a hot, arid climatic region). In vitro, antifungal potential of S. griseorubens E44G was assessed against the phytopathogenic fungus, Fusarium oxysporum f. sp. lycopersici (the causative agent of the Fusarium wilt disease of tomato). An inhibition zone of 24 mm was recorded. The chitinolytic activity of S. griseorubens E44G was proved when the colloidal chitin agar plate method was used. A thermostable chitinase enzyme of 45 kDa molecular weight was purified using gel filtration chromatography. The optimum activity was obtained at 60 °C and pH 5.5. The purified enzyme has shown a very pronounced activity against the phytopathogenic fungus, F. oxysporum. The molecular characterization of the chitinase gene indicated that it consists of 1218 bp encoding 407 amino acids. The phylogentic analysis based on the nucleotide DNA sequence and the deduced amino acids sequence showed high similarity percentages with other chitinases isolated from different Streptomyces species. In the field evaluation, application of both S. griseorubens E44G treatments significantly increased all tested growth and yield parameters and decreased the disease severity compared with the infected-untreated tomato plants suggesting potential as a biocontrol agent.  相似文献   

11.
Experiments were conducted to determine the extent of Fusarium langsethiae infection in wheat, barley and oats grown under identical experimental conditions. In total, four experiments were conducted with both winter and spring sown experiments at two locations. The amount of F. langsethiae infection was determined by quantifying F. langsethiae DNA and quantifying the combined concentration of the trichothecene mycotoxins HT-2 and T-2 (HT-2 + T-2) in cereal head fractions (grain and rest of the head) after threshing at harvest. Results of the study showed that under identical experimental conditions, oats had the highest F. langsethiae DNA and HT-2 + T-2 concentrations compared to wheat and barley. This indicates that the high levels detected on UK oats compared to wheat and barley from surveys of commercial crops is a consequence of genetic differences rather than differences in agronomy applied to the cereal species. The concentration of HT-2 and T-2 per unit of F. langsethiae DNA in oats compared to wheat and barley was also significantly higher indicating host differences in either the stimulation of HT-2 and T-2 production or in the metabolism of HT-2 and T-2. The study also showed that the proportion of F. langsethiae DNA in threshed grains was significantly lower than that in the rest of the cereal head.  相似文献   

12.
From the genome of a Japanese field isolate of the rice blast fungus, Magnaporthe oryzae, we newly identified Inago1 and Inago2 LTR retrotransposons. Both elements were found to be Ty3/gypsy-like elements whose copies were dispersed within the genome of Magnaporthe spp. isolates infecting rice and other monocot plants. Southern hybridization patterns of nine re-isolates derived from conidia of the strain Ina168 produced after a methyl viologen treatment were not changed, indicating that the insertion pattern of Inago elements is relatively stable.  相似文献   

13.
Pseudomonas fluorescens strains CHA0 and Pf1 were investigated for their biocontrol efficacy against Banana bunchy top virus (BBTV) in banana (Musa spp.) alone and in combination with chitin under glasshouse and field conditions. Bioformulation of P. fluorescens strain CHA0 with chitin was effective in reducing the banana bunchy top disease (BBTD) incidence in banana under glasshouse and field conditions. In addition to disease control, the bioformulation increased the economic yield significantly compared to the untreated control. Increased accumulation of oxidative enzymes, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), pathogenesis-related (PR) proteins, chitinase, β-1,3-glucanase and phenolics were observed in CHA0 bioformulation amended with chitin-treated plants challenged with BBTV under glasshouse conditions. Indirect ELISA indicated the reduction in viral antigen concentration in P. fluorescens strain CHA0 with chitin-treated banana plants corresponding to reduced disease ratings. The present study revealed that induction of defence enzymes by P. fluorescens with chitin amendment reduced the BBTD incidence and increased bunch yield in banana.  相似文献   

14.
In a field experiment between 2004 and 2006, 14 winter wheat varieties were inoculated with either a mixture of three isolates of F. poae or a mixture of three isolates of F. avenaceum. In a subsequent climate chamber experiment, the wheat variety Apogee was inoculated with individual single conidium isolates derived from the original poly conidium isolates used in the field. Disease symptoms on wheat heads were visually assessed, and the yield as well as the fungal incidence on harvested grains (field only) was determined. Furthermore, grains were analysed using LC-MS/MS to determine the content of Fusarium mycotoxins. In samples from field and climate chamber experiments, 60 to 4,860 μg kg−1 nivalenol and 2,400 to 17,000 μg kg−1 moniliformin were detected in grains infected with F. poae and F. avenaceum, respectively. Overall, isolate mixtures and individual isolates of F. avenaceum proved to be more pathogenic than those of F. poae, leading to a higher disease level, yield reductions up to 25%, and greater toxin contamination. For F. poae, all variables except for yield were strongly influenced by variety (field) and by isolate (climate chamber). For F. avenaceum, variety had a strong effect on all variables, but isolate effects on visual disease were not reflected in toxin production. Correlations between visual symptoms, fungal incidence, and toxin accumulation in grains are discussed.  相似文献   

15.
Fusarium oxysporum f. sp. melongenae (Fomg), causal agent of Fusarium wilt of eggplant, is a serious pathogen in open fields and greenhouses. Inter-simple sequence repeat (ISSR) banding profiles, sequence analyses of inter-transcribed-spacer (ITS), translation elongation factor 1-alpha (TEF-1α), and actin (actA) DNA regions were employed in this study to determine genetic diversity and population structure of Fomg isolates obtained from Turkey. For ISSR study, (ACTG)5, (GACAC)3, (GACA)4, (GATA)4, HVH(TG)7 and (CA)8RG primers were selected from a set of 16. Discriminative ability of the primers revealed with various indices including polymorphic information content (PIC), and mean PIC value was calculated as 0.26. The ISSR data revealed 31 loci belonging to 202 Fomg isolates and 14 of them were found to be polymorphic. The isolates on neighbor joining ISSR tree were grouped into two major clusters which separated Fomg and outgroup isolates. Population structure was investigated based on bayesian modeling and results indicated five subpopulations (K = 5, ?K = 205.42). Mean genetic and geographical distances among sampling locations revealed only a weak and insignificant correlation (r = 0.583, P = 0.06). Phylogenetic analyses were carried out with ITS, TEF-1α and actA DNA regions with a selected subset of 30 Fomg, along with one non-host and one outgroup isolates. Since ITS region were not able to provide a meaningful separation, TEF-1α and actA sequences of each organism were concatenated individually to build a dendrogram. The clustering tree successfully separated the Fomg, non-host and outgroup isolates in which all Fomg were located on the same branch, forming a monophyletic group in the dendrogram.  相似文献   

16.
In the present study, the pathogenicity of 36 isolates of Guignardia species isolated from asymptomatic ‘Tahiti’ acid lime fruit peels and leaves, ‘Pêra-Rio’ sweet orange leaves and fruit peel lesions, and a banana leaf were characterized. For pathogenicity testing, discs of citrus leaves colonized by Phyllosticta citricarpa under controlled laboratory conditions were kept in contact with the peels of fruit that were in susceptible states. In addition, pathogenicity was related to morphological characteristics of colonies on oatmeal (OA) and potato dextrose agar (PDA). This allowed the morphological differentiation between G. citricarpa and G. mangiferae. Polymerase chain reactions (PCRs) were also used to identify non-pathogenic isolates based on primers specific to G. citricarpa. A total of 14 pathogenic isolates were detected during pathogenicity tests. Five of these were obtained from leaf and fruit tissues of the ‘Tahiti’, which until this time had been considered resistant to the pathogen. Given that the G. citricarpa obtained from this host was pathogenic, it would be more appropriate to use the term insensitive rather than resistant to categorize G. citricarpa. A non-pathogenic isolate was obtained from lesions characteristic of citrus black spot (CBS), indicating that isolation of Guignardia spp. under these conditions does not necessarily imply isolation of pathogenic strains. This also applied to Guignardia spp. isolates from asymptomatic citrus tissues. Using fluorescent amplified fragment length polymorphism (fAFLP) markers, typically pathogenic isolates were shown to be more closely related to one another than to the non-pathogenic forms, indicating that the non-pathogenic isolates display higher levels of genetic diversity.  相似文献   

17.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

18.
We investigated incidences of Fusarium head blight (FHB) and concentrations of six mycotoxins (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, T-2 toxin, HT-2 toxin and zearalenone) in wheat from 2010 to 2013. Field trials were conducted at the Experimental Station of Cultivar Testing in Chrz?stowo, Poland (53o11’N, 17o35’E). We examined the effects of four agronomic factors, including pre-crop type (corn, sugar beets and wheat), date of sowing (late autumn: November 8–December 9 or spring: March 29–April 19), fungicidal application (untreated or treated with two applications) and cultivar (Monsun, Cytra), on FHB index (FHBi) and mycotoxin levels in order to minimize the risk of wheat grain contamination by mycotoxins via integrated pest management methods. The dominant Fusarium species observed on wheat heads were F. culmorum, F. avenaceum (Gibberella avenacea) and F. graminearum (Gibberella zeae), at 21.1%, 17.2% and 7.1%, respectively. A monthly rainfall sum of 113.9 mm and a relatively low air temperature (monthly average 15.5 °C) resulted in the highest FHBi in untreated wheat (25.1%). Agronomic factors crucial for the FHB incidence were the pre-crop, fungicidal treatments and cultivar selection. In wheat planted after wheat or corn, the FHBi was higher compared with a pre-crop of sugar beet. A double application of fungicides at BBCH 30–32 with prothioconazole and spiroxamine and at a BBCH 65 with fluoxastrobin and prothioconazole effectively reduced the FHBi and mycotoxin concentrations, respectively, in grain. The cultivar ‘Cytra’ had a greater FHBi (10.4%) than ‘Monsun’ (4.6%), and grain infestations by Fusarium species were also greater in ‘Cytra’, at 16.5%, than in ‘Monsun’, at 11.2%. Untreated cv. Cytra grown after corn in spring produced grains with the highest amounts of the mycotoxins, deoxynivalenol, 3-acetyldeoxynivalenol, zearalenone and HT-2 (605, 103, 17.5 and 5.53 μg/kg, respectively). Total mycotoxin levels in wheat were correlated with five determinants: duration of the period between the end of flowering and the beginning of kernel abscission, FHBi, F. culmorum isolation, G. zeae isolation and Fusarium ratio (FR) as a % of total mould isolations. Although, the mean concentration of mycotoxins in grain did not exceed the maximum permissible values for unprocessed wheat our study suggests necessity to monitor and mitigate FHB risk for susceptible cultivars, when wheat spring sowing follows corn or wheat.  相似文献   

19.
Fusarium wilt, one of the destructive diseases of cucumber can be effectively controlled by using biocontrol agents such as Trichoderma harzianum. However, the mechanisms controlling T. harzianum-induced enhanced resistance remain largely unknown in cucumber plants. Here we screened the potent T. harzianum isolate TH58 that could effectively control F. oxysporum (FO). Glasshouse efficacy trials also showed that TH58 decreased disease incidence by 69.7 %. FO induced ROS over accumulation, while TH58 inoculation suppressed ROS over accumulation and improved root cell viability under F. oxysporum infection. TH58 inoculation could reverse the FO-induced cell division block and regulate the proportional distribution of nuclear DNA content through inducing 2C fraction. Moreover, the expression levels of cell cycle-related genes such as CDKA, CDKB, CycA, CycB, CycD3;1 and CycD3;2 in TH58 - pre-inoculated seedlings were up-regulated compared with those infected with FO alone. Taken together, these results suggest that T. harzianum improved plant resistance against Fusarium wilt disease via alterations in nuclear DNA content and cell cycle-related genes expression that might maintain a lower ROS accumulation and higher root cell viability in cucumber seedlings.  相似文献   

20.
Fusarium wilt is an economically important fungal disease of common eggplant (Solanum melongena) cultivated in the eastern Mediterranean region of Turkey. Seventy-four isolates of Fusarium oxysporum isolated from diseased eggplant displaying typical Fusarium wilt symptoms were screened for pathogenicity on the highly susceptible cv. ‘Pala’. All the isolates tested were pathogenic to eggplant and designated as Fusarium oxysporum f. sp. melongenae (Fomg). Genetic diversity among a core set of 20 Fomg isolates that were selected based upon geographic locations, were characterized by using pathogenicity, vegetative compatibility grouping (VCG), and random amplified polymorphic DNA (RAPD) analysis. The area under the disease progress curve (AUDPC) was calculated for each Fomg isolate until 21 days after inoculation (DAI). The most virulent isolate was identified as Fomg10 based on AUDPC, disease severity and vascular discoloration measurements at 21 DAI. At this date, a good correlation was observed between disease severity and AUDPC values for all isolates (r = 0.73). UPGMA (unweighted pair group method with arithmetic average) cluster analysis of RAPD data using Dice’s coefficient of similarity differentiated all the Fomg isolates tested, and indicated considerable genetic variation among Fomg isolates, but isolates from the same geographic region were grouped together. There was no direct correlation between clustering in the RAPD dendrogram and pathogenicity testing of Fomg isolates. Twenty isolates of Fomg were assigned to VCG 0320.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号