首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Digitaria insularis biotypes resistant to glyphosate have been detected in Brazil. Studies were carried out in controlled conditions to determine the role of absorption, translocation, metabolism, and gene mutation as mechanisms of glyphosate resistance in D. insularis. The susceptible biotype absorbed at least 12% more (14)C-glyphosate up to 48 h after treatment (HAT) than resistant biotypes. High differential (14)C-glyphosate translocation was observed at 12 HAT, so that >70% of the absorbed herbicide remained in the treated leaf in resistant biotypes, whereas 42% remained in the susceptible biotype at 96 HAT. Glyphosate was degraded to aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine by >90% in resistant biotypes, whereas a small amount of herbicide (up to 11%) was degraded by the susceptible biotype up to 168 HAT. Two amino acid changes were found at positions 182 and 310 in EPSPS, consisting of a proline to threonine and a tyrosine to cysteine substitution, respectively, in resistant biotypes. Therefore, absorption, translocation, metabolism, and gene mutation play an important role in the D. insularis glyphosate resistance.  相似文献   

2.
Whole-plant response of two suspected resistant Avena fatua biotypes from Chile and Mexico to ACCase-inhibiting herbicides [aryloxyphenoxypropionate (APP), cyclohexanedione (CHD), and pinoxaden (PPZ)] and the mechanism behind their resistance were studied. Both dose-response and ACCase enzyme activity assays revealed cross-resistance to the three herbicide families in the biotype from Chile. On the other hand, the wild oat biotype from Mexico exhibited resistance to the APP herbicides and cross-resistance to the CHD herbicides, but no resistance to PPZ. Differences in susceptibility between the two biotypes were unrelated to absorption, translocation, and metabolism of the herbicides. PCR generated fragments of the ACCase CT domain spanning the potential mutations sited in the resistant and susceptible biotypes were sequenced and compared. A point mutation was detected in the aspartic acid triplet at the amino acid position 2078 in the Chilean biotype and in isoleucine at the amino acid position 2041 in the Mexican wild oat biotype, which resulted in a glycine triplet and an asparagine triplet, respectively. On the basis of in vitro assays, the target enzyme (ACCase) in these resistant biotypes contains a herbicide-insensitive form. This is the first reported evidence of resistance to pinoxaden in A. fatua.  相似文献   

3.
Fenoxaprop-p-ethyl (FE), 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoate, ethyl ester (R), is an aryloxyphenoxypropionate herbicide for postemergence control of annual and perennial grasses in paddy fields; its site of action is acetyl-coenzyme A carboxylase (ACCase), an enzyme in fatty acids biosynthesis. The possible mechanism(s) of resistance to FE in a resistant biotype of Echinochloa phyllopogon was examined, namely, absorption, translocation, and metabolism of FE and ACCase susceptibility to fenoxaprop acid (FA). Studies of the in vitro inhibition of ACCase discounted any differential active site sensitivity as the basis of resistance to FE. There were differences in absorption rates between biotypes from 3 to 48 h after application (HAA). Biotypes did not differ in either the amounts or the rates of FE translocated; 98% of applied [14C]FE remaining in the treated leaf. However, there was a good correlation between the rate of herbicide metabolism and the plant resistance. The R biotype produced 5-fold less FA and approximately 2-fold more nontoxic (polar) metabolites 48 HAA than the S biotype. Moreover, the higher rate of GSH conjugation in the resistant biotype as compared to the susceptible one indicates that GSH and cysteine conjugation is the major mechanism of resistance of the R biotype against FE toxicity.  相似文献   

4.
The physiological basis for MCPA resistance in a hemp-nettle (Galeopsis tetrahit L.) biotype, obtained from a MCPA-resistant field population, was investigated. Dose-response studies revealed that the resistance factor for MCPA, based on GR50 comparisons of total dry weight of resistant (R) and susceptible (S) plants, was 3.3. Resistance factors for fluroxypyr, dicamba, 2,4-D, glyphosate, and chlorsulfuron were 8.2, 1.7, 1.6, 0.7, and 0.6, respectively. MCPA resistance was not due to differences in absorption, because both R and S biotypes absorbed 54% of applied [14C]MCPA 72 h after treatment. However, R plants exported less (45 vs 58% S) recovered 14C out of treated leaves to the apical meristem (6 vs 13% S) and root (32 vs 38% S). In both biotypes, approximately 20% of the 14C recovered in planta was detected as MCPA metabolites. However, less of the 14C recovered in the roots of R plants was MCPA. Therefore, two different mechanisms protect R hemp-nettle from MCPA phytotoxicity: a lower rate of MCPA translocation and a higher rate of MCPA metabolism in the roots. In support of these results, genetic studies indicated that the inheritance of MCPA resistance is governed by at least two nuclear genes with additive effects.  相似文献   

5.
Three diclofop-methyl (DM) resistant biotypes of Lolium rigidum (R1, R2, and R3) were found in different winter wheat fields in Spain, continuously treated with DM, DM + chlortoluron, or DM + isoproturon. Herbicide rates that inhibited shoot growth by 50% (ED50) were determined for DM. There were found that the different biotypes exhibited different ranges of resistance to this herbicide; the resistant factors were 7.2, 13, and 36.6, respectively. DM absorption, metabolism, and effects on ACCase isoforms were examined in these biotypes of L. rigidum. The most highly resistant, biotype R3, contained an altered isoform of ACCase. In biotype R2, which exhibited a medium level of resistance, there was an increased rate of oxidation of the aryl ring of diclofop, a reaction most likely catalyzed by a cytochrome P450 enzyme. In the other biotype, R1, DM penetration was significantly less than that observed in the resistant (R2 and R3) and susceptible (S) biotypes. Analysis of the leaf cuticle surface by scanning electron microscopy showed a greater epicuticular wax density in the leaf cuticles of biotype R1 than in the other biotypes.  相似文献   

6.
The physiological and biochemical basis for quinclorac resistance in a false cleavers (Galium spurium L.) biotype was investigated. There was no difference between herbicide resistant (R) and susceptible (S) false cleavers biotypes in response to 2,4-D, clopyralid, glyphosate, glufosinate-ammonium, or bentazon. On the basis of GR(50) (growth reduction of 50%) or LD(50) (lethal dose to 50% of tested plants) values, the R biotype was highly resistant to the acetolactate synthase (ALS) inhibitor, thifensulfuron-methyl (GR(50) resistance ratio R/S = 57), and quinolinecarboxylic acids (quinclorac R/S = 46), resistant to MCPA (R/S = 12), and moderately resistant to the auxinic herbicides picloram (R/S = 3), dicamba (R/S = 3), fluroxypyr (R/S = 3), and triclopyr (R/S = 2). The mechanism of quinclorac resistance was not due to differences in [(14)C]quinclorac absorption, translocation, root exudation, or metabolism. Seventy-two hours after root application of quinclorac, ethylene increased ca. 3-fold in S but not R plants when compared to controls, while ABA increased ca. 14-fold in S as opposed to ca. 3-fold in R plants suggesting an alteration in the auxin signal transduction pathway, or altered target site causes resistance in false cleavers. The R false cleavers biotype may be an excellent model system to further examine the auxin signal transduction pathway and the mechanism of quinclorac and auxinic herbicide action.  相似文献   

7.
The metabolism and fate of ethametsulfuron-methyl ?methyl 2-[[[[[4-ethoxy-6-(methylamino)-1,3, 5-triazin-2-yl]amino]carbonyl]amino]sulfonyl]benzoate? in rutabaga were investigated. After 72 h, absorption and translocation of [(14)C]ethametsulfuron-methyl in rutabaga did not change for the duration of the study (50 days). Less than 4% of recovered radioactivity was present in the rutabaga root. Ethametsulfuron-methyl was metabolized through a proposed unstable alpha-hydroxy ethoxy intermediate that dissipated 3 days after treatment to two major metabolites, O-desethylethametsulfuron-methyl and N-desmethyl-O-desethylethametsulfuron-methyl, as determined by liquid chromatography-mass spectrometry. It was estimated that at a spray dose of 30 g of active ingredient ha(-)(1) and a harvest weight of 0.5 kg, the edible portion of the rutabaga root would contain no ethametsulfuron-methyl and approximately 1.3 ppb total of both identified metabolites. Residue analysis and toxicological assessment show that ethametsulfuron-methyl and its metabolites should pose little or no risk to consumers of rutabagas.  相似文献   

8.
Experiments were conducted to determine the inheritance and physiological basis for resistance to the synthetic auxinic herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D) in a prickly lettuce biotype. Inheritance of 2,4-D resistance in prickly lettuce is governed by a single codominant gene. Absorption and translocation were conducted using (14)C-2,4-D applied to 2,4-D-resistant and -susceptible biotypes. At 96 h after treatment (HAT), the resistant biotype absorbed less applied 2,4-D and retained more 2,4-D in the treated portion of the leaf compared to the susceptible biotype. The resistant biotype translocated less applied 2,4-D to leaves above the treated leaf and crown at 96 HAT compared to the susceptible biotype. No difference in the rate of metabolism of 2,4-D was observed between the two biotypes. Resistance to 2,4-D appears to originate from a reduced growth deregulatory and overstimulation response compared to the susceptible biotype, resulting in lower translocation of 2,4-D in the resistant prickly lettuce biotype.  相似文献   

9.
To identify proteins that may be involved in mediating auxinic herbicide resistance (i.e., resistance to dicamba, picloram, 2,4-D), we compared the proteomes of an auxinic-herbicide-susceptible (S) and -resistant (R) wild mustard (Sinapis arvensis L.) biotype at different developmental stages. Using two-dimensional electrophoresis and mass spectrometry, we identified 11 seedling and leaf proteins that showed reproducible differences in expression between the S and the R wild mustard biotype following application of dicamba. Our proteome-level studies revealed the increased expression of the enzyme peptidylprolyl cis-trans isomerase (PPIase), which has recently been implicated in auxin signal transduction. Juglone, an inhibitor of PPIase, interfered with the normal ability of R seeds to germinate in the presence of dicamba, whereas S seeds did not germinate in the presence of dicamba or dicamba plus juglone. When R and S plants (3-4 leaf stage) were treated with dicamba, S showed typical auxinic herbicide effects (e.g., epinasty) whereas R did not. However, the concomitant application of dicamba and juglone to greenhouse-grown R plants produced morphological changes that were consistent with known auxinic-herbicide-induced symptoms. This is the first report suggesting the potential involvement of differential expression of PPIase in mediating auxinic herbicide resistance.  相似文献   

10.
A novel enzymatic dehalogenating activity of 3-chloro-1,2-propanediol (3-MCPD) with Saccharomyces cerevisiae (baker's yeast) is reported. All bioconversion assays were carried out under aerobic conditions, at 28 degrees C, and the kinetics were monitored. The biodegradation was performed at different pH values (6.2, 7.0, and 8.2), in the presence and absence of glucose, using racemic 3-MCPD at two different concentrations (7.3 micromol/L and 27 mmol/L). Optimal conversion (68%) of racemic (R,S)-3-MCPD at a concentration of 27 mmol/L was achieved after 48 h of reaction time, at pH 8.2, and in the presence of glucose. At a concentration of 7.3 micromol/L, 73% degradation was observed after 72 h, at pH 8.2 and in the absence of glucose. Under the same experimental conditions, the conversion of pure (S)-3-MCPD (85%) was higher than that of the (R)-enantiomer (60%).  相似文献   

11.
应用放射性同位素~(141)Ce、~(32)P及~(86)Rb研究了甘蔗(Saccharum officinarum L.)对稀土元素饰的吸收及其对磷、钾素(以~(86)Rb代K)吸收的影响。结果表明,甘蔗可以通过其根系或叶片吸收稀土元素铈。甘蔗对铈的吸收,在处理后第1—7天,随着时间增加而增加。处理后第7天吸收达到高峰(最大值),约为第1天吸收的2—3倍,以后缓慢下降。甘蔗植株对铈的吸收利用率仅为0.836—3.240%。铈在甘蔗各器官中的分配,喂饲根部处理表现为:根>茎>叶;涂布叶片处理表现为:叶>茎>根。300、500、800ppm的R(NO_3)_3·4H_2、Ce、La、Sm、Pr、Nd和Y的硝酸化物处理,均能提高甘蔗根系对磷(~(32)P)、铷(~(86)Rb)的吸收;而1000ppm的各种稀土元素处理则表现较明显的抑制作用。200ppm的R(NO_3)_3·4H_2·O、Ce、La、Sm、Pr、Nd及Y的硝酸化物处理能显著地提高甘蔗根系的活力,比对照提高22.33—44.54%。其中尤以Ce、La的硝酸化物及R(NO_3)_3·4H_2O为最显著。  相似文献   

12.
Morphological differences were observed between roadside (R) and agricultural field (F) biotypes of Ambrosia artemisiifolia, in which R-type seedlings were shorter and produced larger and heavier seeds under greenhouse grown conditions. Previous findings indicated that A. artemisiifolia R-types exhibited greater salt tolerance with respect to germination. However, the impact of biotype and salt tolerance on morphological variation has not been investigated in A. artemisiifolia plants. After performing replicated greenhouse experiments with both biotypes, it was shown that salinity level was a critical factor influencing both seedling and mature plant size and this response was dependent upon biotype. The R-type exhibited slight but significant increases in growth at low/mild salinity levels (50–100 mM) compared with non-saline conditions, while the F-type exhibited significantly reduced growth at the low/mild salinity levels. The reductions in growth of F-type plants in low/mild salinity were similar to those reductions of R-types observed in non-saline conditions. As both biotypes produced seeds at low/mild salinity levels, we conclude that low/mild salinity affects A. artemisiifolia plant size and overall growth rate, and secondly, certain F-type plants may acclimate to the roadside environment over time by reducing their size while producing larger seed under saline conditions. It is possible that this species may exhibit changes in morphology after several generations of exposure to saline roadside conditions. Toxicity due to salt treatment at high salinity (400 mM) was observed in both biotypes, whereas the R-type was more tolerant to both low and high salinity levels with respect to seed germination. Differential A. artemisiifolia growth responses which occur from seed germination to plant maturity may be partially attributed to its ability to tolerate saline soil conditions both under greenhouse and field conditions. This ability to tolerate saline conditions may be especially important in early spring when roadside soils experience increased salinity, caused by de-icing salt treatments applied during the winter season.  相似文献   

13.
《Geoderma》2006,130(1-2):66-76
The sorption and leaching of ethametsulfuron-methyl by an acidic soil, after organic amendment with humic acid (HA) and a commercial peat, were studied in batch and soil column experiments. Adsorption capacity (Kf) values, obtained by fitting the experimental data to the Freundlich equation, ranged from 4.39 for the original soil containing 1.02% OC to 10.56 for the organic amended soils containing 2.61% OC. The increase in herbicide adsorption by organic amendment addition to soil was attributed to the high adsorptive capacity of the insoluble organic matter added to the soil. Evidence provided by FT-IR analysis suggested multifunctional hydrogen bonds were involved in the adsorption of ethametsulfuron-methyl on organic matter. The distribution of ethametsulfuron-methyl along the soil profile, obtained from soil column experiments, indicated that the amount of ethametsulfuron-methyl retained ranged from 68.4% for the column filled with the original soil to 92.4% for that filled with the organic amended soil. Amounts of ethametsulfuron-methyl recovered in the leachates, which ranged from 7.7% (organic amended soil) to 23.7% (unamended soil) of that applied, depended upon the loading rate and the source of organic amendment. Organic amendments significantly reduced the leaching of ethametsulfuron-methyl, and humic acid showed the higher potential than peat. This research suggests that organic amendment may be an effective management practice for controlling pesticide leaching.  相似文献   

14.
Horseweed (Conyza canadensis (L.) Cronq.) seed was collected in Illinois, Indiana, Kentucky, Mississippi, Missouri, and Ohio to determine susceptibility of different horseweed biotypes to glyphosate. Horseweed resistant to glyphosate was found in Mississippi, Ohio, and western Tennessee. In a separate experiment examining Tennessee biotypes, a dose response curve demonstrated that four times as much glyphosate was needed to achieve a 50% fresh weight reduction (GR(50)) in resistant biotypes when compared to a susceptible biotype. Resistant biotypes from Tennessee displayed a GR(50) of 1.6 kg/ha as compared to a GR(50) of 0.4 kg/ha in a susceptible horseweed population. Although growth was reduced, the resistant plants did not completely die and could potentially produce seed. Variation in glyphosate resistance was found among the populations tested.  相似文献   

15.
航恢七号空间诱变变异株系的稻瘟病抗性研究   总被引:2,自引:0,他引:2  
本研究对卫星搭载水稻品种航恢七号SP3代株系进行稻瘟病抗性鉴定研究,并对抗性变异株系作分子生物学分析。结果表明,250个航恢七号SP3代农艺经济性状优良株系经接种后,抗性变异株系H24对菌株GD3286表现抗性分离,分离比例为119∶108,其抗性遗传可能受2对互补抗病基因控制,且在SP4代仍存在抗性分离;H24SP5代株系的抗谱较原种对照显著提高,其抗谱达到84.4%,而原种对照的抗谱仅为40.6%,且H24对部分致病谱较广或专化性致病菌株表现抗病突变。经全基因组内微卫星多态性分析,H24与原种对照间未表现DNA多态性。  相似文献   

16.
氮肥对镉在土壤-芥菜系统中迁移转化的影响   总被引:6,自引:0,他引:6  
以芥菜为研究对象, 采用盆栽试验, 探讨了不同用量的5种氮肥对污染农田土壤中镉(Cd)在土壤–根系–地上部迁移累积的影响。结果表明: 5种氮肥均促进了芥菜根系对Cd的吸收, 且根系Cd含量随施氮量的增加而增加; 但根系吸收转运Cd的能力随氮肥施用量的增加呈先降后增的变化趋势。在≤200 mg(N)·kg-1(土)的施氮水平下, CO(NH2)2和Ca(NO3)2处理能显著降低芥菜地上部Cd含量, 降低幅度分别为13%~29%和24%~30%。在施氮量相同的条件下, NH4Cl和(NH4)2SO4显著降低了土壤pH, 增加了土壤DTPA-Cd含量, 促进了芥菜对Cd的吸收。本试验条件下, 200 mg(N)·kg-1(土)的CO(NH2)2在增加芥菜产量和降低芥菜地上部Cd含量等方面优于其他氮肥处理。  相似文献   

17.
Fagnano  M.  Merola  G.  Forlani  A.  Postiglione  L.  Fuhrer  J. 《Water, air, and soil pollution》2004,155(1-4):383-398
Yield losses from ozone pollution can be estimated by two methods: one involves the use of sensitive (S) and resistant (R) biotypes of white clover (Trifolium repens L., cv. Regal) exposed in ambient air, the other is based on the use of open-top chambers (OTC) supplied either with charcoal-filtered (CF) or non-filtered (NF) air. In southern Italy the two methods have been compared using the clover biotypes. The aim was (1) to compare the extent of ozone-induced yield reductions estimated by the two methods, (2) to evaluate the effect of the chamber enclosure on the growth of both biotypes, and (3) to compare plant water consumption in the different environments. On the average, the yield reduction was 23% when derived from the S/R yield ratio in ambient air, and 18% obtained by the CF/NF yield ratio of the S-type, without a significant difference between the two values. The slightly lower value for the OTC-based system may be due to the lower ozone levels in NF chambers due to losses in the ventilation system. Thus, both methods yielded equivalent yield reductions of about 20% due to ozone at this Mediterranean site. However, the higher air temperature inside OTCs influenced the plant growth, and this effect was stronger in the case of the R type. Therefore, R/S yield ratios in NF chambers differed from ambient air. Also, plant water consumption was higher in OTCs than in ambient air. The results suggest that the OTC-based method enables yield loss estimates at this Mediterranean site, in spite of chamber effects on plant growth and water use.  相似文献   

18.
天然富硒土壤上三种蔬菜对硒的吸收与转化差异   总被引:1,自引:1,他引:0  
【目的】研究对硒 (Se) 不同敏感性蔬菜对天然富硒土 (Se ≥ 0.4 mg/kg) 中硒的吸收和转化差异,为富硒土壤生产富硒蔬菜提供理论与技术指导。【方法】以大蒜、芥菜和菠菜三种蔬菜为试验材料,在全硒含量为0.29、0.58、0.98、2.07 mg/kg的四种土壤上进行了盆栽试验 (依次标记为Se0.29、Se0.58、Se0.98、Se2.07),并测定四种土壤中不同形态硒的含量。芥菜和菠菜于生长40 d、53 d、68 d和82 d后取样,测定蔬菜可食部分硒含量;于生长97 d后收获,分为根部和地上部。大蒜于生长42 d、68 d、82 d、120 d后取样,测定地上部硒含量;于生长165 d后收获,分为根部、鳞茎和叶。测定供试蔬菜总硒含量、有机硒含量,计算不同硒含量土壤上蔬菜对硒的吸收和转化系数。【结果】三种蔬菜中芥菜的生长对土壤硒最为敏感,芥菜可食部位生物量鲜重以Se0.29处理最高,菠菜和大蒜均以Se0.58处理最高,与Se2.07处理均达显著差异。三种蔬菜地上部硒含量在整个生育期总体呈现增加的趋势,不同生育期均表现为大蒜 > 芥菜 > 菠菜。收获期三种蔬菜各部位的硒含量随着土壤硒含量 (0.29~2.07 mg/kg) 的增加而增加,表现为Se2.07 > Se0.98 > Se0.58 > Se0.29,Se2.07处理的菠菜地上部和地下部硒含量分别是其Se0.29处理的8.63倍和7.10倍,芥菜是12.25倍和23.29倍,Se2.07处理大蒜鳞茎和叶部硒含量是Se0.29处理的39.92倍和4.90倍;可食部位硒含量为大蒜 (7.25~289 μg/kg) > 芥菜 (1.22~14.9 μg/kg) > 菠菜 (0.73~6.30 μg/kg),均表现为地下部 > 地上部,Se2.07处理菠菜根部硒含量是茎叶的4.80倍,芥菜是12.06倍,大蒜是8.22倍。在富硒土壤Se0.98和Se2.07处理条件下,大蒜和芥菜能从土壤中富集硒,吸收系数是菠菜的3.06~8.47倍和1.58~5.8倍,均达到了富硒蔬菜标准 (≥ 0.01 mg/kg)。三种蔬菜可食部位有机硒含量占总硒比例为73.5%~84.7%,并随土壤硒含量的增加而增加,其中Se2.07与Se0.29处理差异显著;蔬菜硒含量不但与土壤总硒含量相关,而且与有效态硒含量呈显著正相关。【结论】蔬菜种类和土壤硒含量均影响蔬菜硒的吸收、转化和富集。三种蔬菜对土壤硒的敏感性以芥菜最强。蔬菜硒含量和可食用部位有机硒的转化率均随着土壤硒含量的增加而增加,与土壤总硒含量和有效态硒含量呈显著正相关。富硒能力为大蒜 > 芥菜 > 菠菜,在天然富硒土壤上生长的大蒜和芥菜硒含量易达到富硒蔬菜标准,而菠菜未显示出富硒能力。因此,虽然土壤硒含量高影响了大蒜和芥菜的生长,但大蒜和芥菜具有较强的将硒转移到可食部位的能力,可作为富硒蔬菜生产。  相似文献   

19.
Two fungal plant pathogens, Rhizoctonia solani AG 2-2 and Fusarium oxysporum f.sp. lini, were studied in relation to general responses of soil fungi and bacteria following incorporation of Brassica juncea. Our aim was to understand to what extent the changes in the biological and physicochemical characteristics of the soil could explain the effects on the studied pathogens and diseases, and to determine the temporal nature of the responses. Short-term effects of mustard incorporation (up to 4 months) were investigated in a microcosm experiment, and compared with a treatment where composted plant material was incorporated. In a field experiment, the responses were followed up to 11 months after removal or incorporation of a mustard crop. In general, responses in the variables measured changed more after incorporation of fresh mustard material than after addition of similar amounts of composted plant material (microcosms) or after removal of the mustard crop (field). The soil inoculum potential of R. solani AG 2-2 decreased directly after incorporation of mustard, but increased later to disease levels above those in the untreated soil. Neither of these effects could be explained by changes in the population density of R. solani AG 2-2. Fusarium spp. were less influenced, although an increase in the suppressiveness to Fusarium wilt was observed after mustard incorporation as compared with the treatment where mustard was removed. The microbial responses to mustard incorporation were more pronounced for bacteria than for fungi. After an initial substantial increase, the bacterial density decreased but remained above the levels in the control treatment throughout the experimental periods. The bacterial community structure was modified up to 8 months after mustard incorporation. We conclude that incorporation of fresh mustard influences soil microbial communities, especially the bacteria, and has a potential to control the pathogenic activity of R. solani 2-2 on a short-term perspective. The time dependency in microbial responses is important and should be taken into consideration for the evaluation of the potential of Brassicas to control plant disease on a field scale.  相似文献   

20.
Fusarium oxysporum (F-19) is a serious threat to sugar beet. Resistance exists, but the basis for resistance and disease is unknown. Protein extracts from sugar beet genotypes C1200.XH024 (resistant, R) and Fus7 (susceptible, S) were analyzed by multidimensional liquid chromatography at 2 and 5 days postinoculation (dpi) and compared to mock-inoculated controls. One hundred twenty-one (R) and 73 (S) protein peaks were induced/repressed by F-19, approximately 12 (R) and 8% (S) of the total proteome detected. Temporal protein regulation occurred within and between each genotype, indicating that the timing of expression may be important for resistance. Thirty-one (R) and 48 (S) of the differentially expressed peaks were identified using matrix-assisted laser desorption-ionization with tandem time-of-flight mass spectrometry; others were below detection level. Comparison between the two genotypes uncovered R- and S-specific proteins with potential roles in resistance and disease development, respectively. Use of these proteins to select for new sources of resistance and to develop novel disease control strategies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号