首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetic properties of ceftriaxone were investigated in 10 goats following a single intravenous (i.v.) and intramuscular (i.m.) administration of 20 mg kg(-1) body weight. After i.v. injection, ceftriaxone serum concentration-time curves were characteristic of a two-compartment open model. The distribution and elimination half-lives (t(1/2alpha), t(1/2beta)) were 0.12 and 1.44 h respectively. Following i.m. injection, peak serum concentration (C(max)) of 23.6 microg ml(-1) was attained at 0.70 h. The absorption and elimination half-lives (t(1/2ab), t(1/2el)) were 0.138 and 1.65 h respectively. The systemic bioavailability of the i.m. administration (F %) was 85%. Following i.v. and i.m. administration, the drug was excreted in high concentrations in urine for 24 h post-administration. The drug was detected at low concentrations in milk of lactating goats. A recommended dosage of 20 mg kg(-1) injected i.m. every 12 h could be expected to provide a therapeutic serum concentration exceeding the minimal inhibitory concentrations for different susceptible pathogens.  相似文献   

2.
The single-dose disposition kinetics of difloxacin were determined in clinically normal lactating goats (n = 6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg. Difloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. The concentration-time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution (V(ss)) and total body clearance (Cl) of difloxacin after i.v. administration were estimated to be 1.16 +/- 0.26 L/kg and 0.32 +/- 0.05 L/h x kg respectively. Following s.c. and i.m. administration difloxacin achieved maximum plasma concentrations of 1.33 +/- 0.25 and 1.97 +/- 0.40 mg/L at 3.37 +/- 0.36 and 1.79 +/- 1.14 h respectively. The absolute bioavailabilities after s.c. and i.m. routes were 90.16 +/- 11.99% and 106.79 +/- 13.95% respectively. Difloxacin penetration from the blood into the milk was extensive and rapid, and the drug was detected for 36 h after i.v. and s.c. dosing, and for 72 h after i.m. administration.  相似文献   

3.
The disposition kinetics of tylosin was studied in goats after intravenous (i.v.) or intramuscular (i.m.) injection of 15 mg/kg body wt. Following i.v. injection, tylosin was rapidly and widely distributed with a distribution half-life of 0.2 h and volume of distribution of 1.7 l/kg. It was slowly eliminated with a mean elimination half-life of 3.04 h and a total body clearance rate of 6.8 ml/kg/min. Following i.m. injection, tylosin was slowly absorbed (tau 1/2 ab of 1.82 h). Tylosin concentration in serum was greater than 1 microgram/ml after 1 h and persisted up to 12 h post-injection. The peak concentration (Cmax 2.38 micrograms/ml) was obtained after 4.19 h. The systemic bioavailability of tylosin injected intramuscularly was 72.6% and the serum protein bound fraction was 37.59% of the total drug. Tylosin was excreted in milk and urine at concentrations much higher than that in serum. Low concentrations of tylosin were reported in ruminal juice of goats. In conclusion tylosin should be injected every 14 h to obtain an appreciable concentration in serum, milk and urine.  相似文献   

4.
The aim of this trial was to implement a method to obtain a tool for analyses of tramadol and the main metabolite, o-desmethyltramadol (M1), in goat's plasma, and to evaluate the pharmacokinetics of these substances following intravenous (i.v.) and oral (p.o.) administration in female goats. The pharmacokinetics of tramadol and M1 were examined following i.v. or p.o. tramadol administration to six female goats (2 mg/kg). Average retention time was 5.13 min for tramadol and 2.42 min for M1. The calculated parameters for half-life, volume of distribution and total body clearance were 0.94+/-0.34 h, 2.48+/-0.58 L/kg and 2.18+/-0.23 L/kg/h following 2 mg/kg tramadol HCl administered intravenously. The systemic availability was 36.9+/-9.1% and half-life 2.67+/-0.54 h following tramadol 2 mg/kg p.o. M1 had a half-life of 2.89+/-0.43 h following i.v. administration of tramadol. Following p.o., M1 was not detectable.  相似文献   

5.
This study investigated the pharmacokinetic behaviour of difloxacin following a single intravenous (i.v.) bolus and intramuscular (i.m.) administration of 5 mg/kg body weight (bw) to rabbits (n = 6). Plasma concentrations were determined in triplicate by agar plate diffusion using E. coli (ATCC 25922) as the test organism. Difloxacin was assayed in plasma to determine its concentrations, kinetic behaviour and systemic availability. Plasma concentration-time data generated in the present study were analysed by non-compartmental methods based on statistical moment theory. Difloxacin was rapidly distributed to the tissues with a steady-state volume of distribution (Vdss) of 1.51 L/kg and the total body clearance (Cltot) was 0.59 L/kg/h. The elimination half-lives after i.v. and i.m. administration were 3.25 h and 3.82 h, respectively. After i.m. administration, difloxacin was rapidly absorbed, with mean peak plasma concentration (Cmax of 3.85 microg/ml achieved at 1.61 h (Tmax) post administration. The extent of plasma protein binding of difloxacin in rabbits was 21.45% and the systemic bioavailability was 95.29%.  相似文献   

6.
The pharmacokinetic properties and bioavailability of cyclooxygenase (COX)-2 selective nonsteroidal anti-inflammatory drug nimesulide were investigated in female goats following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 4 mg/kg BW. Blood samples were collected by jugular venipuncture at predetermined times after drug administration. Plasma concentrations of nimesulide were determined by a validated high-performance liquid chromatography method. Plasma concentration-time data were subjected to compartmental analysis and pharmacokinetic parameters for nimesulide after i.v. and i.m. administration were calculated according to two- and one-compartment open models respectively. Following i.v. administration, a rapid distribution phase was followed by the slower elimination phase. The half-lives during the distribution phase (t1/2alpha) and terminal elimination phase (t1/2beta) were 0.11+/-0.10 and 7.99+/-2.23 h respectively. The steady-state volume of distribution (Vd(ss)), total body clearance (ClB) and mean residence time (MRT) of nimesulide were 0.64+/-0.13 L/kg, 0.06+/-0.02 L/h/kg and 11.72+/-3.42 h respectively. After i.m. administration, maximum plasma concentration (Cmax) of nimesulide was 2.83+/-1.11 microg/mL attained at 3.6+/-0.89 h (tmax). Plasma drug levels were detectable up to 72 h. Following i.m. injection, the t1/2beta and MRT of nimesulide were 1.63 and 1.73 times longer, respectively, than the i.v. administration. The bioavailability of nimesulide was 68.25% after i.m. administration at 4 mg/kg BW. These pharmacokinetic data suggest that nimesulide given intramuscularly may be useful in the treatment of inflammatory disease conditions in goats.  相似文献   

7.
The single-dose disposition kinetics of florfenicol was determined in healthy, non-lactating Egyptian goats, after its intravenous (i.v.) and intramuscular (i.m.) administration at 20 mg kg-1 b.wt. Drug concentrations in serum and urine were determined using microbiological assay method and data was subjected to a kinetic analysis. Florfenicol concentrations in serum decreased in a bi-exponential manner after intravenous administration with distribution (t1/2 alpha) and elimination (t1/2 beta) half-lives of 10.256 +/- 0.938 and 56.237 +/- 3.102 minute, respectively. The steady-state volume of distribution (Vdss) and total body clearance (Cltot) were 3.413 +/- 0.304 l kg-1 and 3.306 +/- 0.333 l kg h-1. After intramuscular administration, the peak serum concentration (Cmax) was 0.859 +/- 0.025 micrograms ml-1, achieved at (Tmax) 1.220 + 0.045 h. Florfenicol was detected in urine up to 24 and 96 hour after i.v. and i.m. administration, respectively. The extent of the protein binding and systemic bioavailability of florfenicol were 22.45 +/- 1.727% and 65.718 +/- 3.372%, respectively.  相似文献   

8.
The pharmacokinetics of ketoprofen were determined after an intravenous (i.v.) and intramuscular (i.m.) dose of 2.0 mg/kg body weight in five camels (Camelus dromedarius) using gas chromatography/mass spectrometry (GC/MS). The data obtained (median and range) following i.v. administration was as follows: the elimination half-life (t(1/2beta)) was 4.16 (2.65-4.29) h, the steady state volume of distribution (Vss) was 130.2 (103.4-165.3) mL/kg, volume of distribution (area method) (Vd(area)) was 321.5 (211.4-371.0) mL/kg, total body clearance (Cl) was 1.00 (0.88-1.08) mL/min x kg and renal clearance was 0.01 (0.003-0.033) mL/min x kg. Following i.m. administration, the drug was rapidly absorbed with peak serum concentration of 12.2 (4.80-14.4) microg/mL at 1.50 (1.00-2.00) h. The systemic availability of ketoprofen was complete. The apparent half-life was 3.28 (2.56-4.14) h. A hydroxylated metabolite of ketoprofen was identified by (GC/MS) under electron impact (EI) and chemical ionization (CI) scan modes. The detection times for ketoprofen and hydroxy ketoprofen in urine after an intravenous (i.v.) dose of 3.0 mg/kg body weight was 24.00 and 70.00 h, respectively. Serum protein binding of ketoprofen at 20 microg/mL was extensive; (99.1+/-0.15%).  相似文献   

9.
The objectives of this work were to compare the pharmacokinetics of erythromycin administered by the intramuscular (i.m.) and intravenous (i.v.) routes between nonlactating and lactating goats and to determine the passage of the drug from blood into milk. Six nonpregnant, nonlactating and six lactating goats received erythromycin by the i.m. (15 mg/kg) and the i.v. (10 mg/kg) routes of administration. Milk and blood samples were collected at predetermined times. Erythromycin concentrations were determined by microbiological assay. Results are reported as mean +/- SD. Comparison of the pharmacokinetic profiles between nonlactating and lactating animals after i.v. administration indicated that significant differences were found in the mean body clearance (8.38 +/- 1.45 vs. 3.77 +/- 0.83 mL/kg x h respectively), mean residence time (0.96 +/- 0.20 vs. 3.18 +/- 1.32 h respectively), area under curve from 0 to 12 h (AUC(0-12)) (1.22 +/- 0.22 vs. 2.76 +/- 0.58 microg x h/mL respectively) and elimination half-life (1.41 +/- 1.20 vs. 3.32 +/- 1.34 h); however, only AUC(0-12) showed significant differences after the i.m. administration. Passage of erythromycin in milk was high (peak milk concentration/peak serum concentration, 2.06 +/- 0.36 and AUC(0-12milk)/AUC(0-12serum),6.9 +/- 1.05 and 2.37 +/- 0.61 after i.v. and i.m. administrations respectively). We, therefore, conclude that lactation affects erythromycin pharmacokinetics in goats.  相似文献   

10.
The disposition kinetics of tylosin was studied in goats after intravenous or intramuscular injection of 15 mg/kg b. wt. Following i.v. injection, tylosin was rapidly and widely distributed in goats (half life of distribution: 0.2 h and volume of distribution: 1.7 l/kg). It was slowly eliminated with a mean elimination half life of 3.04 h and a total body clearance rate of 6.8 ml/kg/min. Following i.m. injection, tylosin was slowly absorbed (T1/2ab of 1.82 h). Tylosin concentration in serum was greater than 1 microgram/ml after 1 h and persisted up to 12 h post-injection. The peak concentration (Cmax, 2.38 micrograms/ml) was obtained after 4.19 h. The systemic bioavailability of tylosin injected intramuscularly was 72.6% and the serum protein bound fraction was 37.6% of the total drug. Tylosin was excreted in milk and urine at concentrations much higher than that in serum. Low concentrations of tylosin were reported in ruminal juice of goats. In conclusion tylosin should be injected every 15 hours to obtain an appreciable concentration in serum, milk and urine.  相似文献   

11.
The pharmacokinetics of cefepime were studied following i.v. and i.m. administration of 20 mg/kg in 10 ewes. Following i.v. administration of a single dose, the plasma concentration-time curves of cefepime were best fitted using a two-compartment open model. The elimination half-life (t(1/2beta)) was 1.76 +/- 0.07 h, volume of distribution at steady-state [V(d(ss))] was 0.32 +/- 0.01 L/kg and total body clearance (Cl(B)) was 2.37 +/- 0.05 mL/min.kg. Following i.m. administration, the drug was rapidly absorbed with an absorption half-life (t(1/2ab)) of 0.49 +/- 0.05 h, maximum plasma concentration (Cmax) of 31.9 +/- 1.5 mug/mL was attained at (tmax) 1.1 +/- 0.2 h and the drug was eliminated with an elimination half-life (t(1/2el)) of 2.06 +/- 0.11 h. The systemic bioavailability (F) after i.m. administration of cefepime was 86.8 +/- 7.5%. The extent of plasma protein binding measured in vitro was 14.8 +/- 0.54%. The drug was detected in urine for 36 h postadministration by both routes.  相似文献   

12.
The pharmacokinetics of amoxicillin were studied in five Desert sheep and five Nubian goats after intravenous (i.v.) or intramuscular (i.m.) administration of a single dose of 10 mg/kg body weight. Following i.v. injection, the plasma concentration-versus-time data were best described by a two-compartment open model. The kinetic variables were similar in both species except for the volume of the central compartment (Vc), which was larger in sheep (p<0.05). Following i.m. injection, except for the longer half-life time of absorption in goats (p<0.05), there were no significant differences in other pharmacokinetic parameters between sheep and goats. The route of amoxicillin administration had no significant effect on the terminal elimination half-life in either species. The bioavailability of the drug (F) after i.m. administration was high (>0.90) in both species. These results indicate that the pharmacokinetics of amoxicillin did not differ between sheep and goats; furthermore, because of the high availability and short half-life of absorption, the i.m. route gives similar results to the i.v. route. Therefore, identical intramuscular and intravenous dose regimens should be applicable to both species.  相似文献   

13.
A comparative randomized crossover study was conducted to determine the pharmacokinetics of theophylline in male and female camels (Camelus dromedarius) and goats (Caprus hircus). Theophylline is an established 'probe drug' to evaluate the drug metabolizing enzyme activity of animals. It was administered by the intravenous (i.v.) route and then intramuscularly (i.m.) at a dose of 2 mg/kg. The concentration of the drug in plasma was measured using a high-performance liquid chromatography (HPLC) technique on samples collected at frequent intervals after administration. Following i.v. injection, the overall elimination rate constant (lambda z,) in goats was 0.006 +/- 0.00076/min and in camels was 0.0046 +/- 0.0008/min (P < 0.01). The elimination half-life (t 1/2 lambda z) in goats (112 .7 min) was lower than in camels (154.7 min) (P < 0.01). The apparent volume of distribution (Vz) and the total body clearance (Cl) in goats were 1440.1 +/- 166.6 ml/kg and 8.9 +/- 1.4 ml/min/kg, respectively. The corresponding values in camels were 1720.3 +/- 345.3 ml/kg and 6.1 +/- 1.0 ml/min/kg, respectively. After i.m. administration, theophylline reached a peak plasma concentration (Cmax) of 1.8 +/- 0.1 and 1.7 +/- 0.2 microg/ml at a post-injection time (Tmax) of 67.5 +/- 8.6 and 122.3 +/- 6.7 min in goats and camels, respectively. The mean bioavailability (T) in both goats and camels was 0.9 +/- 0.2. The above data suggest that camels eliminate theophylline at a slower rate than goats.  相似文献   

14.
The aim of this work was to determine the pharmacokinetics of intravenous (i.v.) and intramuscular (i.m.) ceftazidime administered to lactating (LTG; n=6) and non-lactating (NLTG; n=6) healthy Creole goats in 2 trials (T1 and T2). During T1 and T2, goats randomly received a single dose of i.m. or i.v. ceftazidime (10 mg/kg). Serum concentration of iv ceftazidime in NLTG and LTG goats is best described by 2 and 3 compartment models, respectively. The pharmacokinetic parameters of iv and im ceftazidime administered to LTG and NLTG showed statistically significant differences (P < 0.05) in the constants (lamda(z), T1 vs. T2 [i.v.] 0.5 +/- 0.1 vs. 0.3 +/- 0.1/h; T1 vs. T2 [i.m.] 0.5 +/- 0.2 vs. 0.3 +/- 0.1/h) and in the mean times (t(1/2), T1 vs. T2 [i.v.] 1.6 +/- 0.3 vs. 2.3 +/- 0.6 h; T1 vs. T2 [i.m.] 1.6 +/- 0.7 vs. 2.6 +/- 0.9 h) of elimination. The bioavailability of ceftazidime in LTG and NLTG was 113.0 +/- 17.8 and 96.0 +/- 18.0%, respectively. Ceftazidime concentration in milk at 2 h was: i.v. = 1.9 +/- 0.2 and i.m. = 2.4 +/- 0.5 microg/ml; the penetration in milk was i.v. = 18.3 +/- 13.5 and im = 14.3 +/- 10.6%. Ninety-six hours after i.v. and i.m. administration, residues of the drug were not found in milk. In conclusion, ceftazidime, when administered to goats, showed high concentration times in serum, good penetration into milk and a bioavailability that makes it suitable to be used by the i.m. route.  相似文献   

15.
Pharmacokinetics of difloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of five (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analyzed by a compartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t(1/2beta)) were 17.14 +/- 4.14, 25.79 +/- 8.10, 16.67 +/- 4.04 (pigs) and 6.11 +/- 1.50, 5.64 +/- 0.74, 8.20 +/- 3.12 h (broilers), respectively. After single i.m. and p.o. administration, difloxacin was rapidly absorbed, with peak plasma concentrations (C(max)) of 1.77 +/- 0.66, 2.29 +/- 0.85 (pigs) and 2.51 +/- 0.36, 1.00 +/- 0.21 microg/mL (broilers) attained at t(max) of 1.29 +/- 0.26, 1.41 +/- 0.88 (pigs) and 0.86 +/- 0.4, 4.34 +/- 2.40 h (broilers), respectively. Bioavailabilities (F) were (95.3 +/- 28.9)% and (105.7 +/- 37.1)% (pigs) and (77.0 +/- 11.8)% and (54.2 +/- 12.6)% (broilers) after i.m. and p.o. doses, respectively. Apparent distribution volumes(V(d(area))) of 4.91 +/- 1.88 and 3.10 +/- 0.67 L/kg and total body clearances(Cl(B)) of 0.20 +/- 0.06 and 0.37 +/- 0.10 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), the half-lives of both absorption and distribution(t(1/2ka), t(1/2alpha)) were also determined. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 5 mg/kg given intramuscularly every 24 h in pigs, or administered orally every 24 h at the dosage of 10 mg/kg in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC(90) are <0.25 microg/mL and <0.1 microg/mL respectively.  相似文献   

16.
The pharmacokinetic behaviour of tylosin was compared in five Desert sheep and five Nubian goats. The animals were given a single dose of 20% tylosin (15 mg/kg), either intravenously (i.v.) or intramuscularly (i.m.). Following i.v. administration, the volumes of distribution and the elimination half-life times were similar in both species, whereas in goats a greater volume of the central compartment and faster clearance were observed. For the i.m. route, similar pharmacokinetics were observed in both species. The bioavailability (f) of the drug in goats (0.84 +/- 0.11) was not significantly higher than that in sheep (0.73 +/- 0.08). The present study has shown that, despite the significant differences in some of the drug pharmacokinetic parameters between sheep and goats for the i.v. route, identical intravenous and intramuscular dosage regimens of tylosin may be recommended for the two species.  相似文献   

17.
Sodium salicylate was administered to rabbits in order to compare its disposition with that in other major and minor agricultural species. A dose of 44 mg/kg was given orally (p.o.) or intravenously (i.v.), and plasma and urine samples were collected for 36 h and 96 h, respectively. The majority of the drug was excreted as salicylic acid (SA) within 12 h. The major metabolites following an oral dose were salicyluric acid (SUA) and the glucuronide conjugates of SA and SUA. Following i.v. dosing, sulfate conjugates of both SA and SUA were also evident. Both SA and SUA were detected in plasma. Following i.v. administration, SA was distributed with a Vss of 0.249 +/- 0.082 l/kg and cleared at a rate of 0.0432 +/- 0.006 l/h/kg. The biological half-life, calculated from the terminal disposition-rate constant, was 4.3 h (i.v.) or 9.7 h (p.o.). The urinary elimination pattern of SA and metabolites in the rabbit was similar to that previously reported by our laboratories for cattle and goats, although total recovery of the administered dose was not as high as for the latter two species. However, the volume of distribution was larger than for cattle and goats, and rabbits cleared the drug more slowly than those species. As a consequence, the biological half-life was eight to ten times longer than in the ruminants studied previously.  相似文献   

18.
The present study was planned to investigate the serum disposition kinetics and the pattern of ceftriaxone elimination in milk and urine of lactating ewes (n = 6) following i.v. and i.m. administration. A crossover study was carried out in two phases separated by 15 days. Ceftriaxone was administered at a dosage of 10 mg/kg b.w. in all animals. Serum, milk and urine samples were collected between 0 and 72 h and a modified agar diffusion bioassay method was used to determine the percentage of protein binding and to measure serum, urine and milk concentrations of ceftriaxone. The drug was detected between 5 min and 48 h postdosing. Concentrations of 0.56 (10 h) and 0.52 (12 h), 0.22 (10 h) and 0.19 (12 h), and 2.18 (24 h) and 2.11 (48 h) mug/mL were measured in serum, milk and urine following i.v. and i.m. administration, respectively. Individual pharmacokinetic parameters were determined by fitting a two-compartment model to the serum and one-compartment open model to the milk concentration-time profiles. After i.v. dosing, the elimination rate constant and elimination half-life were 0.4 +/- 0.05/h and 1.75 +/- 0.02 h, respectively. The volume of distribution at steady state (V(dss)) of 0.28 +/- 0.15 L/kg reflected limited extracellular distribution of the drug with total body clearance (Cl(tot)) of 0.14 +/- 0.10 L/h/kg. Following i.m. administration, the mean T(max obs), C(max obs), t(1/2el) and AUC values for serum data were: 0.75 h, 23.16 +/- 2.94 microg/mL, 1.77 +/- 0.24 h and 67.55 +/- 6.51 microgxh/mL, respectively. For milk the data were: 1.0 h, 8.15 +/- 0.71 mug/mL, 2.2 +/- 0.34 h and 26.6 +/- 5.14 microgxh/mL, respectively. The i.m. bioavailability was 83.6% and the binding percentage of ceftriaxone to serum protein was 33%. Concentrations of ceftriaxone in milk produced by clinically normal mammary glands of ewes were consistently lower than in serum; the kinetic value AUC(milk)/AUC(serum) and C(max milk)/C(max serum) ratios was<0.4. These low values indicated poor distribution and penetration of ceftriaxone from the bloodstream to the mammary gland of lactating ewes following both routes.  相似文献   

19.
Single-dose disposition kinetics of difloxacin (5mg/kg bodyweight) were determined in clinically normal male dromedary camels (n=6) following intravenous (IV) and intramuscular (IM) administration. Difloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. The concentration-time data were analysed by compartmental and non-compartmental kinetic methods. Following a single IV injection, the plasma difloxacin concentration-time curve was best described by a two-compartment open model, with a distribution half-life (t(1/2alpha)) of 0.22+/-0.02h and an elimination half-life (t(1/2beta)) of 2.97+/-0.31h. Steady-state volume of distribution (V(dss)) and total body clearance (Cl(tot)) were 1.02+/-0.21L/kg and 0.24+/-0.07L/kg/h, respectively. Following IM administration, the absorption half-life (t(1)(/)(2ab)) and the mean absorption time (MAT) were 0.44+/-0.03h and 1.53+/-0.22h, respectively. The peak plasma concentration (C(max)) of 2.84+/-0.34microg/mL was achieved at 1.42+/-0.21h. The elimination half-life (t(1/2el)) and the mean residence time (MRT) was 3.46+/-0.42h and 5.61+/-0.23h, respectively. The in vitro plasma protein binding of difloxacin ranged from 28-43% and the absolute bioavailability following IM administration was 93.51+/-11.63%. Difloxacin could be useful for the treatment of bacterial infections in camels that are sensitive to this drug.  相似文献   

20.
Pharmacokinetics and lung tissue concentrations of tulathromycin in swine   总被引:5,自引:0,他引:5  
The absolute bioavailability and lung tissue distribution of the triamilide antimicrobial, tulathromycin, were investigated in swine. Fifty-six pigs received 2.5 mg/kg of tulathromycin 10% formulation by either intramuscular (i.m.) or intravenous (i.v.) route in two studies: study A (10 pigs, i.m. and 10 pigs, i.v.) and study B (36 pigs, i.m.). After i.m. administration the mean maximum plasma concentration (C(max)) was 616 ng/mL, which was reached by 0.25 h postinjection (t(max)). The mean apparent elimination half-life (t(1/2)) in plasma was 75.6 h. After i.v. injection plasma clearance (Cl) was 181 mL/kg.h, the volume of distribution at steady-state (V(ss)) was 13.2 L/kg and the elimination t(1/2) was 67.5 h. The systemic bioavailability following i.m. administration was >87% and the ratio of lung drug concentration for i.m. vs. i.v. injection was > or =0.96. Following i.m. administration, a mean tulathromycin concentration of 2840 ng/g was detected in lung tissue at 12 h postdosing. The mean lung C(max) of 3470 ng/g was reached by 24 h postdose (t(max)). Mean lung drug concentrations after 6 and 10 days were 1700 and 1240 ng/g, respectively. The AUC(inf) was 61.4 times greater for the lung than for plasma. The apparent elimination t(1/2) for tulathromycin in the lung was 142 h (6 days). Following i.m. administration to pigs at 2.5 mg/kg body weight, tulathromycin was rapidly absorbed and highly bioavailable. The high distribution to lung and slow elimination following a single dose of tulathromycin, are desirable pharmacokinetic attributes for an antimicrobial drug indicated for the treatment of respiratory disease in swine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号