首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Near‐isogenic lines carrying the Lr28 gene developed in five genetic backgrounds were tested for 2 years with and without fungicide treatment. The Lr28 gene increased grain yield, 1000‐grain weight and number of effective tillers per plant under heavy leaf rust infection with no negative effects on yield and bread‐making quality in rust‐free plots. Although a reduction in dough development time was found to be associated with Lr28, it can still be used extensively in wheat breeding programmes.  相似文献   

2.
The vast majority of the world's acreage of semi-dwarf wheat varieties is at present cultivated with varieties carrying one of two genetically similar dwarfing genes, Rht1 and Rht2, derived from the Japanese variety ‘Norin 10’. Near-isogenic lines have been developed and tested to determine the breeding potential of an allelic variant of Rht1, designated Rht1(B. dw). Following its introduction into four varietal backgrounds, Rht1 (B. dw) was seen to reduce height by around 25%, to increase the number of grains setting in spikelets and ears by around 20%, to reduce grain weight by 10%, and to increase yields of plants grown under spaced or drilled conditions by about 8%. When compared to the commercially utilized Rht1 allele, as near isogenic lines in a ‘Mercia’ varietal background, Rht1 (B. dw) gives a significantly greater reduction in plant height, a greater increase in spikelet and ear fertilities, slightly less reduction in 1000-grain weight, and significantly higher spikelet, ear and plot yields. If these results are repeatable in other varietal backgrounds, over seasons, and under differing environmental conditions, Rht1 (B. dw) should have considerable commercial potential as an alternative allele for producing shorter-than-average, high-yielding, semi-dwarf wheat varieties.  相似文献   

3.
  总被引:10,自引:1,他引:10  
W-C. Zhou    F. L. Kolb    G-H. Bai    L. L. Domier    L. K. Boze  N. J. Smith 《Plant Breeding》2003,122(1):40-46
The objectives of this study were to validate the major quantitative trait locus (QTL) for scab resistance on the short arm of chromosome 3B in bread wheat and to isolate near‐isogenic lines for this QTL using marker‐assisted selection (MAS). Two resistant by susceptible populations, both using ‘Ning7840’ as the source of resistance, were developed to examine the effect of the 3BS QTL in different genetic backgrounds. Data for scab resistance and simple sequence repeat (SSR) markers linked to the resistance QTL were analyzed in the F2:3 lines of one population and in the F3:4 lines of the other. Markers linked to the major QTL on chromosome 3BS in the original mapping population (‘Ning7840’/‘Clark’) were closely associated with scab resistance in both validation populations. Marker‐assisted selection for the QTL with the SSR markers combined with phenotypic selection was more effective than selection based solely on phenotypic evaluation in early generations. Marker‐assisted selection of the major QTL during the seedling stage plus phenotypic selection after flowering effectively identified scab resistant lines in this experiment. Near‐isogenic lines for this 3BS QTL were isolated from the F6 generation of the cross ‘Ning7840’/‘IL89‐7978’ based on two flanking SSR markers, Xgwm389 and Xbarc147. Based on these results, MAS for the major scab resistance QTL can improve selection efficiency and may facilitate stacking of scab resistance genes from different sources.  相似文献   

4.
  总被引:5,自引:0,他引:5  
Marker‐assisted selection may be useful for combining specific vernalization response (Vrn) alleles into a single wheat genotype for yield enhancement; however, DNA markers are only available for two of the three genes identified to date. The objectives of this study were to investigate reciprocal effects on days to heading using F2 populations generated by cross‐hybridizing near‐isogenic lines (NILs) carrying spring (Vrn‐B1; TDB) and winter (vrn‐B1; TDC) alleles, and to identify markers linked to Vrn‐B1 through genetic linkage analysis. Heading data were recorded for 91 and 89 progeny from reciprocal mapping populations TDB/TDC and TDC/TDB, respectively, and significant (P < 0.0001) reciprocal and dominance effects were detected. Among 207 amplified fragment length polymorphisms primer pairs and seven wheat microsatellite markers screened, two and one, respectively, were linked distally to Vrn‐B1 on wheat chromosome 5BL. Microsatellite Xgwm408 was most closely linked to Vrn‐B1 at 3.9 and 1.1 cM in the TDB/TDC and TDC/TDB map, respectively. Reciprocal differences in recombination distances emphasize the importance of female parent choice when generating mapping populations. Molecular markers are now available for three Vrn loci in wheat.  相似文献   

5.
M. D. Lazar    G. L. Peterson  J. Hu 《Plant Breeding》1995,114(6):492-496
Relatively little is known about host-plant insect-resistance genes. Near-isogenic lines (NILs) can be a useful tool in evaluating such genes and their mechanisms of action. Through backcrossing and single-seed selection, NILs have been produced in wheat (Triticum aestivum L.) for resistance/susceptibility to biotype-E greenbug, Schizaphis graminum (Rondani). Crosses among several resistant and susceptible NILs produced segregation patterns in the F2 generation that were inconsistent with simple monogenic inheritance. The simplest genetic hypothesis consistent with the data would involve two independently segregating loci, requiring complementary expression of multiple resistance alleles. F3 segregation data were also consistent with the proposed genetic hypothesis. Multiple alleles are required to account for the observed variation, although the source of the multiple alleles is unknown. Direct comparison of specific resistant/susceptible pairs of NIL's, as well as bulked segregant analysis, should permit elucidation of resistance mechanisms. Based on the segregation data presented, new designations for the resistance loci studied are proposed.  相似文献   

6.
  总被引:2,自引:0,他引:2  
QEet.ocs‐5A.1, a quantitative trait locus controlling ear emergence time, has been detected on wheat chromosome 5AL using single chromosome recombinant lines (SCRs) developed from a cross between ‘Chinese Spring’ (CS) (‘Cappelle‐Desprez’ 5A) and CS (Triticum spelta 5A). This locus has little influence on grain yield and its components, and thus has breeding potential for changing ear emergence time without yield reduction. To characterize the phenotypic expression of QEet.ocs.1 and to test its interaction with the Vrn‐A1 gene for vernalization response, six near‐isogenic SCRs differing for these two gene regions were grown together with the parental controls under different vernalization and photoperiod regimes. The T. spelta allele of QEet.ocs.1 accelerated heading time when vernalization and photoperiod were satisfied, demonstrating that the function of this QTL is earliness per se. There was no interaction between Vrn‐A1 and QEet.ocs.1.  相似文献   

7.
H. Tanaka    N. Nakata    M. Osawa    M. Tomita    H. Tsujimoto  Y. Yasumuro  G. Fischbeck 《Plant Breeding》2003,122(3):279-280
The seed storage proteins of wheat flour are the determinants of bread‐making quality. Many cultivars having good bread‐making quality carry the Glu‐D1d allele responsible for the development of glutenin, a major seed storage protein. The Glu‐D1d allele was introduced into four leading Japanese wheat cultivars by recurrent backcrossing and the quality of these near‐isogenic lines (NILs) was evaluated by the sodium dodecyl sulphate sedimentation value of their flour. The values for the NILs were significantly higher than for the corresponding recipient cultivars. However, the values did not reach the level of the cultivar that had been used as the donor of the Glu‐D1d allele.  相似文献   

8.
Mixolab参数与粉质、拉伸参数及面包烘烤品质的关系   总被引:1,自引:0,他引:1  
根据仪器测定的面粉品质特性预测面包烘烤品质是进行小麦品质改良的重要方法。法国肖邦公司(Chopin Technologies, France)最新推出的Mixolab分析仪可以同时测定面粉加水后恒温揉混及面团升温后蛋白质弱化和淀粉糊化特性,明确其与现有相似仪器如粉质仪和拉伸仪等的关系对小麦品质测试具有重要意义。利用 Mixolab分析仪、粉质仪、拉伸仪测定了41份高代育种品系的有关参数和面包烘烤品质,并分析了Mixolab与粉质仪和拉伸仪相关参数的关系及预测面包品质的可靠性。结果表明,可以用Mixolab的形成时间、稳定时间、面团受热后蛋白质弱化值(C2值)和到达淀粉糊化反弹值的时间(C4时间)来预测粉质仪和拉伸仪的品质参数,可解释其变异的74%~90%;可以直接用C2值预测面包体积、外观、结构和总分,决定系数分别为52%、73%、70%和68%;预测面包质地和弹性的参数不仅包含Mixolab稳定时间和C2值,还有表示淀粉糊化特性的C3时间、C4和C5值及C5温度。用Mixolab分析仪既可以了解蛋白质特性和面包烘烤品质的关系,又明确了淀粉品质对面包品质的显著影响,在品质测试中有其独特之处。Mixolab、粉质仪和拉伸仪各参数对预测小麦面包体积、内部质地结构等烘烤品质性状的贡献不同。  相似文献   

9.
  总被引:2,自引:0,他引:2  
Isogenic lines were developed in order to assess the precise effects of the 1BL/1RS translocation on quality characteristics and agronomic traits. Results showed that the translocation has a detrimental effect on sodium dodecyl sulphate sedimentation volume, in any background. Yield was similar between translocated and non-translocated lines; however, lines carrying lBL/1RS showed a significant increase in grain weight, together with a decrease in spike number per plant.  相似文献   

10.
A. C. Zeven 《Euphytica》1981,30(1):41-43
Summary It is shown that the near-isogenic line Michigan Amber/8*Chancellor cannot derive from Michigan Amber. Marquillo is suggested as the donor cultivar.  相似文献   

11.
  总被引:1,自引:0,他引:1  
The length of chromosomal segments retained around the Vrn‐B1 gene controlling sensitivity to vernalization in wheat (Triticum aestivum L.) was studied in the first and third backcrosses by using microsatellite markers. Eleven polymorphic markers located on chromosome 5B were used for microsatellite analysis. It was shown in the first backcross that plants with a donor segment around the gene of interest not longer than 50% of chromosome 5B could be selected. When selection is not molecular‐marker assisted, the length of the chromosomal donor segment with the target gene may reach 94% of chromosome 5B even in plants of the third backcross generation. The considerable length differences in the 5B microsatellite loci between the winter and spring lines of wheat studied indicate that these markers are promising in marker‐assisted backcrossing or marker‐assisted selection for the Vrn‐B1 gene using different combinations of Spring and Winter genotypes.  相似文献   

12.
Six ‘Chinese Spring/Triticum spelta’ substitution lines for chromosomes 1A, 1D (duplicates), 3D (duplicates), 6D, and one ‘Chinese Spring/ Marquis’ substitution line for chromosome 2B were studied for tissue-culture response (TCR). The results reported here indicate that chromosomes 2B and 6D are critical for TCR, whereas chromosome ID affects callus weight only. Chromosomes 1A and 3D were not found to be critical, however, these chromosomes may carry genes with minor effects.  相似文献   

13.
  总被引:5,自引:0,他引:5  
In hexaploid bread wheat, Triticum aestivum (2n = 6x = 42), little work has been carried out to study the genetic control of the synthesis of reduced, non‐reduced and total non‐structural carbohydrates and soluble proteins in aerial and rooting structures. The aim of this paper was to determine the chromosomal location of genes determining carbohydrate and protein synthesis that could be used for diagnostic selection in segregating breeding populations. A set of wheat intervarietal chromosome substitution lines [‘Chinese Spring’ (CS) × synthetic wheat (Triticum diccocoides×Aegilops squarrosa) (Syn)], was used. Plants were cultivated in hydroponic solutions to the fully expanded third leaf stage. Carbohydrate and protein contents and dry matter were determined for aerial and root parts. The root dry weight did not show significant differences between the parental varieties and the substitution lines, except for 5A, 2B and 6B, which had significantly lower dry weights. The aerial dry weight was significantly higher for Syn and the 2A substitution line. The ratio aerial dry weight/root dry weight was significantly higher in Syn, 1A, 2A and 4B. The protein content of the plant showed highly significant differences between both parental lines but 6A and 1D of the substitution lines showed highly significant differences, with contents as high as that for Syn. Syn produced significantly lower total aerial carbohydrates. The substitution lines 2A, 5A, 6A, 7A, 2B, 3D, 5D and 6D showed highly significant total carbohydrate content increases in the aerial parts compared with both parental lines. The non‐reduced carbohydrate contents showed a pattern similar to that of the total carbohydrates. Syn had a lower reduced carbohydrate content than CS. Only the 5A, 2B, and 1D substitution lines had a highly significantly different content of reduced carbohydrates than CS. In roots, Syn produced the lowest values for every type of sugar. The highest significant values for total carbohydrates were found in substitution lines 2B, 4B, 5B, 6B, 1D and 6D. The non‐reduced carbohydrate levels were significantly higher than CS in 2B, 5B, 6B and 6D substitution lines. Only the substitution lines 3B and 1D showed a significantly higher reduced carbohydrate content in roots compared with CS. The photoassimilate partitioning in Syn, 1 A, 2A and 4B favoured the aerial parts but, in contrast, higher partitioning to the roots was found in the 7B, 1D and 3D substitution lines. Both groups appear to carry interesting patterns worth incorporating in wheat cultivars.  相似文献   

14.
小麦株高QTL Qph.nau-5B的效应评价   总被引:1,自引:0,他引:1  
株高直接影响小麦的产量潜力,也是植株抗倒伏性的重要组成部分。目前虽有大量株高相关QTL被鉴定到,但大多QTL的遗传效应仍不清楚。本研究前期利用小麦品种群体,通过关联分析鉴定到一个小麦株高主效QTL Qph.nau-5B。为了评价该QTL的效应,通过分子标记辅助选择分别构建了以南大2419、吉春1016和郑麦9023为供体亲本,中优9507为背景的3种等位变异的近等基因系,背景回复率均高于93%。在7个独立的试验环境中,所有近等基因系的株高较轮回亲本均显著降低,平均降幅为11.1 cm(10.3%)。Qph.nau-5B不同等位变异效应强弱不同,其中来源于吉春1016和郑麦9023的等位变异平均降秆效应相似(12.4 cm),显著大于南大2419的等位变异(8.6 cm),但各等位变异相对降秆效应大小受环境影响。此外,Qph.nau-5B对单株穗数、穗长、千粒重等农艺性状无明显负效应。本研究结果表明Qph.nau-5B具有重要的育种价值,可为小麦的株型分子设计育种提供基因资源。  相似文献   

15.
Variation for adult plant resistance in near-isogenic wheat lines carrying Lrl4b, Lrl4ab and Lr30 in a ‘Thatcher’ background indicated the possible presence of novel adult plant resistance genes effective against the Indian leaf rust population. Sixty-one wheats released for cultivation in India were grown in isolated nurseries. Each nursery was separately inoculated with one of four leaf rust pathotypes which had been selected to aid identification of resistance effective only in the adult plant stage. Seven distinct response groups were recognised and a minimum of six sources of adult plant resistance were postulated. In a group of 14 wheats, resistance was explained on the basis of the seedling response genes that were identified. Similar results for two years with pathotype 77-1 gave support to the reliability of field tests. Adult plant resistance (APR) sources were either race-specific or effective against all pathotypes used. Seedlings of cultivars with APR showed susceptible reactions. The possible presence of Lr34 in Indian wheats and its role in durable leaf rust resistance are discussed.  相似文献   

16.
    
Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: ‘Imam’, which possessed the Glu-D1d allele responsible for the suitable bread-making; ‘Bohaine’, which displayed high expression level of SSPs; and ‘Condor’, which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.  相似文献   

17.
    
Bread-making quality indices (dough strength and dough mixing stability) in relation to flour protein content, glutenin/gliadin ratio, and high-molecular-weight (HMW) subunits of glutenin have been investigated in Triticum aestivum progenies during a three year agronomic trial. Dough strength (W) proved to be a fairly stable characteristic, slightly but positively correlated with flour protein content. High could be associated with a high glutenin/gliadin ratio as well as with the presence of specific HMW. subunits of glutenin, while high protein content tended to favour a balanced dough tenacity-extensibility ratio (P/L = 0.4—0.6). Satisfactory values of dough-mixing stability were frequently observed in association with good expression of W showing that the two quality traits may coexist without much difficulty in the same genotype. From the plant breeding standpoint the data suggest feasible to obtain high dough strength by concentrating in a genotype the HMW subunits of glutenin known to have a beneficial effect on W. However, very high W may present unfavourable P/L ratios. This possibility is enhanced when the flour has a low protein content which often occurs in high yielding genotypes.  相似文献   

18.
Genetic analysis of bread-making quality in wheat and spelt   总被引:19,自引:0,他引:19  
S. Zanetti    M. Winzeler    C. Feuillet    B. Keller  M. Messmer 《Plant Breeding》2001,120(1):13-19
Bread‐making quality in wheat and spelt reflects the combination of several, mostly quantitatively inherited parameters. The aim was to find molecular markers linked to quantitative trait loci (QTL) for quality parameters. Zeleny sedimentation values (Zel), protein (Prot), kernel hardness (KH) and 1000‐kernel weight (TKW) of 226 F5 recombinant inbred lines (RILs) from a cross between wheat and spelt were assessed in different environments. The dough properties of 204 RILs were assessed with an alveograph. Based on a genetic map of 187 loci, nine QTL were found for Zel and Prot, explaining 47% and 51% of the phenotypic variance, respectively. Fifty‐four per cent of the variance was explained by 10 QTL for KH and eight for TKW. For the alveograph parameters 10 QTL were found for baking strength, nine for tenacity, seven for configuration ratio, and four for elasticity index and extensibility. The phenotypic variance explained ranged from 25% to 48%. The population mean of the dough parameters was shifted towards the spelt parent. It is concluded that non‐additive effects are crucial in the expression of high bread‐making quality of wheat. The consequences for wheat and spelt breeding programmes are discussed.  相似文献   

19.
Cultivar ‘Thatcher’, and ‘Thatcher’ lines with Lr 21 and Lr 22 were studied against a number of races of Puccinia recondita for seedling and adult plant reaction. The study has established that Lr 21 and Lr 22 are genes effective against P. recondita at adult plant stage. It has also shown that these genes confer resistance against all races when plants are inoculated at boot leaf stage.  相似文献   

20.
    
H. Ekiz  A. Safi Kiral  A. Akçin  L. Simsek 《Euphytica》1998,100(1-3):189-196
The inheritances of thousand kernel weight (TKW), protein percentage, protein quality and grain hardness were studied through an 11 x 11 complete diallel set of bread wheat genotypes consisting of four alloplasmic lines of Selkirk, two alloplasmic lines of Siete Cerros 66, and five commercial cultivars. Genetic components accounted for 93%, 90%, 78%, and 92% of total variation for TKW, protein percentage, protein quality, and grain hardness, respectively. General combining ability (GCA) effects were dominant for TKW (48% GCA, 38% SCA [specific combining ability], and 7% reciprocal effects [RE]), protein percentage (70% GCA, 10% SCA, and 10% RE), and grain hardness (59% GCA, 29% SCA, and 4% RE). However, SCA effects dominated for protein quality (30% GCA, 43% SCA, and 5% RE). Broad- and narrow-sense heritabilities were estimated at 0.95 and 0.65 for TKW, 0.94 and 0.82 for protein percentage, 0.83 and 0.47 for protein quality, and 0.95 and 0.74 for grain hardness. Reciprocal effects were highly significant for all quality traits, but less effective than additive and non-additive gene effects. Aegilops cylindrica, Ae. ventricosa, and Triticum turgidum cytoplasms showed positive effects on TKW in some crosses. Ae. cylindrica, Ae. variabilis, and Ae. uniaristata cytoplasms seemed to have potential for improving protein percentage. T. aestivum cytoplasms were superior to alien cytoplasms for protein quality. Bolal 2973, Kiraç 66 and Bezostaja 1 cytoplasms increased protein quality in some crosses. Ae. cylindrica, Ae. variabilis, Ae. ventricosa and Ae. uniaristata cytoplasms had significant effects on grain hardness. The cytoplasmic variation in B type T. aestivum cytoplasm was found to be significant for all traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号