首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past 50 years, forested landscapes of the Pacific Northwest have become increasingly patchy, dominated by early successional forests. Several amphibian species associated with forested headwater systems have emerged as management concerns, especially after clearcutting. Given that headwater streams comprise a large portion of the length of flowing waterways in western Oregon forests, there is a need to better understand how forest management affects headwater forest taxa and their habitats. Mitigation strategies include alternatives to clearcutting, such as harvests that remove only part of the canopy and maintenance of riparian buffer strips. Our study investigates effects of upland forest thinning coupled with riparian buffer treatments on riparian and upland headwater forest amphibians, habitat attributes, and species-habitat associations. Amphibian captures and habitat variables were examined 5–6 years post-thinning within forest stands subject to streamside-retention buffers and variable-width buffers, as well as unthinned reference stands. We found no treatments effects, however, our results suggest that ground surface conditions (e.g., amount of rocky or fine substrate) play a role in determining the response of riparian and upland amphibians to forest thinning along headwater streams. Distance from stream was associated with amphibian abundance, hence retention of riparian buffers is likely important in maintaining microclimates and microhabitats needed for amphibians and other taxa. Moderate thinning and preservation of conditions in riparian and nearby upland areas by way of variable-width and streamside-retention buffers may be sufficient to maintain suitable habitat and microclimatic conditions vital to amphibian assemblages in managed headwater forests.  相似文献   

2.
This study evaluated the importance of burned habitat characteristics as well as the likely dispersal from specific habitats in the distribution of saproxylic beetles the same year as a fire occurred, in burned black spruce stands (Picea mariana [Mill] B.S.P.) in the northern boreal forest of Québec. The distribution of early post-fire saproxylic species was mainly driven by burned habitat attributes at the plot scale (0.04 ha), especially fire severity, suggesting that the effect of environment attributes can act at a relatively fine scale. Some xylophagous and most predaceous species were more abundant in severely burned stands whereas fire severity had the opposite effect on several common mycophagous species. The amount of newly fire-killed trees that could be used as breeding substrates in the burned stands had only a weak positive influence on these functional groups. The great majority of early saproxylic species were weakly associated with the distance from unburned forests or other recently burned patches that could act as potential “source habitats”. Indeed, these variables were of lesser importance than the attributes of the burned habitat. Woody debris that were already present in plots before the fire, potentially serving as local of source-populations for early colonizers, had virtually no influence on the local abundance of species. Many saproxylic species, including some true pyrophilous, clearly showed higher abundance as distance from unburned stands increased. This unexpected relation may reflect that dispersal of insects toward the burnt landscape very shortly after fire could be driven by the higher amount of volatiles released by severely burned forests, which are more likely as distance from unburned forest increased.  相似文献   

3.
Snags are an important resource for a wide variety of organisms, including cavity-nesting birds. We documented snag attributes in a mixed-conifer forest dominated by ponderosa pine in the Sierra Nevada, California where fire is being applied during spring. A total of 328 snags were monitored before and after fire on plots burned once, burned twice, or left unburned to assess the effects of prescribed fire on snag populations. The greatest loss of snags (7.1 snags ha−1 or 43%) followed the first introduction of fire after a long fire-free period. On plots burned a second time 21% of snags (3.6 snags ha−1) were lost, whereas 8% (1.4 snags ha−1) were lost on unburned control plots in the same time period. New snags replaced many of those lost reducing the net snag losses to 12% (2.0 ha−1) for plots burned once, and 3% (0.5 ha−1) for plots burned twice and unburned plots. We also examined snags used by cavity-nesting birds. Snags preferred for nesting were generally ponderosa pine (Pinus ponderosa), larger diameter, and moderately decayed as compared to available snags. For monitored snags that met the preferred criteria, there was a net loss (1.7 snag ha−1 or 34%) after the first burn, while the loss of useable snags was less than 1 snag ha−1 following the second burn (15%) or on unburned controls (8%). We recommend protection of preferred snags, in particular large ponderosa pines, especially during primary fire applications on fire-suppressed landscapes.  相似文献   

4.
Zagros forests are mainly covered byQuercus brantii L. coppices and oak sprout clumps occupy the forest area like patches. We investigated post-fire herbaceous diversity in the first growing season after fire. For this purpose neighboring burned and unburned areas were selected with the same plant species and ecological conditions. The data were collected from areas subjected to different fire severities. Overall 6 treatments were considered with respect to fire severity and the mi-crosites of inside and outside of oak sprout clumps including: unburned inside and outside of sprout clumps (Ni and No), inside of sprout clumps that burned with high fire severity (H), inside of sprout clumps that burned with moderate fire severity (M), outside of sprout clumps that burned with low fire severity (OH and OM). Different herbaceous com-position was observed in the unburned inside and outside of oak sprout clumps. The species diversity and richness were increased in treatments burned with low and moderate fire severity. However, in treatment burned with high fire severity (H), herbaceous cover was reduced, even-ness was increased, and richness and diversity were not significantly changed. We concluded that besides the microsites conditions in forest, fire severity is an inseparable part of the ecological effect of fire on her-baceous composition.  相似文献   

5.
Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in time after one or two high-severity fires. Time points included 2 and 3 years after a single fire, 17 and 18 years after a single fire, 2 and 3 years after a repeat fire (15 year interval between fires), and >100 years since stand-replacement fire (mature/old-growth forest). Avian species richness did not differ significantly among habitats. Bird density was highest 17 and 18 years after fire, lowest 2 years after fire, and intermediate in repeat burns and unburned forest. Bird community composition varied significantly with habitat type (A = 0.24, P < 0.0001) with two distinct gradients in species composition relating to tree structure (live to dead) and shrub stature. Using indicator species analysis, repeat burns were characterized by shrub-nesting and ground-foraging bird species while unburned mature forests were characterized by conifer-nesting and foliage-gleaning species. Bird density was not related to snag basal area but was positively related to shrub height. Contrary to expectations, repeated high-severity fire did not reduce species richness, and bird densities were greater in repeat burns than in once-burned habitats. Broad-leaved hardwoods and shrubs appear to play a major role in structuring avian communities in the Klamath-Siskiyou region. In light of these results, extended periods of early seral broadleaf dominance and short-interval high-severity fires may be important to the conservation of avian biodiversity.  相似文献   

6.
On some landscapes periodic fire may be necessary to develop and maintain oak-dominated savannas. We studied the effects of two annual prescribed burns to determine their effect on microbial activity and soil and litter nutrients 1 year after the last burn. Surface litter and soil from the upper 0–5 cm soil layer in three developing savannas (oak-hickory, Quercus-Carya), oak-hickory-pine (Quercus-Carya-Pinus), and pine (Pinus) were collected one year after the second of two annual prescribed burns. Surface litter was analyzed for nutrients and soil was analyzed for phospholipid fatty acids (PLFAs) and nutrients. Surface litter chemistry differed across the three savannas for potassium (K) and boron (B), being significantly (P < 0.05) higher for unburned forest than for burned forest. Among savannas, only sulfur (S) was higher for the pine savanna and B for the oak-hickory savanna, both were higher for unburned forest than for burned forest. For soil, calcium (Ca) and B differed across savannas, being higher for burned forest than for unburned forest. Among savannas, soil pH, Ca, and B concentrations were higher in soil from burned forest than from unburned forest. Total PLFA differed among savannas, but was not affected by burning treatments. However, the amounts of biomarkers for Gram-positive and Gram-negative bacteria were higher while the amount of biomarker for fungal PLFA was lower for burned forest than for unburned forest. Our results indicate that the two annual prescribed burns moderately affected PLFA microbial community structure and litter and soil nutrient concentrations. However, the long-term effects of fire on these study sites are not known and merit further study.  相似文献   

7.
Wildfire can create a mosaic of impacts of varying severity across the landscape. Although widely recognized, this feature and its causes are little understood or studied in ecology. We studied a 1,200-ha wildfire in the southern boreal forest of the Boundary Waters Canoe Area Wilderness (BWCAW) in northeastern Minnesota, USA, using 275 ground plots (stand-scale) and 1:7,000 scale aerial photographs for the entire burned area (landscape-scale). Fire severity was markedly heterogeneous. Overall, 50% of the burn extent was classified as high burn severity, but patches burned this severely were on average less than 70 m from patches of low severity. As expected, lowlands had lower average fire severity than uplands, but several lowland areas burned, and some upland areas remained unburned. At the landscape scale, pre-fire vegetation type—itself heterogeneous—and patch size of less flammable cover types influenced fire severity. Crown fire severity in upland areas was lowest in pure aspen–birch and red/white pine stands and highest in jack pine and spruce–fir stands. At the stand-scale, slope position and the density of certain tree species at adjacent plots influenced fire severity. Improved understanding of the severity patterns created by wildfire can help to guide the management of spatial patterns of forested systems. Based on our study, a larger range in disturbance severity at scales of 0.1 to several ha and increasing the average size, and range of sizes, of residual patches would in aggregate better mimic natural disturbance than typical harvests.  相似文献   

8.
Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a “prescribed fire regime” of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.  相似文献   

9.
Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1–5 yr after selective logging, and experimentally tested the effect of forest fire on populations of invasive grasses. In unlogged forests and in microhabitats created by selective logging we found a total of four alien and 16 native grass species. Grasses covered 2% of unlogged and 4% of logged forest, with grass cover in logged forest concentrated in areas directly disturbed by logging; log landings and roads had relatively greater grass cover (37% and 17%, respectively) than did skid trails (10%) and felling gaps (8%). Total grass cover and grass species richness increased with canopy openness and were greatest in sites most severely disturbed by logging. The grass flora of these disturbed areas was composed mostly of native ruderal species (e.g., Digitaria insularis, Leptochloa virgata), a native bamboo (Guadua paniculata), and Urochloa (Panicum) maxima, a caespitose C4 pasture grass introduced from Africa. Urochloa maxima formed monodominant stands (up to 91% cover and 2–3 m tall) and grew on 69% of log landings and 38% of roads. To better understand the potentially synergistic effects of logging and fire on the early stages of grass invasion, we tested the effect of a 12-ha experimental fire on U. maxima populations in a selectively logged forest. Three years after the fire, the area covered by alien grass in burned forest increased fourfold from 400 m2 (pre-fire) to 1660 m2; over the same period in a logged but unburned (control) area, U. maxima cover decreased from 398 m2 to 276 m2. Increased canopy openness due to fire-induced tree mortality corresponded with the greater magnitude of grass invasion following fire. Selective logging of this dry forest on the southern edge of the Amazon Basin promotes alien grass invasion; when coupled with fire, the rate of invasion substantially increased. Recognition of the grass-promoting potential of selective logging is important for understanding the possible fates of tropical forests in fire-prone regions.  相似文献   

10.
为探究计划烧除对云南松林土壤水文特征的影响,为计划烧除后森林生态系统服务功能评价提供依据,以云南省新平县实施多年计划烧除的云南松纯林为研究对象,设立20 m×20 m计划烧除样地和不进行计划烧除的自然对照样地各3块。2019年2月实施计划烧除作业,进行样地调查、火烧强度和枯落物储量调查,2020年6月采集土样,测定土壤物理、化学性质和土壤入渗性能。结果表明,计划烧除后土壤容重增加且在0~10 cm土层差异显著;毛管孔隙度和总孔隙度减少但差异不显著;有机质减少并在0~20 cm土层差异显著。计划烧除后土壤自然含水率、饱和持水率、毛管持水率和田间持水量减少但差异不显著;吸湿水量减少并且在0~20 cm土层差异显著。计划烧除后土壤初渗速率、土壤平均入渗速率和土壤稳定入渗率减少;土壤初渗速率和平均入渗速率在不同样地0~20 cm土层差异显著。计划烧除对土壤稳定入渗率的显著影响因素为土壤容重、孔隙度、有机质和饱和持水率。说明计划烧除后云南松林土壤持水性能下降,入渗性能下降,对于入渗性能的影响主要是源于土壤理化性质的改变。  相似文献   

11.
Of the most common types of land use, agroecosystems put enormous pressure on many groups of biological organisms. Amphibians are not the exception and here we show the value of these habitats to the conservation of this group. We evaluated the diversity of amphibians in coffee plantations (traditional and specialized shade) and also in fragments of cloud forest, the ecosystem that was dominant in pre-agricultural central Veracruz, Mexico. A sampling effort of 2,688 person hours recorded 1,078 amphibians belonging to 26 species, 10 families and three orders. Based on the mean complementarity of 64 %, the non-metric multidimensional scaling analysis identified three groups of communities indicating a high degree of species turnover. The Craugastoridae family was dominant at the study sites, representing 40 % of the entire sample. Amphibian diversity was high in cloud forest fragments, followed by the traditional coffee plantation. However, amphibian richness in the specialized shaded coffee plantation was not significantly different from that of the other two habitats. We conclude that the different types of coffee agrosystems are reservoirs for at least 46 % of the species native to cloud forest, indicating that this habitat is very important to the conservation of the amphibian fauna in central Veracruz.  相似文献   

12.
Wildfire severity and subsequent ecological effects may be influenced by prior land management, via modification of forest structure and lingering changes in fuels. In 2002, the Hayman wildfire burned as a low to moderate-severity surface fire through a 21-year pine regeneration experiment with two overstory harvest cuttings (shelterwood, seed-tree) and two site preparations (scarified, unscarified) that had been applied in a mature ponderosa pine forest in the montane zone of the Colorado Front Range in 1981. We used this event to examine how pre-fire fine fuels, surface-level burn severity and post-fire soil nitrogen-availability varied with pre-fire silvicultural treatments. Prior to the wildfire, litter cover was higher under both shelterwood and unscarified treatments than seed-tree and scarified treatments. Immediately after the fire in 2002, we assessed burn severity under 346 mature trees, around 502 planted saplings, and in 448 4 m2 microplots nested within the original experimental treatments. In one-fourth of the microplots, we measured resin-bound soil nitrate and ammonium accumulated over the second and third post-fire growing season. Microplots burned less severely than bases of trees and saplings with only 6.8% of microplot area burned down to mineral soil as compared to >28% of tree and sapling bases. Sapling burn severity was highest in unscarified treatments but did not differ by overstory harvest. Microplot burn severity was higher under the densest overstory (shelterwood) and in unscarified treatments and was positively related to pre-fire litter/duff cover and negatively associated with pre-fire total plant cover, grass cover and distance to tree. In both years, resin-bound nitrate and ammonium (NH4+-N) increased weakly with burn severity and NH4+-N availability was higher in unscarified than scarified plots. The lasting effects of soil scarification and overstory harvest regime on modern patterns of surface burn severity after two decades underscores the importance of historic landuse and silviculture on fire behavior and ecological response. Unraveling causes of these patterns in burn severity may lead to more sustainable fire and forest management in ponderosa pine ecosystems.  相似文献   

13.
Stream–riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is expanding our perspective of riparian zones, and suggests the need for alternative designs to manage stream–riparian zones and their adjacent uplands. High biodiversity in riparian areas can be attributed to cool moist conditions, high productivity and complex habitat. All 47 northwestern amphibian species have stream–riparian associations, with a third being obligate forms to general stream–riparian areas, and a quarter with life histories reliant on headwater landscapes in particular. Recent recognition that stream-breeding amphibians can disperse hundreds of meters into uplands implies that connectivity among neighboring drainages may be important to their population structures and dynamics. Microclimate studies substantiate a “stream effect” of cool moist conditions permeating upslope into warmer, drier forests. We review forest management approaches relative to headwater riparian areas in the U.S. Pacific Northwest, and we propose scenarios designed to retain all habitats used by amphibians with complex life histories. These include a mix of riparian and upslope management approaches to address the breeding, foraging, overwintering, and dispersal functions of these animals. We speculate that the stream microclimate effect can partly counterbalance edge effects imposed by upslope forest disturbances, hence appropriately sized and managed riparian buffers can protect suitable microclimates at streams and within riparian forests. We propose one approach that focuses habitat conservation in headwater areas – where present management allows extensive logging – on sensitive target species, such as tailed frogs and torrent salamanders that often occur patchily. Assuming both high patchiness and some concordance among the distribution of sensitive species, protecting areas with higher abundances of these animals could justify less protection of currently unoccupied or low-density habitats, where more intensive forest management for timber production could occur. Also, we outline an approach that protects juxtaposed headwater patches, retaining connectivity among sub-drainages using a 6th-field watershed spatial scale for assuring well-distributed protected areas across forested landscapes. However, research is needed to test this approach and to determine whether it is sufficient to buffer downstream water quality and habitat from impacts of headwater management. Offering too-sparse protection everywhere is likely insufficient to conserve headwater habitats and biodiversity, while our alternative targeted protection of selected headwaters does not bind the entire forest landscape into a biodiversity reserve.  相似文献   

14.
中度火干扰对白桦落叶松混交林土壤理化性质的影响   总被引:10,自引:0,他引:10  
应用空间代替时间的方法对大兴安岭林区白桦落叶松混交林1982-2007年的中度火烧迹地土壤理化性质变化进行研究.结果表明:火后土壤密度增加,土壤孔隙度和土壤含水率降低,但是变化幅度将随着时间的推移逐渐缩小,并在火烧后第20年将接近火烧前水平;火烧后A层和B层土壤有机质均呈降低趋势,A层的降幅逐渐缩小直到火烧后20年比火烧前水平大幅增加;火后土壤A层和B层全磷含量均呈增加趋势,土壤全氮在A层基本也呈增加趋势,B层随火后时间呈波动变化,无明显规律;土壤有效磷含量变化星先降低后增加的趋势;A层土壤速效钾含量的变化基本呈增加趋势,但随时间增加幅度减小,而B层的变化无规律;A层土壤水解氮含量变化呈增加趋势,而B层的变化则与速效钾在B层的变化相似,无明显规律.此研究旨在找出火烧后随时间的推移土壤理化性质的动态变化规律,为火烧迹地的改造和生态恢复提供科学依据.  相似文献   

15.
Fuel treatments for reducing fire risk are necessarily tied to the landscape structure including forest composition and configuration. Thus understanding the relationships between landscape structure and burn severity is important for developing guidelines and management strategies for fire-resilient forests. The goal of this study was to investigate the relationship between landscape structure as described by spatial pattern metrics and burn severity at the landscape and class levels. In 2000, a mostly severe fire burned 16,210 ha of dense forest located in Samchuck on the east coast of the Korean peninsula. Spatial pattern metrics including patch density, largest patch index, mean shape index, area-weighted mean shape index, Euclidean nearest neighborhood distance, and Shannon's diversity index, as well as topographic characteristics of slope and elevation, were correlated with burn severity based on delta Normalized Burn Ratio (dNBR) assessments. Regression tree analysis was also carried out with the same variables to avoid spatial autocorrelation and to reveal the relative importance of variables to burn severity. The results of this study strongly suggest that both composition and configuration of the forest cover patches are closely tied to burn severity. In particular, both the correlation analysis and regression tree analysis indicated that the area of red pine tree forest cover was the most significant factor in explaining the variance of burn severity. Topography and spatial configuration of forest cover patches were also significantly related to burn severity. The heterogeneity of forests also had a significant influence on burn severity. To reduce fire risk and increase the fire resilience of forests, forest managers and agencies need to consider enhancing the heterogeneity of forests when implementing fuel treatment schemes. However, such fuel treatments for landscape structure may only be effective under moderate weather conditions.  相似文献   

16.
Forest thinnings implemented with cut-to-length and whole-tree harvesting systems followed by underburning were evaluated for their effects on individual tree and stand level growth responses in pure, uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) accompanied by isolated California white fir (Abies concolor var. lowiana [Gord.] Lemm.). Based on both dimension and volume measures, trees of the unburned whole-tree treatment combination exhibited the greatest individual growth responses. At the stand level, a diminished volume growth response in the whole-tree treatment was especially pronounced in the burned portion, mostly attributable to exaggerated stocking losses, while a superior response in the unburned cut-to-length combination likely reflected not only the absence of detrimental fire impacts but also benefits of on-site slash retention. For stand level biomass, diminished growth in the whole-tree treatment was again evident, with that in the burned portion again most pronounced, while biomass accrual in the unburned cut-to-length treatment combination was generally comparable to that in the unthinned control. Increasingly utilized in forest restoration efforts in the western USA, the responses presented herein to these thinning and burning practices provide natural resource managers insight into potential compromised outcomes when implemented in Jeffrey pine and similar dry site forest types.  相似文献   

17.
We compared the effects of three fuel reduction techniques and a control on the relative abundance and richness of reptiles and amphibians using drift fence arrays with pitfall and funnel traps. Three replicate blocks were established at the Green River Game Land, Polk County, North Carolina. Each replicate block contained four experimental units that were each approximately 14 ha in size. Treatments were prescribed burn (B); mechanical understory reduction (M); mechanical + burn (MB); and controls (C). Mechanical treatments were conducted in winter 2001–2002, and prescribed burns in March 2003. Hot fires in MB killed about 25% of the trees, increasing canopy openness relative to controls. Leaf litter depth was reduced in B and MB after burning, but increased in M due to the addition of dead leaves during understory felling. The pre-treatment trapping period was short (15 August–10 October 2001) but established a baseline for post-treatment comparison. Post-treatment (2002–2004), traps were open nearly continuously May–September. We captured a total of 1308 species of 13 amphibians, and 335 reptiles of 13 species. The relative abundance of total salamanders, common salamander species, and total amphibians was not changed by the fuel reduction treatments. Total frogs and toads (anurans) and Bufo americanus were most abundant in B and MB; however, the proximity of breeding sites likely affected our results. Total reptile abundance and Sceloporus undulatus abundance were highest in MB after burning, but differed significantly only from B. Mean lizard abundance in MB was highest in 2004 and higher than in other treatments, but differences were not statistically significant. Our results indicate that a single application of the fuel reduction methods studied will not negatively affect amphibian or reptile abundance or diversity in southern Appalachian upland hardwood forest. Our study further suggests that high-intensity burning with heavy tree-kill, as in MB, can be used as a management tool to increase reptile abundance – particularly lizards – with no negative impact on amphibians, at least in the short-term.  相似文献   

18.
This study was performed to investigate a short time change (one week after fire) on soil properties due to the fire inPinus densiflora Sieb. et Zucc stands of the Kosung area in Kangwon Province in Korea. Twenty seven sampling plots [16 burned (8 low intensity fire, 8 high intensity fire) and 11 unburned plots] were chosen. Mineral soil samples from three depths (0–5, 5–15, and 15–25 cm) under the forest floor were collected. Forest fire in the area affected soil chemical properties. Soil pH, total nitrogen, available phosphorus, potassium, calcium, and magnesium in the surface soil (0–5 cm) of the burned area compared with the unburned area increased, but there was no marked change in the subsurface soil (5–25 cm). Organic matter, total nitrogen, available phosphorus, and exchangeable cations in the surface soil were generally lower in the high than in the low intensity fire areas. This indicates that these nutrients on the high intensity fire may be volatilized. The results suggest that change in soil chemical properties in the area was restricted mainly to the surface soil and was different between the high and the low intensity fire types.  相似文献   

19.
Despite the increasing recognition of riparian zones as important ecotones that link terrestrial and aquatic ecosystems and of fire as a critical natural disturbance, much remains unknown regarding the influence of fire on stream-riparian ecosystems. To further this understanding, we evaluated the effects of mixed severity wildfire on riparian plant community structure and composition in headwater streams of the Big Creek Watershed of the Frank Church ‘River of No Return’ Wilderness of central Idaho. Five years after a large stand-replacing fire, we conducted riparian vegetation surveys at sixteen reaches across a range of burn types. Non-metric Multidimensional Scaling (NMS) and Multi-Response Permutation Procedure (MRPP) analyses showed an overall shift in community composition and structure between vegetation at unburned and severely burned reaches. Although total plant cover was significantly less at severely burned areas, recovery of the deciduous understory was apparent. Severely burned reaches were characterized by a marked increase in cheatgrass (Bromus tectorum). Reaches that were exposed to low-severity fire were indistinguishable from unburned reaches relative to vegetation community composition and structure, pointing to a possible disturbance threshold that may need to be crossed in order to alter riparian plant communities.  相似文献   

20.
We studied how variations in fire severity and the degree of cutting before burning affected soil invertebrates in a Pinus sylvestris forest in central Sweden. A varied depth of burn in the mor layer was obtained by exclusion of rain and addition of fuel in small plots (1 m×2 m) in clear-cut, selectively cut and uncut part of the forest before large-scale prescribed burning took place. Soil samples were taken from the plots immediately before, the day after, and two months after the fire. The overall mortality of invertebrates depended on the proportion of organic soil consumed by the fire, and for individual taxa it ranged between 59 and 100%. Invertebrates that lived deeper in soil suffered lesser mortality than those in the vegetation and litter layers did. Greater mobility in soil (Staphylinidae) or a thick cuticle (Oribatediae, Elateridae) may have contributed to the higher survival observed in these taxa. The beetles Atomaria pulchra (Cryptophagidae), Corticaria rubripes (Lathridiidae), and other fire-favoured insects colonised the burned forest the very day the fire burned. These species preferred the hard-burned plots and the uncut stand for colonisation. Sixty days after the fire, the abundance of invertebrates was lower in the burned cut stands compared to the burned uncut stand. The species composition of beetles in the burned stands was then characterised by a few very abundant fire-favoured species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号