首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrodistillation of Decalepis hamiltonii roots yielded an essential oil (0.33% v/w) that contained 2-hydroxy-4-methoxybenzaldehyde (37.45%), 2-hydroxybenzaldehyde (31.01%), 4-O-methylresorcylaldehyde (9.12%), benzyl alcohol (3.16%), and alpha-atlantone (2.06%) as major constituents, with aromatic aldehydes constituting the main fraction of this root's essential oil. The oil was tested for its antimicrobial activity against foodborne pathogens responsible for food spoilage and human pathologies using standard antimicrobial assays. It exhibited strong antimicrobial activity against Bacillus cereus, Bacillus megaterium, Candida albicans, Escherichia coli, Micrococcus luteus, Micrococcus roseus, and Staphylococcus aureus at a concentration range of 1:0 with inhibitory activities of 27, 23, 16, 19, 22, 19, and 23 mm, respectively, which are comparable to those of the standards. The roots of D. hamiltonii, therefore, may be considered as an inexpensive source of an essential oil rich in antimicrobial compounds against foodborne pathogens.  相似文献   

2.
Carvacrol is a component of several essential oils and has been shown to exert antimicrobial activity. The structural requirements for the activity of carvacrol were determined by comparison to structurally related (nonessential oil) compounds. Removal of the aliphatic ring substituents of carvacrol slightly decreased the antimicrobial activity. The effect of the hydroxyl group of carvacrol on activity could not be determined by simply comparing it to p-cymene, because this compound is immiscible with water; therefore, 2-amino-p-cymene, the amino analogue of carvacrol, which has a similar hydrophobicity and structural characteristics, was used. 2-Amino-p-cymene had similar membrane disruption and bacterial killing characteristics as carvacrol showing that, contrary to previous reports, the hydroxyl group of carvacrol itself is not essential for the antimicrobial activity. However, the observed 3-fold lower activity for 2-amino-p-cymene as compared to carvacrol indicates special features in the antimicrobial mode of action of carvacrol due to the hydroxyl group.  相似文献   

3.
The aim of this research was to assess the antimicrobial activity of nine different industrial essences used in a soft drink factory in relation to their composition, as well as to verify the role of vapor pressure on their bioactivity. The essences were tested against a Saccharomyces cerevisiae strain isolated from spoiled soft drinks. The tests were carried out by adding the essences directly to a liquid medium or into the headspace of closed systems inoculated with the yeast. The headspace composition was evaluated through a solid phase microextraction-gas chromatography technique. The use of a mass spectrometer allowed the identification of the peaks detected. The microbial growth was indirectly monitored by measuring the metabolic CO2 released by the yeast. The results obtained indicated that the most effective essences were characterized by the highest concentration of some terpenes, such as citral, beta-pinene, and p-cymene. Moreover, all of the essences were more bioactive when added directly to the liquid medium.  相似文献   

4.
The essential oils obtained from the aerial parts of Origanum scabrum and Origaum microphyllum, both endemic species in Greece, were analyzed by means of GC and GC-MS. Forty-eight constituents were identified, representing 98.59 and 98.66% of the oils, respectively. Carvacrol, terpinen-4-ol, linalool, sabinene, alpha-terpinene, and gamma-terpinene were found as the major components. Furthermore, both samples exhibited a very interesting antimicrobial profile after they were tested against six Gram-negative and -positive bacteria and three pathogenic fungi.  相似文献   

5.
The activity of a purified urease, obtained from Bacillus pasteurii, was inhibited by humic and fulvic acids obtained from an agricultural soil. Enzyme kinetic studies showed that the humic substances affected the affinity of the enzyme for its substrate (Km) and the maximum velocity of the reaction (Vmax). The Vmax was inhibited to the same extent by both humic (HA) and fulvic (FA) acids, the precise effect depending on the pH and concentration of humic substance. At pH 4.0, HA concentrations of 25 pg cm?3 and 10 μg cm?3 inhibited the Vmax by 38.5% and 20% respectively. HA and FA had similar effects on the Km but in this case the lowering of the affinity of the enzyme for its substrate was not concentration dependent in the range 0–25 μg cm?3 of humic substance. Typically, the affinity was decreased from a KM of 50 mM in the control to 67 mM in the presence of HA and FA. The effects were not due primarily to the ash or N contents of the humic substances because de-ashed humic acid and synthetic model humic (made from catechol, guaiacol, pyrogallol, resorcinol and protocatechuic acid) and fulvic acid (made from polymaleic acid), containing virtually no ash or N, were equally as effective. The effect was not related to the phenolic monomers which, before polymerization, had no effect on urease activity.  相似文献   

6.
A flavonoid-rich extract of Hypericum perforatum L. (FEHP) was prepared by adsorption on macroporous resin and desorption by ethanol. Total flavonoid content of FEHP was determined by a colorimetric method. The major constituents of FEHP, including rutin, hyperoside, isoquercitrin, avicularin, quercitrin, and quercetin, were determined by HPLC analysis and confirmed by LC-MS. Different antioxidant assays were utilized to evaluate free radical scavenging activity and antioxidant activity of FEHP. FEHP was an effective scavenger in quenching DPPH and superoxide radical with IC50 of 10.63 microg/mL and 54.3 microg/mL, respectively. A linear correlation between concentration of FEHP and reducing power was observed with a coefficient of r2 = 0.9991. Addition of 150 microg of FEHP obviously decreased the peroxidation of linoleic acid during 84 h incubation, but the amount of FEHP over 150 microg did not show statistically significant inhibitory effect of peroxidation of linoliec acid (p > 0.05). FEHP exhibited inhibitory effect of peroxidation of liposome induced both by hydroxyl radical generated with iron-ascorbic acid system and peroxyl radical and showed prominent inhibitory effect of deoxyribose degradation in a concentration-dependent manner in site-specific assay but poor effect in non-site-specific assay, which suggested that chelation of metal ion was the main antioxidant action. According to the results obtained in the present study, the antioxidant mechanism of FEHP might be attributed to its free radical scavenging activity, metal-chelation activity, and reactive oxygen quenching activity.  相似文献   

7.
Water-distilled essential oils from herbal parts of Micromeria cristata (Hampe) Griseb. subsp. phrygia P. H. Davis (Endemic) (Lamiaceae) collected from three different localities were analyzed by GC-MS. The major component characterized in the three oils was borneol (27-39%). Other main components were determined as camphor (9-15%), caryophyllene oxide (4-6%), and trans-verbenol (4-6%) in the oils. Enantiomeric distributions of borneol and camphor in the oils were determined on a fused silica Lipodex-E capillary column using a multidimensional GC-MS system. The three essential oils and both enantiomers of borneol have been evaluated for their antimicrobial activity. They showed inhibitory effects on Gr (-) and Gr (+) pathogenic microorganisms.  相似文献   

8.
Polyphenols were isolated from sliced fresh leaves of Sempervivum tectorum. After 21 h of extraction by methanol and removal of chlorophyll, ethyl acetate was used to separate oligomeric and polymeric polyphenols: 0.07% of oligomeric and 0.13% of polymeric polyphenols were found. After acidic hydrolysis of the oligomeric polyphenols, it was established by TLC, HPLC, and FAB mass spectra that kaempferol was the unique aglycon of the three main oligomeric constituents of S. tectorum. Paper chromatography suggested delphinidol to be the only anthocyanidin detectable in the material obtained by acidic hydrolysis of the polymeric polyphenol fraction. After Haslam degradation of the same polymeric polyphenol fraction, only 4-thiobenzyl-(-)-epigallocatechin and 4-thiobenzyl-(-)-epigallocatechin-3-gallate were found and tentatively identified. We concluded that procyanidins of B2 type could be the major components of the polymeric polyphenol fraction of this plant. Antimicrobial activity of Sempervivum L. leaves against six of seven selected microorganisms was observed.  相似文献   

9.
The chemical compositions of the essential oils obtained from the aerial parts of five taxa of Sideritis were analyzed using various GC-MS techniques. A total of 99 different compounds was identified, and significant differences (qualitative and quantitative) were observed between the samples. The in vitro antimicrobial activity of the essential oils against six bacteria and three fungi is also reported.  相似文献   

10.
Amadoriase I is a fructosyl amine oxidase from Aspergillus fumigatus that catalyzes the oxidation of Amadori products (APs) producing glucosone, H2O2, and the corresponding free amine. All the enzymes of this family discovered so far only deglycate small molecular weight products and are inactive toward large molecular weight substrates, such as glycated BSA or ribonuclease A. Therefore, they cannot be used to reverse protein glycation occurring in diabetes or in foods. In this paper, the effect of Amadoriase I added during the in vitro reaction between glucose and peptides having different polarities or proteins with molecular weights ranging from to 5 to 66 kDa was tested. The formation of APs was monitored by ESI-MS of intact glycated protein or peptides and by measuring the Nepsilon-(1-deoxy-d-fructos-1-yl)-L-lysine and furosine concentrations. Results showed that the formation of APs is reduced up to 80% when peptides and glucose are incubated in the presence of Amadoriase. The effect is more evident for hydrophobic peptides. In protein-glucose systems, the effect was dependent on the molecular weight and steric hindrance being negligible for BSA and at a maximum for insulin, where the formation of APs was reduced up to 60%. These findings indicate new potential applications of Amadoriase I as an efficient tool for inhibiting protein glycation in real food systems.  相似文献   

11.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium; methylviologen) is a widely used, nonselective contact herbicide that rapidly stimulates free radical generation. It has been found that the addition of sodium salicylate (sodium 2-hydroxybenzoate; NaSA) to paraquat spray solutions significantly decreased herbicidal activity. This protection was observed in tobacco (Nicotiana tabacum) regardless of whether NaSA was foliar-applied along with or prior to paraquat application or NaSA was soil-applied prior to paraquat application. Because salicylic acid (SA) is an inducer of systemic acquired resistance (SAR) to plant disease, paraquat protection by three SAR inducers (acibenzolar-S-methyl, harpin, and probenazole) and selected salicylate derivatives was assessed. Twenty-two of 24 compounds tested decreased herbicidal activity when foliar-applied with paraquat. Protection from paraquat was greatest with 5-chlorosalicylate, and no protection was observed with benzoic acid. NaSA decreased paraquat activity on npr1-2, an Arabidopsis mutant that is compromised in NaSA-induced SAR, and on ein2-1, an ethylene-insensitive Arabidopsis mutant. Thus, salicylate protection from paraquat is independent of disease resistance and ethylene perception. This suggests the existence of an NaSA-mediated pathway capable of protecting plants from reactive oxygen stress.  相似文献   

12.
Urinary and fecal metabolites in male rats treated with a (14)C-labeled fungicide, furametpyr [N-(1,3-dihydro-1,1, 3-trimethylisobenzofuran-4-yl)-5-chloro-1, 3-dimethylpyrazole-4-carboxamide, Limber], were purified by a combination of chromatographic techniques, and chemical structures of 14 metabolites were identified by spectroanalyses (NMR and MS). The major biotransformation reactions of furametpyr in rats were found to be (1) N-demethylation, (2) oxidation of the methyl group at C3 of the pyrazole ring, (3) oxidation of the methyl group at C1 of the 1,3-dihydroisobenzofuran ring, (4) hydroxylation at C3 of the 1,3-dihydroisobenzofuran ring, and (5) hydroxylation at C7 of the 1, 3-dihydroisobenzofuran ring. In vitro metabolism by recombinant human cytochrome P450 revealed that a major biotransformation in humans is N-demethylation, catalyzed by CYP1A1, 1A2, 2C19, and 3A4.  相似文献   

13.
The influence of physicochemical conditions on the phospholipase D (PLD) activity of subcellular preparations of sweet corn (Zea mays L. cv. Peaches and Cream) kernels has been studied. The microsomal, mitochondrial, and cytosolic preparations of corn kernels possessed PLD activity albeit at varying proportions. The microsomal and cytosolic PLD activities were stimulated 2-fold between 5 and 15 degrees C. Ethanol had varying modulatory effects on PLD activity. By contrast, acetaldehyde was a potent inhibitor of PLD. As well, a naturally occurring C(6) aldehyde such as hexanal and an alcohol such as hexanol inhibited PLD activity efficiently. Divalent cations such as calcium chloride and magnesium chloride stimulated PLD activity at micromolar levels. Monovalent cations such as KCl and NaCl did not appear to affect PLD activity. Partial purification of PLD from the microsomal, mitochondrial, and cytosolic fractions separately revealed four major isoforms with relative molecular masses of 200, 140-150, 102-108, and 60-66 kDa. The importance of PLD in the maintenance of processed food quality is discussed.  相似文献   

14.
Botryococcus braunii is a green colonial microalga that is used mainly for the production of hydrocarbons, exopolysaccharides, and carotenoids. In the present study, the antioxidant properties of acetone extracts of B. braunii were evaluated using in vitro model systems such as 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxy radical scavenging, and lipid peroxidation in human low-density lipoprotein and rat tissues. Acetone extracts of B. braunii (equivalent to 10 ppm total carotenoid) exhibited 71 and 67% antioxidant activity in DPPH and hydroxyl radical scavenging model systems, respectively. Similarly, the extract also showed 72, 71, and 70% antioxidant activity in the liver, brain, and kidney of rats. Low-density lipoprotein oxidation induced by Cu2+ ions was also protected (22, 38, and 51%) by the algal extract in a dose-dependent manner (4, 6, and 8 ppm levels of total carotenoid). Thiobarbituric acid reactive substances concentration in the blood, liver, and kidney of rats was also significantly decreased in B. braunii treated samples compared with those of control. Carotenoids (violaxanthin, astaxanthin, lutein, zeaxanthin, chlorophylls a and b, and alpha, beta-carotene) identified in the B. braunii acetone extract may be exhibiting antioxidant activity. Among the carotenoids, lutein represents more than 75% of the total carotenoids. B. braunii extract was shown to be effective for protecting biological systems against various oxidative stresses in vitro. This is the first report on the antioxidant properties of B. braunii.  相似文献   

15.
The effect of honey oligosaccharides on the growth of fecal bacteria was studied using an in vitro fermentation system. Prior to treatment, glucose and fructose (31.73 and 21.41 g/100 g of product, respectively) present in honey, which would be digested in the upper gut, were removed to avoid any influence on bacterial populations in the fermentations. Nanofiltration, yeast (Saccharomyces cerevisiae) treatment, and adsorption onto activated charcoal were used to remove monosaccharides. Prebiotic (microbial fermentation) activities of the three honey oligosaccharide fractions and the honey sample were studied and compared with fructooligosaccharide (FOS), using 1% (w/v) fecal bacteria in an in vitro fermentation system (10 mg of carbohydrate, 1.0 mL of basal medium). A prebiotic index (PI) was calculated for each carbohydrate source. Honey oligosaccharides seem to present potential prebiotic activity (PI values between 3.38 and 4.24), increasing the populations of bifidobacteria and lactobacilli, although not to the levels of FOS (PI of 6.89).  相似文献   

16.
Resveratrol was encapsulated in oil-in-water food-grade nanoemulsions of subcellular size, produced by high-pressure homogenization. Physicochemical stability was evaluated under accelerated aging (high temperature and UV light exposure), as well as during simulated gastrointestinal digestion. Antioxidant activity was assessed at different stages of digestion by chemical assays and by an improved cellular assay, to measure exclusively the residual activity of resveratrol that penetrated inside Caco-2 cells. Results showed that the nanoemulsions based on soy lecithin/sugar esters and Tween 20/glycerol monooleate were the most physically and chemically stable, in terms of mean droplet size (always <180 nm) and resveratrol loading, during both accelerated aging and gastrointestinal digestion. These formulations also exhibited the highest chemical and cellular antioxidant activities, which was comparable to unencapsulated resveratrol dissolved in DMSO, suggesting that nanoencapsulated resveratrol, not being metabolized in the gastrointestinal tract, can be potentially absorbed through the intestinal wall in active form.  相似文献   

17.
18.
Antioxidant-rich fractions were extracted from pomegranate (Punica granatum) peels and seeds using ethyl acetate, methanol, and water. The extracts were screened for their potential as antioxidants using various in vitro models, such as beta-carotene-linoleate and 1,1-diphenyl-2-picryl hydrazyl (DPPH) model systems. The methanol extract of peels showed 83 and 81% antioxidant activity at 50 ppm using the beta-carotene-linoleate and DPPH model systems, respectively. Similarly, the methanol extract of seeds showed 22.6 and 23.2% antioxidant activity at 100 ppm using the beta-carotene-linoleate and DPPH model systems, respectively. As the methanol extract of pomegranate peel showed the highest antioxidant activity among all of the extracts, it was selected for testing of its effect on lipid peroxidation, hydroxyl radical scavenging activity, and human low-density lipoprotein (LDL) oxidation. The methanol extract showed 56, 58, and 93.7% inhibition using the thiobarbituric acid method, hydroxyl radical scavenging activity, and LDL oxidation, respectively, at 100 ppm. This is the first report on the antioxidant properties of the extracts from pomegranate peel and seeds. Owing to this property, the studies can be further extended to exploit them for their possible application for the preservation of food products as well as their use as health supplements and neutraceuticals.  相似文献   

19.

Purpose  

Oxides are ubiquitous in nature and play an important role in scavenging metal ions from soils and sediments. At the common pH range of the natural environment the well-studied Fe and Al oxides mostly carry a positive charge and adsorbed amounts of heavy metals, and their desorption percentages decrease with increasing ionic strength. The less well studied but also important Mn oxides possess negative charges in the natural environment and this will lead to a different behavior. Therefore, it is useful to further investigate how the electrolyte concentration and type affect the metal ion adsorption/desorption by Mn oxides.  相似文献   

20.
Sorgoleone, 2-hydroxy-5-methoxy-3-[(8'Z,11'Z)-8',11',14'-pentadecatriene]-p-benzoquinone (1), and its corresponding hydroquinone are the major components of the root exudate of Sorghum bicolor. The name sorgoleone includes minor analogues differing in the length or degree of unsaturation of the 3-alkyl side chain. These compounds are known to be phytotoxic, probably through inhibition of photosystem II (PSII) driven oxygen evolution, as previously demonstrated for 1. Isolation of these sorgoleone congeners was achieved by C(8) column chromatography and argentation thin-layer chromatography, and the purified compounds were structurally characterized. The abilities of the minor sorgoleones to inhibit PSII were similar to that of the major compound, suggesting that all of these sorgoleone congeners contribute to the overall allelopathy of sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号