首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the duration and conditions of storage of soil samples on the activity of soil enzymes (catalase, β-fructofuranosidase, and dehydrogenase) was studied for the main soils of southern Russia (different subtypes of chernozems, chestnut soils, brown forest soils, gray forest soils, solonetzes, and solonchaks). The following soil storage conditions were tested: (1) the air-dry state at room temperature, (2) the airdry state at a low positive (in a refrigerator, +4°C) temperature, (3) naturally moist samples at a low positive temperature, and (4) naturally moist samples at a negative (in a freezer, −5°C) temperature. It was found that the sample storing caused significant changes in the enzymatic activities, which depended on the soil type, the land use, the type of enzyme, and the duration and conditions of the sample storage. In the course of the storage, the changes in the enzymatic activity had a nonlinear character. The maximum changes were observed in the initial period (up to 12 weeks). Then, a very gradual decrease in the activity of the studied enzymes was observed. Upon the long-term (>12 weeks) storage under the different conditions, the difference in the activities of the soil enzymes became less pronounced. The storage of soil samples in the air-dried state at room temperature can be recommended for mass investigations.  相似文献   

2.
秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨   总被引:9,自引:1,他引:8  
秦岭作为我国南北方气候的分界线,其上生长着许多独特林分,加之未受到人为活动扰动,故对其包括土壤酶及养分等在内的土壤效应研究具有重要参比性,且可为揭示不同林分的土壤效应及筛选最优林分奠定基础。选取秦岭不同海拔生长的五种典型林分(锐齿栎、油松、华山松、云杉及松栎混交)土壤,分析了7种土壤酶活性和养分变化特征,并探讨了二者间关系及林分的影响。结果表明:不同林分下土壤养分及酶活性变化差异较大,土壤性质强烈受到林分种类及海拔等生态环境条件的影响,其中云杉土壤的有机质、全氮、碱解氮、速效钾、缓效钾含量均较高,是秦岭山脉生长较好的树种之一;且土壤有机质、全氮、碱解氮等养分变化规律较一致;土壤碱性磷酸酶、荧光素二乙酸酯(FDA)水解酶及总体酶活性(TEI)与土壤养分呈显著或极显著正相关,表明林分和海拔对这三种酶的影响与养分是一致的;采用单独土壤酶活性与土壤酶和化学性质复合开展的主成分分析结果一致,获得的综合得分与上述三种酶类达显著或极显著正相关,揭示出它们在一定程度上可表征森林土壤的质量水平,且单一酶类中土壤碱性磷酸酶活性可更容易、简便地反映土壤肥力状况的变化。  相似文献   

3.
Activities of selected soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase) were determined under different spruce forests with restoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in the eastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems health were analyzed. Plots 10 × 10 m with 4 replications were established to investigate three hypotheses: soil enzyme activities a) would increase with the restoration process; b) would be greater in surface soils than at lower depths; and c) would be correlated to selected physicochemical properties. Results showed that as the forests developed after restoration, invertase and peroxidase activities usually increased up to the 23 year point. Also soil enzyme activities were associated with surface soils and decreased with depths, suggesting that in earlier restoration stages surface addition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20 cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzyme activities and some selected chemical properties. Therefore, temporal changes in enzyme activities should be included as an indicator when evaluating sustainable forest management practices.  相似文献   

4.
Some climatic and soil factors influencing the activities of enzymes hydrolysing sucrose and starch in New Zealand soils under pasture were studied. Amounts of reducing sugars produced on incubation of soils without added substrate were related very closely to soil organic C content. Activities of (a) enzymes hydrolysing sucrose and (b) enzymes hydrolysing starch decreased and increased, respectively, with increasing rainfall; the ratios (a)/(i) were highest in the driest groups of soils. Variations in annual rainfall and soil organic C together, but not separately, explained much of the variation in sucrose-hydrolysing activities; these activities appeared to be related more to the composition than the amount of organic matter in a soil. Variations in activity of enzymes hydrolysing starch could be explained by variations in soil organic C, clay content, and, in some cases, other factors associated with different soil groups; these activities were increased by irrigation and reduced by drainage of soils. The activity of starch-hydrolysing enzymes, compared with sucrose-hydrolysing enzymes, was relatively greater under legumes than under grasses at the same site but could differ considerably at different sites. Activities also differed under forest and pasture at adjacent sites.  相似文献   

5.
Zhang  Wenyuan  Liu  Shun  Zhang  Manyun  Li  Yinan  Sheng  Keyin  Xu  Zhihong 《Journal of Soils and Sediments》2019,19(7):2913-2926
Purpose

Rhizosphere and fertilization might affect soil microbial activities, biomass, and community. This study aimed to evaluate the impacts of Phyllostachys edulis (moso bamboo) rhizospheres on soil nutrient contents and microbial properties in a moso bamboo forest with different fertilizer applications and to link soil microbial activities with abiotic and biotic factors.

Materials and methods

The experiment included three treatments: (1) application of 45% slag fertilizer (45%-SF); (2) application of special compound fertilizer for bamboos (SCF); and (3) the control without any fertilizer application (CK). Simultaneously, bulk soils and 0.5, 2.5, 4.5, and 6.5-year-old (y) bamboo rhizosphere soils were selected. Soil nutrient contents were analyzed. Microbial activities were evaluated based on the activities of soil enzymes including β-glucosidase, urease, protease, phosphatase, and catalase. The total microbial biomass and community were assessed with the phospholipid fatty acids (PLFAs) method.

Results and discussion

In the CK and SCF treatments, organic matter contents of rhizosphere soils were significantly higher than those of bulk soils. Soil β-glucosidase, urease, protease, phosphatase, and catalase activities in rhizosphere soils were higher than those of bulk soils, with the sole exception of β-glucosidase of 0.5 y rhizosphere soil in the 45%-SF treatment. Compared with the CK treatment, fertilizer applications tended to increase soil total PLFAs contents and changed soil microbial community. Moso bamboo rhizospheres did not significantly increase the total microbial biomass. In the SCF treatment, the Shannon index of bulk soil was significantly lower than those of rhizosphere soils.

Conclusions

Our results suggested that both rhizospheres and fertilizer applications could change the soil microbial community structures and that moso bamboo rhizosphere could increase microbial activity rather than biomass in the forest soils with different fertilizer applications.

  相似文献   

6.
Soil microbial communities and their activities are altered by land use change; however impacts and extent of these alterations are often unclear. We investigated the functional responses of soil microbes in agricultural soil under sugarcane and corresponding native soil under Eucalyptus forest to additions of contrasting plant litter derived from soybean, sugarcane and Eucalyptus in a microcosm system, using a suite of complimentary techniques including enzyme assays and community level physiological profiles (CLPP). Initially agricultural soil had 50% less microbial biomass and lower enzyme activities than forest soil, but significantly higher nitrification rates. In response to litter addition, microbial biomass increased up to 11-fold in agricultural soil, but only 1.8-fold in forest soil, suggesting a prevalence of rapidly proliferating ‘r’ and slower growing ‘K’ strategists in the respective soils. Litter-driven change in microbial biomass and activities were short lived, largely returning to pre-litter addition levels by day 150. Decomposition rates of sugarcane and soybean litter as estimated via CO2 production were lower in agricultural than in forest soil, but decomposition of more recalcitrant Eucalyptus litter was similar in both soils, contradicting the notion that microbial communities specialise in decomposing litter of the dominant local plant species. Enzyme activities and community level physiological profiles (CLPP) were closely correlated to microbial biomass and overall CO2 production in the agricultural soil but not the forest soil, suggesting contrasting relationships between microbial population dynamics and activity in the two soils. Activities of enzymes that break down complex biopolymers, such as protease, cellulase and phenol oxidase were similar or higher in the agricultural soil, which suggests that the production of extracellular biopolymer-degrading enzymes was not a factor limiting litter decomposition. Enzyme and CLPP analyses produced contrasting profiles of microbial activity in the two soils; however the combination of both analyses offers additional insights into the changes in microbial function and community dynamics that occur after conversion of forest to agricultural land.  相似文献   

7.
《Pedobiologia》2014,57(3):181-189
Management of forest sites has the potential to modulate soil organic matter decomposition by changing the catalytic properties of soil microorganisms within a soil profile. In this study we examined the impact of forest management intensity and soil physico-chemical properties on the variation of enzyme activities (β-glucosidase, β-xylosidase, α-glucosidase, phenol oxidase, N-acetyl-glucosaminidase, l-leucine aminopeptidase, phosphatase) in the topsoil and two subsoil horizons in three German regions (Schorfheide-Chorin, Hainich-Dün, Schwäbische Alb). The sandy soils in the Schorfheide-Chorin (SCH) showed lower ratios of the activity of carbon (C) acquiring enzymes (β-glucosidase) relative to nitrogen (N) acquiring enzymes (N-acetyl-glucosaminidase + l-leucine aminopeptidase), and activity of C acquiring enzymes relative to phosphorous (P) acquiring enzymes (phosphatase) than the finer textured soils in the Hainich-Dün (HAI) and Schwäbische Alb (ALB), indicating a shift in investment to N and P acquisition in the SCH. All enzyme activities, except phenol oxidase activity, decreased in deeper soil horizons as concentrations of organic C and total N did, while the decrease was much stronger from the topsoil to the first subsoil horizon than from the first subsoil to the second subsoil horizon. In contrast, phenol oxidase activity showed no significant decrease towards deeper soil horizons. Additionally, enzyme activities responsible for the degradation of more recalcitrant C relative to labile C compounds increased in the two subsoil horizons. Subsoil horizons in all regions also indicate a shift to higher N acquisition, while the strength of the shift depended on the soil type. Further, our results clearly showed that soil properties explained most of the total variance of enzyme activities in all soil horizons followed by study region, while forest management intensity had no significant impact on enzyme activities. Among all included soil properties, the clay content was the variable that explained the highest proportion of variance in enzyme activities with higher enzyme activities in clay rich soils. Our results highlight the need for large scale studies including different regions and their environmental conditions in order to derive general conclusions on which factors (anthropogenic or environmental) are most influential on enzyme activities in the whole soil profile in the long term at the regional scale.  相似文献   

8.
Nitrogen-fixing tree species have been shown to improve site fertility and increase N transformation rates, but the influence of N-fixing plants on the soil microbial community as a whole is largely unknown. We used patterns of individual carbon-source utilization and enzyme activities to assess the relative effects of N-fixing red alder on the soil microbial community in three adjacent stands (pure conifer, mixed alder-conifer, and pure alder) of a highly productive coastal Oregon forest where the density of red alder has been experimentally manipulated for over 65 years. Two major patterns were revealed: (1) bacterial and fungal carbon-source utilization patterns in soil from pure conifer stands were significantly different from both pure alder soils and mixed conifer-alder soils, while there was no difference in substrate utilization patterns between soils from the mixed alder-conifer and pure alder stands; and (2) the activities of nine extracellular enzymes involved in ligno-cellulose degradation and the mineralization of organic nitrogen, phosphate, and sulfate compounds were all significantly greater in pure alder soils compared to either pure conifer or mixed conifer-alder soils. Our results show that, in addition to an overall increase in soil fertility, microbial biomass, and microbial activity, the presence of N-fixing red alder significantly alters the physiological profile of the microbial community-even in an ecosystem already of high N status.  相似文献   

9.
A root window-based, enzyme-imprinted, membrane system has been modified to enable visualization of the activities of hydrolytic enzymes (acid phosphatase, aminopeptidase, chitinase, and β-glucosidase) in situ in forest soils. The approach can be used to correlate the distribution of enzyme activity with visible features such as roots, mycorrhizas, or mycelial mats. In addition, it enables accurate spatial soil sampling for analysis of microbial communities associated with enzyme activities. The substrates are colorimetric conjugates of napthol, where color develops instantly in the field, or fluorimetric conjugates of 4-methylumbelliferone, whose fluorescent products are detected by a gel-documenting system. The method will allow important questions about the relationship between taxonomic and functional diversity of soil microorganisms to be addressed and identification of enzyme activity hot-spots in soil.  相似文献   

10.
糖类作为一种重要的根系分泌物,如何影响土壤微生物及酶化学计量特征目前尚不清楚,制约着人们对上述过程的认识。为探究糖类对森林生态系统中土壤微生态环境和酶活性的影响,以黄土高原子午岭地区森林演替先锋(山杨林)、中期(油松林)和气候顶级群落(辽东栎林)为研究对象,通过野外土壤采样、添加3种不同浓度的葡萄糖(0.1,0.5,1 g/kg干土),和室内培养的方法,研究了葡萄糖添加对土壤微生物量和酶活性及化学计量的影响。结果表明:(1)随着森林演替,土壤中速效磷(SAP)、硝态氮(NO-3-N)等速效养分显著降低。在葡萄糖影响下,3种林地土壤全氮(TN)降低,山杨林土壤C/N值显著大于油松林和辽东栎林。(2)随着森林演替,山杨林和辽东栎林微生物碳(MBC)和微生物氮(MBN)的值显著大于油松林,均为先减小后增加。随葡萄糖浓度增加,3种林地MBC和MBN均增加,微生物(MBP)呈波动趋势。(3)山杨林和辽东栎林土壤酶活性均显著大于油松林。随葡萄糖浓度增加,油松林和辽东栎林4种酶活性均为先增加后减小。BG/(LAP+NAG)、BG/AP和(LAP+NAG)/AP辽东栎林的值最大,山杨林和辽东栎林的值显著大于油松林。(4)RDA分析表明,土壤酶、微生物量及其酶活性分别与有机质(SOC),MBC有着显著性正相关关系,土壤酶活性(除NAG)与pH值均呈显著负相关。本研究说明碳输入增加了3种林分土壤的激发效应,土壤微生物量增加,降低了土壤TN含量,改变了土壤养分化学计量,进而加剧了油松林地微生物N限制和辽东栎林地微生物P限制,影响根际土壤有机质分解和养分代谢等过程,从而影响了森林演替过程。  相似文献   

11.
Although a great deal of information exists about the effect of land use on soil enzyme activities, much of this is contradictory and brings into question the suitability of soil enzyme activities as indicators of how land use affects soil quality. The purpose of this study was to investigate the effect of land use on different soil biochemical properties, especially hydrolytic enzyme activities, with the aim of providing knowledge about the problems related to the use of enzymes as indicators of soil quality. The data presented derive from various studies in which a large number of soils under different types of forest or agricultural management were analysed by the same methods. All of the soil samples were characterized in terms of their main physical and chemical properties, the activity of several hydrolases, microbial biomass C and soil basal respiration. The results indicate that soil use causes a large reduction in organic matter content and that the effect on enzyme activity varies depending on the type of land use or management and the type of enzyme. Furthermore, the enzyme activities per carbon unit (specific activities) in soils affected by land use are almost always higher than in maximum quality soils (climax soils under oak vegetation or oak soils), and land use also generates greater increases in the specific activity as the C content decreases. The mechanism responsible for these increases probably involves loss of the most labile organic matter. Enzyme enrichment is not always produced to the same degree, as it varies as a function of the enzyme and the type of land use under consideration. It is concluded that the complexity of the behaviour of the soil enzymes raises doubts about the use of enzyme activities as indicators of soil degradation brought about by land use.  相似文献   

12.
天台山8种不同林型土壤环境酶活性的模糊数学分析表明,不同土壤环境总体酶活性水平的相似优先比顺序为:云锦杜鹃土壤黄山松林土壤茶园土壤竹林土壤金钱松林土壤日本花柏林土壤柳杉林土壤七子花林土壤。不同酶之间以及酶与土壤环境因子之间存在着不同程度的相关关系。因子分析揭示了控制天台山不同土壤因素综合作用的主要因子为:土壤7种酶、土壤微生物数量、土壤呼吸速率和土壤总有机质。  相似文献   

13.
The purpose of this experiment was to evaluate whether soil storage and processing methods significantly influence measurements of potential in situ enzyme activity in acidic forest soils. More specifically, the objectives were to determine if: (1) duration and temperature of soil storage; (2) duration of soil slurry in buffer; and (3) age of model substrates significantly influence the activity of six commonly measured soil extracellular enzymes using methylumbelliferone (MUB)-linked substrates and l-dihydroxyphenylalanine (l-DOPA). Soil collected and analyzed for enzyme activity within 2 h was considered the best measure of potential in situ enzyme activity and the benchmark for all statistical comparisons. Sub-samples of the same soil were stored at either 4 °C or −20 °C. In addition to the temperature manipulation, soils experienced two more experimental treatments. First, enzyme activity was analyzed 2, 7, 14, and 21 days after collection. Second, MUB-linked substrate was added immediately (i.e. <20 min) or 2 h after mixing soil with buffer. Enzyme activity of soil stored at 4 °C was not significantly different from soil stored at −20 °C. The duration of soil storage was minimal for β-glucosidase, β-xylosidase, and peroxidase activity. N-acetyl-glucosaminidase (NAGase), phosphatase, and phenol oxidase activity appeared to change the most when compared to fresh soils, but the direction of change varied. Likewise, the activities of these enzymes were most sensitive to extended time in buffer. Fluorometric MUB and MUB-linked substrates generally had a 3-day shelf life before they start to significantly suppress reported activities when kept at 4 °C. These findings suggest that the manner in which acidic forest soils are stored and processed are site and enzyme specific and should not initially be trivialized when conducting enzyme assays focusing on NAGase, phosphatase, and phenol oxidase. The activities of β-glucosidase, β-xylosidase, and peroxidase are insensitive to storage and processing methods.  相似文献   

14.
Storage can markedly influence microbial and biochemical properties in soils, yet recommendations for sample storage are based on studies of temperate soils that regularly experience extended cold periods. We assessed the influence of storage conditions on microbial phosphorus and the activity of four hydrolytic enzymes (phosphomonoesterase, phosphodiesterase, β-glucosidase, and N-acetyl-β-d-glucosaminidase) in three lowland tropical forest soils from the Republic of Panama that experience a constant warm temperature. The soils spanned a strong rainfall gradient and contained contrasting physical and chemical properties (pH 3.6-5.9; total carbon 26-50 g C kg−1; clay 33-62%; total phosphorus 0.30-0.60 g P kg−1). Storage treatments were: (i) room temperature (22 °C in the dark), (ii) refrigerated (4 °C in the dark), (iii) air-dried (10 d, 22 °C), and (iv) frozen (−35 °C). There were significant changes in enzyme activities and microbial phosphorus during refrigerated and room temperature storage, although changes were relatively small during the first two weeks. An initial marked decline in enzyme activities for one soil analyzed within 2 h of sampling was attributed to a flush of activity caused by sampling and soil preparation (sieving, etc.). For longer-term storage (>2 weeks), ambient laboratory temperature appeared preferable to freezing and cold storage, because one month of storage caused a marked decline in enzyme activities and microbial phosphorus in one soil. Freezing preserved the activities of some enzymes in some soils at rates comparable to cold or room temperature storage, but caused a marked decline in microbial phosphorus in two soils. Air-drying caused a marked decline in microbial phosphorus and the activity of all enzymes. We therefore conclude that enzyme assays and microbial phosphorus should be determined in tropical forest soils after no more than two weeks storage in the dark at ambient laboratory temperature.  相似文献   

15.
太湖地区典型水稻土FDA水解酶活性的剖面分布特征   总被引:5,自引:0,他引:5  
本文主要对太湖地区12个典型水稻土剖面的荧光素二乙酸酯(FDA)水解酶活性及其它相关酶活性进行了分析。耕作层的FDA水解酶活性最高,随土层加深活性明显下降,其中部分土壤在犁底层已经很难检测到其活性。部分样点的酶活性在剖面中呈明显的梯度下降趋势。高产水稻土壤表层FDA水解酶活性差异较大,在50~100g/(g.h)范围内,多数为60~80g/(g.h)。土壤酶活性最高与最低间的差异达到近一倍左右。同时FDA水解酶活性与-葡糖苷酶、脲酶、脱氢酶、酸性磷酸酶和芳基硫酸酯酶活性之间有极显著正相关关系(P0.01),与碱性磷酸酶呈显著相关(P0.05);与土壤养分指标如全氮、全磷、速效氮、有机碳之间有极显著相关性,与土壤pH呈显著负相关(P0.01)关系。  相似文献   

16.
To date, numerous studies have employed single type nitrogen (N) addition methods in reporting influences of N deposition on soil extracellular enzymatic activities (EEA) during litter decomposition in forest ecosystems. As natural atmospheric N deposition is a set of complex compounds including inorganic N and organic N, it is essential for investigating responses of soil EEA to various mixed N fertilization. In a subtropical forest stand in Zijin Mountain, East China, various N fertilizers with different inorganic N and organic N ratios were added to soils monthly from 2008 to 2009. Samples were harvested from N fertilized and control plots every 4 months. Subsequently, six EEA were assayed. A laboratory experiment was also conducted simultaneously. Both field and laboratory experiments showed that various mixed N fertilizations revealed different influences on soil EEA. Acceleration of most soil EEA by mixed N fertilization was greater than that of single N fertilization. The majority of soil extracellular enzymes exhibited the highest activities under mixed N fertilization, with the ratio of inorganic N to organic N at 3:7. These results suggested that N type and ratio of inorganic N and organic N were important factors controlling soil EEA, and the 3:7 ratio of inorganic N and organic N may be the optimum for soil EEA.  相似文献   

17.
《Pedobiologia》2014,57(4-6):235-244
Vegetation type influences the rate of accumulation and mineralization of organic matter in forest soil, mainly through its effect on soil microorganisms. We investigated the relationships among forest types and microbial biomass C (MBC), basal respiration (RB), substrate-induced respiration (RS), N mineralization (Nmin), specific growth rate μ, microbial eco-physiology and activities of seven hydrolytic enzymes, in samples taken from 25 stands on acidic soils and one stand on limestone, covering typical types of coniferous and deciduous forests in Central Europe. Soils under deciduous trees were less acidic than soils of coniferous forests, which led to increased mineralizing activities RB and Nmin, and a higher proportion of active microbial biomass (RS/MBC) in the Of horizon. This resulted in more extractable organic C (0.5 M K2SO4) in soils of deciduous forests and a higher accumulation of soil organic matter (SOM) in coniferous forest soil. No effect of forest type on the microbial properties was detected in the Oh horizon and in the 0–10 cm layer. The microbial quotient (MBC/Corg), reflecting the quality of organic matter used for microbial growth, was higher in deciduous forests in all three layers. The metabolic quotient qCO2 (RB/MBC) and the specific growth rate μ, estimated using respiration growth curves, did not differ in soils of both forest types. Our results showed that the quality of SOM in coniferous forests supported microorganisms with higher activities of β-glucosidase, cellobiosidase and β-xylosidase, which suggested the key importance of fungi in these soils. Processes mediated by bacteria were probably more important in deciduous forest soils with higher activities of arylsulphatase and urease. The results from the stand on limestone showed that pH had a positive effect on microbial biomass and SOM mineralization.  相似文献   

18.
We studied the effects of a biochar made from fast pyrolysis of switchgrass on four soil enzymes (β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Thus, we conducted a series of enzyme assays on biochar-amended soils. Inconsistent results from enzyme assays of char-amended soils suggested that biochar had variable effects on soil enzyme activities, thus we conducted a second experiment to determine if biochar reacts predictably with either enzyme or substrate in in vitro reactions. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was added to microcosms of 3 different soils, fluorescence-based assays revealed some increased enzyme activities (up to 7-fold for one measure of β-glucosidase in a shrub-steppe soil) and some decreased activities (one-fifth of the unamended control for lipase measured in the same shrub-steppe soil), compared to non-amended soil. In an effort understand the varied effects, purified enzymes or substrates were briefly exposed to biochar and then assayed. In contrast to the soil assays, except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the enzymes, suggesting that sorption reactions between substrate and biochar impeded enzyme function. Our findings indicate that fluorometric assays are more robust to, or account for, this sorption better than the colorimetric assays used herein. The activity of purified β-N-acetylglucosaminidase increased 50-75% following biochar exposure, suggesting a chemical enhancement of enzyme function. In some cases, biochar stimulates soil enzyme activities, to a much greater degree than soil assays would indicate, given that substrate reactivity can be impeded by biochar exposure. We conclude that the effects of biochar on enzyme activities in soils are highly variable; these effects are likely associated with reactions between biochar and the target substrate.  相似文献   

19.
Activities of invertase and amylase and respiratory activities of samples of 11 soils from New Hebrides were determined. The soils mostly were under forest and were acid with medium to low C/N ratios. Invertase activities were rather low but amylase activities were similar to those found in New Zealand soils. The ratios of invertase to amylase activities were mostly low.O2 uptakes mostly responded markedly to glucose. Most values of respiratory quotients were about 1.0. Most, but not all, dehydrogenase activities were strongly related to O2 uptakes. On an organic C basis, these respiratory activities declined with the depths to which the soils were sampled.Biochemical activities were mostly similar in forest soils derived from basalt and from andesite. Invertase activities were lower in soils under forest than under grassland covers.All biochemical activities were correlated significantly with contents of soil moisture and organic C, less with numbers of aerobic bacteria, and negatively with soil pH. On an organic C basis, none of the biochemical activities was significantly correlated with either soil moisture content or pH.  相似文献   

20.
以云南省烟草农业科学研究院研和试验基地13年长期定位试验为平台,以化肥配施有机肥(CFM)、单施化肥(FM)和不施肥(CK,对照)3种处理土壤为研究材料,利用干筛法分离土壤团聚体,研究长期培肥对烤烟-小麦轮作红壤团聚体、有机质、氮含量、酶活性的影响及其相关性。结果表明:长期化肥配施有机肥有利于大团聚体的形成,2~1mm团聚体土壤的分配率显著高于单施化肥和对照;使耕层土壤有机质、各形态氮(全氮、碱解氮、硝态氮和铵态氮)及酶活性大幅度改善,并且,除硝态氮以外,各级团聚体土壤有机质及各形态氮含量变化趋势为CFM>CF>CK;化肥配施有机肥各级团聚体土壤蛋白酶、脲酶、蔗糖酶、脱氢酶活性明显高于单施化肥和对照,其中脲酶、蔗糖酶活性与土壤有机质和4种形态氮呈显著正相关,蛋白酶和脱氢酶与上述营养呈负相关,但不显著。化肥配施有机肥有利于增加土壤大团聚体的分配率,提高土壤有机质、全氮及碱解氮等的含量及酶活性,对烤烟、小麦生长意义重大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号