首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics of tripelennamine (T) was compared in horses (n = 6) and camels (n = 5) following intravenous (i.v.) administration of a dose of 0.5 mg/kg body weight. Furthermore, the metabolism and urinary detection time was studied in camels. The data obtained (median and range in brackets) in camels and horses, respectively, were as follows: the terminal elimination half-lives were 2.39 (1.91-6.54) and 2.08 (1.31-5.65) h, total body clearances were 0.97 (0.82-1.42) and 0.84 (0.64-1.17)L/h/kg. The volumes of distribution at steady state were 2.87 (1.59-6.67) and 1.69 (1.18-3.50) L/kg, the volumes of the central compartment of the two compartment pharmacokinetic model were 1.75 (0.68-2.27) and 1.06 (0.91-2.20) L/kg. There was no significant difference (Mann-Whitney) in any parameter between camels and horses. The extent of protein binding (mean +/- SEM) 73.6 + 8.5 and 83.4 +/- 3.6% for horses and camels, respectively, was not significantly statistically different (t-test). Three metabolites of T were identified in urine samples of camels. The first one resulted from N-depyridination of T, with a molecular ion of m/z 178, and was exclusively eliminated in conjugate form. This metabolite was not detected after 6 h of T administration. The second metabolite, resulted from pyridine ring hydroxylation, had a molecular ion of m/z 271, and was also exclusively eliminated in conjugate form. This metabolite could be detected in urine sample for up to 12 h after T administration. The third metabolite has a suspected molecular ion of m/z 285, was eliminated exclusively in conjugate form and could be detected for up to 24 h following T administration. T itself could be detected for up to 27 h after i.v. administration, with about 90% of eliminated T being in the conjugated form.  相似文献   

2.
3.
The pharmacokinetics of diclofenac was studied in camels (Camelus dromedarus) (n=6) following intravenous (i.v.) administration of a dose of 2.5 mg kg(-1) body weight. The metabolism and urinary detection time were also studied. The results obtained (median and range) were as follows: the terminal elimination half-life (t(1/2beta)) was 2.35 (1.90-2.73)h, total body clearance (Cl(T)) was 0.17 (0.16-0.21)lh kg(-1). The volume of distribution at steady state (V(SS)) was 0.31 (0.21-0.39)l(-1)kg(-1), the volume of the central compartment of the two compartment pharmacokinetic model (V(C)) was 0.15 (0.11-0.17)l kg(-1). Five metabolites of diclofenac were tentatively identified in urine and were excreted mainly in conjugate form. The main metabolite was identified as hydroxy diclofenac. Both diclofenac and hydroxy diclofenac, appear to be the main elimination route for diclofenac when administered i.v. in camels. Diclofenac could be identified up to 4 days following i.v. administration in camels using a sensitive gas chromatography/mass spectrometry (GC/MS) method.  相似文献   

4.
The pharmacokinetics of theophylline were determined after an intravenous (i.v.) dose of 2.36 mg/kg in six camels and 4.72 mg/kg body weight in three camels. The data obtained (median and range) for the low and high dose, respectively, were as follows: the distribution half-lives (t1/2 alpha) were 1.37 (0.64-3.25) and 2.66 (0.83-3.5) h, the elimination half-lives (t1/2 beta) were 11.8 (8.25-14.9) and 10.4 (10.0-13.5) h, the steady state volumes of distribution (Vss) were 0.88 (0.62-1.54) and 0.76 (0.63-0.76) L/kg, volumes of the central compartment (Vc) were 0.41 (0.35-0.63) and 0.51 (0.36-0.52) L/kg, total body clearances (Clt) were 62.3 (39.4-97.0) and 50.2 (47.7-67.4) mL/h.kg body weight and renal clearance (Vr) for the low dose was 0.6 (0.42-0.96) mL/h.kg body weight. There was no significant difference in the pharmacokinetic parameters between the two doses. Theophylline protein binding at a concentration of 5 micrograms/mL was 32.2 +/- 3.3%. Caffeine was identified as a theophylline metabolite but its concentration in serum and urine was small. Based on the pharmacokinetic values obtained in this study, a dosage of 7.5 mg/kg body weight administered by i.v. injection at 12 h intervals can be recommended. This dosing regimen should achieve an average steady state serum concentration of 10 micrograms/mL with peak serum concentration not exceeding 15 micrograms/mL.  相似文献   

5.
The objective of this study was to investigate the pharmacokinetics and tissue disposition of meloxicam after repeated oral administration in calves. Thirteen male British × Continental beef calves aged 4 to 6 months and weighing 297–392 kg received 0.5 mg/kg meloxicam per os once daily for 4 days. Plasma meloxicam concentrations were determined in 8 calves over 6 days after first treatment. Calves were randomly assigned to be euthanized at 5, 10, 15 (n = 3/timepoint), and 19 days (n = 4) after final administration. Meloxicam concentrations were determined in plasma (LOQ= 0.025 μg/mL) and muscle, liver, kidney, and fat samples (LOQ = 2 ng/g) after extraction using validated LC–MS–MS methods. The mean (± SD) Cmax, Cmin, and Caverage plasma meloxicam concentrations were 4.52 ± 0.87 μg/mL, 2.95 ± 0.77 μg/mL, and 3.84 ± 0.81 μg/mL, respectively. Mean (± SD) tissue meloxicam concentrations were highest in liver (226.67 ± 118.16 ng/g) and kidney samples (52.73 ± 39.01 ng/g) at 5 days after final treatment. Meloxicam concentrations were below the LOQ in all tissues at 15 days after treatment. These findings suggest that tissue from meloxicam‐treated calves will have low residue concentrations by 21 days after repeated oral administration.  相似文献   

6.
Concentrations of enrofloxacin equivalent activity were determined (by microbiological assay) in the serum of normal camels and camels at the end of a 14-day water-deprivation period following single intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administrations at 2.5 mg/kg. Also, normal camels were given an oral drench of the drug at 5 mg/kg. Pharmacokinetic variables were determined using compartmental and non-compartmental analytical methods. Camels lost on average 12.5% of body weight at the end of the water-deprivation period. The disposition kinetics of i.v. administered drug in normal and water-deprived camels were very similar. The t1/2β was 3.0–3.5 h; MRT was 4.0–4.5 h; Ve was 0.3 L/kg; V38 was 1.0 L/kg and Cl8 was 4.0–4.6 mL/min/kg. The effect of water deprivation on the rate of drug absorption and elimination after i.m. administration was inconsistent, and there was also a large degree of variability in the normal animals that precluded statistical significance. After s.c. administration, the mean absorption half-life (t1/2she in the water-deprived camels was significantly longer than in the normal camels. Systemic availability (F) was similar in both normal and water-deprived camels after i.m. dosing but was significantly greater (P < 0.05) in normal camels (0.92 compared with 0.65 in water-deprived camels) after s.c. treatment In normal camels, urinary recovery at 12 h after l.v. and s.c. dosing was 25% and 15%, respectively, and the extent of serum protein binding ranged between 1.7% at 1.8 μg/mL and 24% at 0.33 μg/mL. The drug was not detected in serum after oral administration. Serum and milk enrofloxacin equivalent activities were determined after i.v. (one camel) and i.m. (one camel) drug administration. Serum drug concentrations were consistently higher than in the milk. The AUCmilk/AUCserust ratios were 0.27 and 0.39 after i.v. and i.m. drug administration, respectively. An i.m. or s.c. treatment regimen of 2.5 mg/kg q. 12 h is suggested for clinical and bacteriological efficacy trials with enrofloxacin in normally hydrated and dehydrated camels.  相似文献   

7.
In domestic animals relatively little is known about the functions of hepatic microsomal enzymes and their role in biotransformation. In this study, antipyrine was used to assess microsomal oxidative function and particularly to determine the effect of age, sex and breed on drug metabolising enzymes. At birth, the elimination rate of antipyrine was very low as reflected by a half-life of 24 hours. The first two months of life were characterised by a steady decrease of antipyrine half-life values of three to four hours being reached at six months. The decrease observed during early life was not identical in the two breeds used in this experiment. By six months the Friesian calves eliminated antipyrine twice as fast as the Blue White Belgian (BWB) breed: 2.1 +/- 0.3 hours and 4.9 +/- 0.3 hours, respectively. The BWB breed is characterised by muscular hypertrophy and by a relative imbalance in muscle:body ratio. The apparent volume of distribution of antipyrine did not vary with age, sex and breed. No differences in antipyrine clearance were found between male and female calves.  相似文献   

8.
The pharmacokinetics of antipyrine and sulphadimidine were studied in male camels, sheep and goats. The two drugs were administered concomitantly. Following intravenous injection of antipyrine (25 mg/kg) and sulphadimidine (sulfamethazine) (100 mg/kg), the pharmacokinetics of the two drugs were adequately described by a one-compartment model. Antipyrine half-life in goats (2.58 h) was shorter than that in sheep (4.04 h) and camels (18.78 h). The plasma clearance was greatest in goats then sheep and then camels. For sulphadimidine, a significantly greater volume of distribution was observed in camels and the greatest plasma clearance and shortest half-life were reported in goats. Sulphadimidine half-life was 2.77 h in goats, 4.72 h in sheep and 7.36 h in camels. The present results suggest that goats have the fastest elimination of these drugs from the circulation, followed by sheep and then camels.  相似文献   

9.
The pharmacokinetics of ketoprofen (KP) enantiomers were studied in ten female and eight male camels after a single intravenous dose (2.0 mg/kg) of racemic KP. A high performance liquid chromatographic (HPLC) method was developed for the quantitation of the R- and S-enantiomers without derivatization of the samples using a S,S-Whelk-01 chiral stationary phase column. The data collected (median and range) were as follows: the areas under the curve to infinity (AUC) (microg/mL per h) were 22.4 (13.5-29.7) and 19.8 (13.8-22.1) for R- and S-KP, respectively, in female camels while the corresponding values in male camels were 16.0 (12.9-22.4) and 14.4 (11.0-19.3). In both sexes, the AUC for the R-enantiomer was significantly larger than that of the S-enantiomer. Total body clearances (Cl(t)) were 44.6 (33.7-74.1) and 50.6 (45.2-72.4) mL/kg per h for R- and S-KP, respectively, in female camels and were 62.8 (44.6-77.8) and 69.6 (51.8-91.1) mL/kg per h for R- and S-KP, respectively, in male camels. In both sexes of camels, the Cl(t) values for R-KP were significantly lower than its corresponding antipode. The steady-state volumes of distribution (Vss) were 97.9 (82.8-147.2) and 102.0 (90.1-169.0) mL/kg for R- and S-KP, respectively, in female camels and were significantly different from each other, while the respective values in male camels were 151.5 (105.3-222.3) and 154.0 (114.7-229.0) mL/kg but were not significantly different from each other. The volumes of distribution (area) followed a similar pattern, where the values for R- and S-KP in female camels were 118.5 (95.6-195.2) and 137.6 (115.8-236.2) mL/kg, respectively, and the respective values in male camels were 215.6 (119.1-270.1) and 229.1 (143.3-277.4) mL/kg. The elimination half-lives (t1/2beta) were 1.88 (1.42-2.34) h and 1.83 (1.67-2.26) h for R- and S-KP, respectively, in female camels and were significantly different from each other, while the corresponding values in male camels were 2.11 (1.50-4.20) and 2.33 (1.52-3.83) h for R and S-KP, respectively, but were not significantly different from each other. The mean residence time followed a similar pattern. All pharmacokinetic parameters for R- and S-KP in female camels were significantly different from their corresponding values in male camels. The extent of protein binding for R- and S-KP was evaluated in vitro by ultrafiltration. The extents of protein binding for R- and S-KP were not significantly different from each other when each enantiomer was supplemented separately. However, when the enantiomers were supplemented together, protein binding of R-KP was significantly higher than that of S-KP in female but not in male camels.  相似文献   

10.
The pharmacokinetics of promethazine were determined in seven camels (Camelus dromedarius) after an intravenous dose of 0.5 mg kg body weight.-1 The data obtained (median and range) were as follows: the elimination half-life (t1/2 beta) was 5.62 (2.84-6.51) h; the steady state volume of distribution (Vdss) was 8.90 (7.10-12.00) L kg-1, total body clearance (CT) was 24.5 (17.22-33.65) ml kg-1 min-1 and renal clearance (Clr) was 4.81 (1.97-5.48) ml kg-1 min-1.  相似文献   

11.
The effect of water deprivation on the pharmacokinetic parameters of antipyrine and sulphadimidine in the Nubian goat was studied. Water deprivation, to a level of dehydration at which the animals lost an average of 7.5% body weight, resulted in a significant reduction in antipyrine clearance (p<0.05), and a consequently increased AUC value (p<0.05). No effect was observed on the distribution parameters of the drug. In dehydrated animals which had lost an average of 10% or 12.5% of their body weight owing to water deprivation, significant changes were found in the distribution and elimination pharmacokinetic parameters of antipyrine and sulphadimidine. The volume of distribution was significantly decreased, resulting in elevated plasma levels for the two drugs compared to normally watered animals. Significant decreases in clearance and subsequent prolongation of the elimination half-lives were observed during these periods of water deprivation. These changes in the disposition kinetics of the two drugs may be attributed to the loss of total body water and extracellular fluids and changes in the liver and kidney functions taking place during dehydration.  相似文献   

12.
This study was designed to investigate the effect of feeding on the plasma disposition of triclabendazole (TCBZ) in goats following oral administration. A total of eight goats, aged 14–16 months and weighing 20–30 kg were used in this study. The animals were allocated into two groups (fasted and fed groups) of four animals each. The goats in fed group were fed ad libitum but the animals in fasted group were not fed 24 h before and 6 h after drug administration. Commercial oral drench formulation of TCBZ (Endex-K, 5%) was administered orally to animals in two groups at dose of 10 mg/kg bodyweight. Heparinized blood samples were collected between 1 and 192 h after treatment and the plasma samples were analysed by high performance liquid chromatography (HPLC) for TCBZ, TCBZ sulphoxide (TCBZ–SO), and TCBZ sulphone (TCBZ–SO2). Relatively very low concentration of TCBZ parent drug was detected between 2 and 48 h, but TCBZ–SO and TCBZ–SO2 metabolites were present between 2 and 192 h in the plasma samples of fed and fasted animals. Fasting significantly enhanced the plasma concentration of TCBZ and its metabolites. The availability of TCBZ, TCBZ–SO and TCBZ–SO2 in the plasma samples of fasted goats were markedly greater compared to those of fed goats. It was concluded that fasting decreases the digesta flow rate and prolongs the retention of the drug into the gastrointestinal tract, resulting in enhanced quantitative gastrointestinal absorption or systemic availability of TCBZ and its metabolites in fasted goats.  相似文献   

13.
14.
15.
High doses of dextromethorphan (DM) have been clinically investigated for the treatment of multiple neuronal disorders including neuropathic pain. Several authors have suggested the concomitant administration of DM and a CYP2D6 reversible inhibitor in order to enhance the exposure of DM and limit the exposure to total dextrorphan (DX). The present study proposes to determine whether or not a single dose of quinidine is sufficient to enhance the plasma concentrations of DM in rats and keep those of DX at a minimal level. Oral doses of DM (50 mg/kg) were administered with increasing dose levels of quinidine (0, 2, 20, and 50 mg/kg) to male Sprague-Dawley rats and blood samples were collected over 24 h. Plasma concentrations of DM and total DX were determined using ESI-LC/MS/MS. Quinidine coadministration resulted in a more than twofold increase in the area under the curve of DM with an ED(50) of approximately 2 mg/kg whereas those of total DX were only increased by 21%. These results support the working hypothesis that a single dose of quinidine may enhance the plasma concentrations of DM relative to those of total DX and may therefore improve the treatment of neuropathic pain.  相似文献   

16.
Daily subcutaneous BST injection in lactating cows, bulls and castrated male dwarf goats did not induce significant changes in the pharmacokinetic parameters of antipyrine (AP) and sulphadimidine (SDD). Similarly, no changes were obtained after injection of slow-release BST formulations in lactating cows and non-lactating female goats. In contrast to androgenic hormones, both zeranol and proligestone had no effect upon the disposition of AP and SDD, although both synthetic hormones did induce enhanced plasma somatotropin concentrations. In goats, metabolic effects induced by zeranol and BST included significant reductions in plasma urea values, whereas plasma creatinine levels were somewhat lower after daily BST administration.  相似文献   

17.
The pharmacokinetics and metabolism of meloxicam was studied in camels (Camelus dromedarus) (n = 6) following intravenous (i.v.) administration of a dose of 0.6 mg·kg/body weight. The results obtained (mean ± SD) were as follows: the terminal elimination half-life (t(1/2β) ) was 40.2 ± 16.8 h and total body clearance (Cl(T) ) was 1.94 ± 0.66 mL·kg/h. The volume of distribution at steady state (V(SS)) was 92.8 ± 13.7 mL/kg. One metabolite of meloxicam was tentatively identified as methylhydroxy meloxicam. Meloxicam and metabolite were excreted unconjugated in urine. Meloxicam could be detected in plasma 10 days following i.v. administration in camels using a sensitive liquid chromatography tandem mass spectrometry (LC/MS/MS) method.  相似文献   

18.
The pharmacokinetics of ketoprofen were determined after an intravenous (i.v.) and intramuscular (i.m.) dose of 2.0 mg/kg body weight in five camels (Camelus dromedarius) using gas chromatography/mass spectrometry (GC/MS). The data obtained (median and range) following i.v. administration was as follows: the elimination half-life (t(1/2beta)) was 4.16 (2.65-4.29) h, the steady state volume of distribution (Vss) was 130.2 (103.4-165.3) mL/kg, volume of distribution (area method) (Vd(area)) was 321.5 (211.4-371.0) mL/kg, total body clearance (Cl) was 1.00 (0.88-1.08) mL/min x kg and renal clearance was 0.01 (0.003-0.033) mL/min x kg. Following i.m. administration, the drug was rapidly absorbed with peak serum concentration of 12.2 (4.80-14.4) microg/mL at 1.50 (1.00-2.00) h. The systemic availability of ketoprofen was complete. The apparent half-life was 3.28 (2.56-4.14) h. A hydroxylated metabolite of ketoprofen was identified by (GC/MS) under electron impact (EI) and chemical ionization (CI) scan modes. The detection times for ketoprofen and hydroxy ketoprofen in urine after an intravenous (i.v.) dose of 3.0 mg/kg body weight was 24.00 and 70.00 h, respectively. Serum protein binding of ketoprofen at 20 microg/mL was extensive; (99.1+/-0.15%).  相似文献   

19.
The pharmacokinetics and pharmacodynamics of dexamethasone were studied in six male and six female camels after a single intravenous dose (0.05 mgkg(-1) body weight) of dexamethasone. The pharmacokinetic parameters of the two-compartment pharmacokinetic model for female and male camels, respectively (mean+/-SEM) were as follows: terminal elimination half-lives were 8.02+/-1.15 and 7.33+/-0.80 h, total body clearances were 95.5+/-16.0 and 124.5+/-11.9 ml h(-1) per kg, volumes of distribution at steady state were 0.72+/-0.08 and 0.87+/-0.14 litre kg(-1), and the volumes of the central compartment were 0.12+/-0.02 and 0.17+/-0.02 litre kg(-1). There was no significant difference in any pharmacokinetic parameter between female and male camels. Pharmacodynamic effects were evaluated by measuring endogenous plasma cortisol, circulating lymphocytes and neutrophils numbers and were analysed using indirect pharmacokinetic/pharmacodynamic models. The estimated IC50 of dexamethasone for cortisol and lymphocytes for female and male camels were 3.74+/-0.99 and 2.28+/-1.09 and 2.63+/-0.71 and 2.41+/-0.79 ng ml(-1), respectively. The EC50 for neutrophils for female and male camels were 24.5+/-5.83 and 20.2+/-3.82 ng ml(-1), respectively. There was no significant difference in any pharmacodynamic parameter between female and male camels. Dexamethasone in urine could be detected for 4-5 days by enzyme-linked immunosorbent assay and for 3-4 days by liquid chromatography/mass spectrometry after an intravenous dose of 0.05 mg kg(-1) body weight.  相似文献   

20.
The pharmacokinetics of theophylline were determined in 6 healthy horses after a single IV administration of 12 mg of aminophylline/kg of body weight (equivalent to 9.44 mg of theophylline/kg). Serum theophylline was measured after the IV dose at 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 15 hours. Serum concentration plotted against time on semilogarithmic coordinates, indicated that theophylline in 5 horses was best described by a 2-compartment open model and in 1 horse by a 1-compartment open model. The following mean pharmacokinetic values were determined; elimination half-life = 11.9 hours, distribution half-life = 0.495 hours, apparent specific volume of distribution = 0.885 +/- 0.075 L/kg, apparent specific volume of central compartment = 0.080 L/kg, and clearance = 51.7 +/- 11.2 ml/kg/hr. Three horses with reversible chronic obstructive pulmonary disease were serially given 1, 3, 6, 9, 12, and 15 mg of aminophylline/kg in single IV doses (equivalent to 0.8, 2.4, 4.7, 7.1, 9.44, and 11.8 mg of theophylline/kg, respectively). The horses were exposed to a dusty barn until they developed clinical signs of respiratory distress and were then given the aminophylline. Effects of increasing doses on different days were correlated with clinical signs, blood pH, and blood gases. The 3 horses had a decrease in the severity of clinical signs after the 9, 12, or 15 mg doses of aminophylline/kg. The horses at 0.5 hour after dosing had a significant decrease in PaCO2 (43.6 +/- 5.5 to 39.4 +/- 6.7 mm of Hg, P less than 0.001) and a significant increase in blood pH (7.38 +/- 0.017 to 7.41 +/- 0.023, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号