首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Nitrous oxide emission from soils after incorporating crop residues   总被引:17,自引:0,他引:17  
Abstract. Emissions of N2O were measured from different agricultural systems in SE Scotland. N2O emissions increased temporarily after fertilization of arable crops, cultivation of bare soil, ploughing up of grassland and incorporation of arable and horticultural crop residues, but the effect was short-lived. Most of the emission occurred during the first two weeks, returning to 'background' levels after 30–40 days. The highest flux was from N-rich lettuce residues, 1100 g N2O-N ha−1 being emitted over the first 14 days after incorporation by rotary tillage. The magnitude and pattern of emissions was strongly influenced by rainfall, soil mineral N, cultivation technique and C:N ratio of the residue. Comparatively large emissions were measured after incorporation of material with low C:N ratios. Management practices are recommended that would increase N-use efficiency and reduce N2O emissions from agricultural soils.  相似文献   

2.
Abstract. An empirical model was developed for prediction of annual average nitrate leaching as affected by the long-term rate of N fertilization and crop type. The effect of N fertilization was estimated from annual values of nitrate leaching obtained from two Danish investigations of drainage from pipe drains with four rates of N fertilization on a loamy sand and sandy clay loam from 1973-89. The effect of crop at normal N fertilization was estimated from 147 observations of annual nitrate leaching obtained from field measurements. The nitrate leaching model consists of a relative N fertilization submodel and an absolute submodel for specific combinations of crop, soil and drainage at the normal rate of N fertilization. The relative submodel is Y/Y lN= exp[0.7l(N/ N1– I)], where Y is the nitrate leaching (kg N/ha per year) at fertilization rate N , and Y IN and N1 are the corresponding values at the normal rate of N fertilization. The relative submodel is valid for cereals, root crops and grass leys fertilized with mineral fertilizer at N/N 1 < 1.5, and on the prerequisite that the fertilization rate N has been constant for some years. To illustrate the use of the relative leaching submodel, estimated values of Y IN corrected to mean annual drainage for 1970 to 1990 in Denmark for spring cereals and grass on sandy and loamy soils are given as input to the relative leaching submodel. The model can be used for sandy to loamy soils to estimate the mean nitrate leaching over a number of years.  相似文献   

3.
Abstract. There is a lack of information about the influence of tillage and time of sowing on N2O and NO emission in cereal production. Both factors influence crop growth and soil conditions and thereby can affect trace gas emissions from soils. We measured fluxes of NO and N2O in a tillage experiment where grassland on clay loam soil was converted to arable by either direct drilling or ploughing to 30 cm depth. We made measurements in spring for 20 days after fertilizer application to spring-sown and to winter-sown barley. Both were the second barley crop after grass. Direct drilling enhanced N2O emission primarily as a result of restricted gas diffusivity causing poor aeration after rainfall. Deep ploughing enhanced NO emission, because of the large air-filled porosity in the topsoil. NO and N2O emissions were smaller from winter sown crops than from spring sown crops.   The three rates of N fertilizer application (40, 80 or 120 kg N ha–1) did not produce the expected linear response in either soil available N concentrations or in NO and N2O fluxes. We attributed this to the lack of rainfall in the ten-day period after fertilizer application and therefore very slow incorporation and movement of fertilizer into and through the soil.  相似文献   

4.
Abstract. Emissions of N2O were measured after application of NH4NO3 fertilizer and incorporation of winter wheat and rye green manures in two field experiments in southeast England. Incorporation of green manure alone resulted in temporary immobilization of soil N, small N2O emissions and also low availability of N for the following crop. Emissions were increased after application of inorganic fertilizer, and were further increased from integrated management treatments whereby green manure residues were incorporated after fertilizer application. The highest emission was from the incorporated winter wheat green manure plus fertilizer treatment, with 1.5 kg N2O-N ha−1 (0.6% of N applied) being emitted over the first 55 days after incorporation. This high emission was attributed to the supply of C in the residues providing the energy for denitrification in the presence of large amounts of mineral N and the creation of anaerobic microsites during microbial respiration.  相似文献   

5.
Abstract. Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha–1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.  相似文献   

6.
Abstract. Grassland is a major source of nitrous oxide (N2O) and methane (CH4) emissions in the UK, resulting from high rates of fertilizer application. We studied the effects of substituting mineral fertilizer by organic manures and a slow-release fertilizer in silage grass production on greenhouse gas emissions and soil mineral N content in a three-year field experiment. The organic manures investigated were sewage sludge pellets and composted sewage sludge (dry materials), and digested sewage sludge and cattle slurry (liquid materials). The organic manures produced N2O and carbon dioxide (CO2) consistently from time of application up to harvest. However, they mitigated N2O emissions by around 90% when aggregate emissions of 15.7 kg N ha−1 from NPK fertilizer were caused by a flux of up to 4.9 kg N ha−1 d−1 during the first 4 days after heavy rainfall subsequent to the NPK fertilizer application. CH4 was emitted only for 2 or 3 days after application of the liquid manures. CH4 and CO2 fluxes were not significantly mitigated. Composting and dried pellets were useful methods of conserving nutrients in organic wastes, enabling slow and sustained release of nitrogen. NPK slow-release fertilizer also maintained grass yields and was the most effective substitute for the conventional NPK fertilizer for mitigation of N2O fluxes.  相似文献   

7.
Emissions of nitrous oxide (N2O) and nitrogen gas (N2) from denitrification were measured using the acetylene inhibition method on drained and undrained clay soil during November 1980-June 1981. Drainage limited denitrification to about 65% of losses from undrained soil. Emissions from the undrained soil were in the range 1 to 12 g N ha–1 h–1 while those from the drained soil ranged from 0.5 to 6 g N ha–1 h–1 giving estimated total losses (N2O + N2) of 14 and 9 kgN ha–1.
Drainage also changed the fraction of nitrous oxide in the total denitrification product. During December, emissions from the drained soil (1.8±0.6 gN ha–1 h–1) were composed entirely of nitrous oxide, but losses from the undrained soil (2.7 ± 1.1 g N ha–1 h–1) were almost entirely in the form of nitrogen gas (the fraction of N2O in the total loss was 0.02). In February denitrification declined in colder conditions and the emission of nitrous oxide from drained soil declined relative to nitrogen gas so that the fraction of N2O was 0.03 on both drainage treatments. The delayed onset of N2O reduction in the drained soil was related to oxygen and nitrate concentrations. Fertilizer applications in the spring gave rise to maximum rates of emission (5–12g N ha–1 h–1) with the balance shifting towards nitrous oxide production, so that the fraction of N2O was 0.2–0.8 in April and May.  相似文献   

8.
To investigate the effects of plant species in grassland on methane (CH4) and nitrous oxide (N2O) fluxes from soil, fluxes from an orchardgrass ( Dactylis glomerata L.) grassland, white clover ( Trifolium repens L.) grassland and orchardgrass/white clover mixed grassland were measured weekly from April 2001 to March 2002 using a vented closed chamber method. Related environmental parameters (soil inorganic N content, soil pH (H2O) value, soil moisture content, soil temperature, grass yield, and the number of soil microorganisms) were also regularly monitored. On an annual basis, CH4 consumption in the soil of the orchardgrass grassland, white clover grassland and orchardgrass/white clover mixed grassland was 1.8, 2.4, and 1.8 kg C ha−1 year−1, respectively. The soil bulk density of the white clover grassland was lower than that of the other grasslands. Fluxes of CH4 were positively correlated with the soil moisture content. White clover increased the CH4 consumption by improving soil aeration. Nitrogen supply to the soil by white clover did not decrease the CH4 consumption in the soil of our grasslands. On the other hand, annual N2O emissions from the orchardgrass grassland, white clover grassland, and orchardgrass/white clover mixed grassland were 0.39, 1.59, and 0.67 kg N ha−1 year−1, respectively. Fluxes of N2O were correlated with the NO3 content in soil and soil temperature. White clover increased the N2O emissions by increasing the inorganic N content derived from degrading white clover in soil in summer.  相似文献   

9.
The present study investigated the nitrogen balance in swine manure composting to evaluate the effect of nitrite (     ) accumulation, which induces nitrogenous emissions, such as N2O, during compost maturation. During active composting, most N losses result from NH3 emission, which was 9.5% of the initial total nitrogen (TNinitial), after which,     began to accumulate as only ammonia-oxidizing bacteria proliferated. After active composting, the addition of mature swine compost (MSC), including nitrite-oxidizing bacteria (NOB), could prevent     accumulation and reduce N2O emission by 70% compared with the control in which     accumulated as a result of delayed growth of indigenous NOB. Total N2O emissions in the control and in the treatment of MSC addition (MA) were 9.3% and 3.0% of TNinitial, respectively, whereas N losses as the sum total of NH3 and N2O over the whole period were 19.0% (control) and 12.8% (MA) of TNinitial, respectively. However, the difference in total N losses was markedly greater than that measured as NH3 and N2O, which were 27.8% (control) and 13.3% (MA) of TNinitial, respectively. These results demonstrated that the magnitude of nitrogen losses induced by     accumulation is too large to ignore in the composting of swine manure.  相似文献   

10.
Abstract. Land disposal of sewage sludge in the UK is set to increase markedly in the next few years and much of this will be applied to grassland. Here we applied high rates of digested sludge cake (1–1.5×103 kg total N ha−1) to grassland and incorporated it prior to reseeding. Using automated chambers, nitrous oxide (N2O) and carbon dioxide (CO2) fluxes from the soil were monitored 2–4 times per day, for 6 months after sludge incorporation. Peaks of N2O emission were up to 1.4 kg N ha−1 d−1 soon after incorporation, and thereafter were regularly detected following significant rainfalls. Gas emissions reflected diurnal temperature variations, though N2O emissions were also strongly affected by rainfall. Although emissions decreased in the winter, temperatures below 4 °C stimulated short, sharp fluxes of both CO2 and N2O as temperature increased. The aggregate loss of nitrogen and carbon over the measurement period was up to 23 kg N ha−1 and 5.1 t C ha−1. Losses of N2O in the sludge-amended soil were associated with good microbial conditions for N mineralization, and with high carbon and water contents. Since grassland is an important source of greenhouse gases, application of sewage sludge can be at least as significant as fertilizer in enhancing these emissions.  相似文献   

11.
J. Dick    B. Kaya    M. Soutoura    U. Skiba    R. Smith    A. Niang  & R. Tabo 《Soil Use and Management》2008,24(3):292-301
The yield and flux of nitrous oxide (N2O) emitted from continuous cereals (with and without urea), legumes/cereal in rotation and cereal/legume in rotation all with or without organic manure was monitored from January 2004 to February 2005. All treatments except continuous cereals had phosphate added. The cereal grown July–October in 2003 and 2004 was pearl millet ( Pennisetum glaucum) and the legume was a bean ( Phaseolus vulgaris ). The 10 m × 10 m plots were established in a semi-arid climate in Mali. The addition of organic manure and both inorganic fertilizers increased yield and N2O emissions. Continuous cereals treated with both organic manure and urea emitted significantly less N2O (882 g N/ha per year) than plots receiving no organic manure(1535 g N/ha per year). Growing N-fixing crops in rotation did not significantly increase N2O emissions. This study supports the new practice of growing cereal and legumes in rotation as an environmentally sustainable system in semi-arid Mali.  相似文献   

12.
Abstract. Nitrate leaching after one year of a cut grass/clover ley was measured in two succeeding years to investigate how the postponing of ploughing leys from early to late autumn or spring, in combination with spring or winter cereals affected leaching of nitrate. The experiment was conducted as three field trials, two on a coarse sandy soil and one on a sandy loam soil. For calculation of nitrate leaching, soil water samples were taken using ceramic suction cups. The experiments started in spring in a first year ley and ended in spring three years later. Total nitrate leaching for the three year periods for each trial ranged between 160–254 and 189–254 kg N/ha on the coarse sand and 129–233 kg N/ha on the sandy loam. The results showed that winter wheat ( Triticum aestivum L.) did not have the potential for taking up the mineralized N in autumn after early autumn ploughing of grass/clover leys, and that the least leaching was generally found when ploughing was postponed until spring, and when winter rye ( Secale cereale L.) was grown as the second crop rather than spring barley ( Hordeum vulgare L.). Nevertheless, leaching was generally high in the winter period even when winter rye was grown. On these soil types ploughing out should be postponed, whenever possible, to spring. Crop systems that maximize the utilization of mineralized N and thereby minimize nitrate leaching need to be further developed. Based on N balances, the data were further used to estimate the biological N fixation by the clover.  相似文献   

13.
Fluxes of the greenhouse gases methane (CH4) and nitrous oxide (N2O) from histosolic soils (which account for approximately 10% of Swedish agricultural soils) supporting grassley and barley production in Sweden were measured over 3 years using static chambers. Emissions varied both over area and time. Methane was both produced and oxidized in the soil: fluxes were small, with an average emission of 0.12 g CH4 m−2 year−1 at the grassley site and net uptake of −0.01 g CH4 m−2 year−1 at the barley field. Methane emission was related to soil water, with more emission when wet. Nitrous oxide emissions varied, with peaks of emission after soil cultivation, ploughing and harrowing. On average, the grassley and barley field had emissions of 0.20 and 1.51 g N2O m−2 year−1, respectively. We found no correlation between N2O and soil factors, but the greatest N2O emission was associated with the driest areas, with < 60% average water-filled pore space. We suggest that the best management option to mitigate emissions is to keep the soil moderately wet with permanent grass production, which restricts N2O emissions whilst minimizing those of CH4.  相似文献   

14.
To quantify the spatial variation and spatial structure of nitrous oxide (N2O) and nitric oxide (NO) emission from forest soils, we measured N2O and NO emission rates from surface soil cores taken at 1 m intervals on a cross-line transect (65 m × 20 m) on a slope of Japanese cedar ( Cryptomeria japonica ) forest in a temperate region of central Japan and analyzed the spatial dependency of N oxide gas emissions using geostatistics. We divided N2O emission into N2O from denitrification and N2O from nitrification using the acetylene inhibition method. According to the geostatistical analysis, N2O emission rates on the slope had large spatial variation and weak spatial dependency. This weak spatial dependency was caused by the inordinately high N2O emissions on the slope, which were derived mainly from denitrification. In contrast, NO emission rate on the slope had large spatial variation, but strong spatial dependency and a distinct spatial distribution related to slope position, that is, high in the middle of the slope and low in the shoulder and the foot of the slope. The CN ratio and water-filled pore space were the dominant factors controlling NO emission rate on a slope. Our results suggest that spatial information about topographic factors helps to improve the estimation of both N2O emission and NO emission from forest soils.  相似文献   

15.
Impacts of land management on fluxes of trace greenhouse gases   总被引:8,自引:0,他引:8  
Abstract. Land use change and land management practices affect the net emissions of the trace gases methane (CH4) and nitrous oxide (N2O), as well as carbon sources and sinks. Changes in CH4 and N2O emissions can substantially alter the overall greenhouse gas balance of a system. Drainage of peatlands for agriculture or forestry generally increases N2O emission as well as that of CO2, but also decreases CH4 emission. Intermittent drainage or late flooding of rice paddies can greatly diminish the seasonal emission of CH4 compared with continuous flooding. Changes in N2O emissions following land use change from forest or grassland to agriculture vary between climatic zones, and the net impact varies with time. In many soils, the increase in carbon sequestration by adopting no-till systems may be largely negated by associated increases in N2O emission. The promotion of carbon credits for the no-till system before we have better quantification of its net greenhouse gas balance is naïve. Applying nitrogen fertilizers to forests could increase the forest carbon sink, but may be accompanied by a net increase in N2O; conversely, adding lime to acid forest soils can decrease the N2O emission.  相似文献   

16.
Nitrate leaching as affected by long-term N fertilization on a coarse sand   总被引:17,自引:0,他引:17  
Abstract. A field experiment on a coarse sand (1987–92) was conducted with spring barley ( Hordeum vulgare L.), in order to evaluate the effects of increasing N fertilization on nitrate leaching under temperate coastal climate conditions. The N fertilizer levels were 60 and 120 kg N/ha. The experiment was conducted on a 19-year old permanent field trial with continuous spring barley, initiated in 1968, and included treatments with ploughing in autumn or spring, with or without perennial ryegrass ( Lolium perenne L.) as a catch crop undersown in spring. Prior to 1987, the low and high levels of N fertilizer were 70 and 150 kg N/ha, respectively. To calculate nitrate leaching, soil water samples were taken from a depth of 0.8 m using ceramic cups. The average annual nitrate leaching from plots with 60 and 120 kg N/ha was 38 and 52 kg N/ha/y, respectively. The increased leaching associated with increasing fertilizer application was not caused by inorganic N in the soil at harvest, but rather by greater mineralization, mainly in autumn. Growing of a catch crop was relatively more efficient for reducing nitrate leaching than a long-term low fertilizer application. A 50% reduction in N application decreased average yield by 26%, while nitrate leaching decreased by 27%.  相似文献   

17.
Abstract. Nitrate leaching and pasture ( Lolium perenne / Trifolium repens ) yields were measured on monolith lysimeters (80 cm diam. × 120 cm depth) of a Templeton sandy loam soil (Udic Ustochrept), following repeated applications of dairy shed effluent (DSE) or ammonium fertilizer (NH4Cl), under spray (50 mm/month) or flood (100 mm/month) irrigation. Applications of DSE at 400 kg N/ha per annum resulted in significantly less nitrate leaching (8–25 kg N/ha per yr) compared with NH4Cl (28–48kg N/ha per yr) ( P < 0.01). Over the two year period, the total mineral N (predominantly nitrate) leached was equivalent to 2.5–3.7% of the total N applied in the DSE and 8.7–9.8% of the N applied in the NH4Cl. There was a trend of slightly less nitrate leaching under the flood irrigation than under the spray irrigation, probably because of the greater potential for denitrification under the wetter conditions. Average nitrate concentrations in the leachate were generally below the drinking water standard except in the NH4Cl treatment under spray irrigation where it averaged 10 mg NO3-N/l over the two year period. DSE was equally as effective as NH4Cl in stimulating pasture dry matter production. Annual nitrogen uptakes were similar for the DSE (343 kg N/ha) and NH4Cl (332–344kg N/ha) treatments in the first year but were higher in the DSE (361–412 kg N/ha) than in the NH4Cl (324–340 kg N/ha) treatments in the second year. Pasture uptakes of phosphorus and sulphur were also higher in the DSE than in the NH4Cl treatments in the second year. The results emphasize the need to set different regulatory limits for land application of organic wastes of various types and for N fertilizers.  相似文献   

18.
To evaluate the atmospheric load of reactive gaseous nitrogen in the fast-developing Eastern China region, we compiled inventories of nitrous oxide (N2O), nitrogen oxide (NOx) and ammonia (NH3) emissions from a typical rural catchment in Jiangsu province, China, situated at the lower reach of the Yangtze River. We considered emissions from synthetic N fertilizer, human and livestock excreta, decomposition of crop residue returned to cropland and residue burning, soil background and household energy consumption. The results showed that, for the 45.5 km2 catchment, the annual reactive gaseous emission was 279 ton N, of which 7% was N2O, 16% was NOx and 77% was NH3. Synthetic N fertilizer application was the dominant source of N2O and NH3 emissions and crop residue burning was the dominant source of NOx emission. Sixty-seven percent of the total reactive gaseous N was emitted from croplands, but on a per unit area basis, NOx and NH3 emissions in residential areas were higher than in croplands, probably as a result of household crop residue burning and extensive human and livestock excreta management systems. Emission per capita was estimated to be 18.2 kg N year−1 in the rural catchment, and emission per unit area was 56.9 kg N ha−1year−1 for NH3 + NOx, which supports the observed high atmospheric N deposition in the catchment. Apparently, efficient use of N fertilizer and biological utilization of crop straw are important measures to reduce reactive gases emissions in this rural catchment.  相似文献   

19.
Abstract. The recommended method of reducing the emission of NH3 while spreading manure is to plough or harrow the manure into the soil. This in turn increases the possibility of N2O emission. At two sites in southern Sweden emissions of NH3 and N2O were measured after spreading pig slurry by broadcasting and band spreading. The band spreading technique can be used in growing crops i.e. when nitrogen is most needed, and it is thought that the NH3 emission is smaller with this technique compared to broadcasting. The average NH3 loss was 50% of applied NH4+ during warm/dry conditions and 10% during cold/wet conditions. The N2O emission was always less than 1% of applied NH4+. When the NH3 emission decreased, the direct N2O emission increased. However, when taking into account the indirect N2O emission due to deposition of NH3 outside the field, the spreading techniques all produced similar total N2O emissions. The ammonia emission was not much lower for the band spreading technique compared to broadcasting, when compared on seven occasions.  相似文献   

20.
Some acid surface mineral soils from different forest vegetations and sites in central Japan were taken during April and October in 2003 to study the net N mineralization and N2O production potentials in the laboratory. Under the controlled aerobic conditions, 50 Pa C2H2 in the headspace can be used to study total gaseous-N losses during the aerobic mineralization and heterotrophic N2O production in acid forest soils. The net N mineralization of these acid forest soils and N2O-N production was variable with forest stands and with seasons, probably because of the quality of the litters and the variations of soil attributes. Three deciduous forest soils during two sampling reveal a higher potential for the total gaseous-N loss during the aerobic mineralization as compared with two coniferous forest soils. Heterotrophic nitrification among these acid forest soils accounted for the range from 37.0 to 76.3% of the total N2O production under the experimental conditions, and was variable with forest stands and with seasons. Some factors regulating the net N mineralization and N2O-N production were discussed in these acid forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号