首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frozen bread dough: Effects of freezing storage and dough improvers   总被引:1,自引:0,他引:1  
This review focuses on the effects of freezing storage on the microstructure and baking performance of frozen doughs, and provides an overview of the activities of dough improvers, including emulsifiers, hydrocolloids and other improvers used in frozen dough applications. The overall quality of bread baked from frozen dough deteriorates as the storage of the dough at sub-zero temperatures increases due to several factors which are discussed. Lipid-related emulsifiers such as diacetyl tartaric acid esters of mono and diglycerides and sucrose esters employed as anti-staling agents, dough modifiers, shortening sparing agents, and as improvers for the production of high-protein bread have also been employed in frozen doughs. Hydrocolloids are gaining importance in the baking industry as dough improvers due to their ability to induce structural changes in the main components of wheat flour systems during breadmaking steps and bread storage Their effects in frozen doughs is discussed. Other dough improvers, such as ascorbic acid, honey and green tea extract, are also reviewed in the context of frozen doughs.  相似文献   

2.
The use of sourdough, even in combination with cryoprotectant (skim milk, sucrose and trehalose), conventional additives (guar gum, diacetyl tartaric acid esters of monoglycerides, ascorbic acid), honey or fructose and glucose, in frozen dough technology was investigated. After frozen storage, the leavening performance of doughs, and the hardness and texture of breads were compared to those of an unfrozen dough, and to those of a conventional frozen dough. All frozen doughs showed a longer fermentation time and a lower volume increase, with respect to unfrozen dough. When sourdough was combined with cryoprotectant, honey or both, the leavening performance improved compared to the use of sourdough alone. Compared to the conventional frozen dough, higher leavening performance was reached combining sourdough with cryoprotectant alone or together with honey. Sourdough combined with honey, fructose and glucose, honey and cryoprotectant, or conventional additives decreased bread hardness compared to the unfrozen dough bread and to the conventional frozen dough bread. Independently from the use of sourdough, conventional additives allowed to reach a specific volume not significantly different from that of unfrozen dough bread, and breads containing honey were characterized by low values of hardness and by high values of red index.  相似文献   

3.
Chemical leaveners are used in doughs to generate carbon dioxide, as an alternative to yeast, in making a range of bakery products. In this study, the effects of fungal α-amylase and ascorbic acid on chemically leavened doughs were followed by measuring dough extensibility, true rheological properties, the amount of free liquid in doughs following ultracentrifugation and the quality of baked products. As with yeasted doughs, the bake qualities of chemically leavened doughs also improved in the presence of fungal α-amylases. The bake qualities were not affected when the equivalent amount of ascorbic acid was added. The differences in dough formulations were detected from measurements of true rheological properties, not from extensibilities of doughs. The amount of free liquid was larger and of lower viscosity in doughs containing α-amylases. The properties of the continuous liquid phase were found to be important in defining the rheological and baking qualities of doughs.  相似文献   

4.
The influence of guar and xanthan gum and their combined use on dough proofing rate and its calorimetric properties was investigated. Fusion enthalpy, which is related to the amount of frozen water, was influenced by frozen dough formulation and storage time; specifically gum addition reduced the fusion enthalpy in comparison to control formulation, 76.9 J/g for formulation with both gums and 81.2 J/g for control, at 28th day. Other calorimetric parameters, such as Tg and freezable water amount, were also influenced by frozen storage time. For all formulations, proofing rate of dough after freezing, frozen storage time and thawing, decreased in comparison to non-frozen dough, indicating that the freezing process itself was more detrimental to the proofing rate than storage time. For all formulations, the mean value of proofing rate was 2.97 ± 0.24 cm3 min−1 per 100 g of non-frozen dough and 2.22 ± 0.12 cm3 min1 per 100 g of frozen dough. Also the proofing rate of non-frozen dough with xanthan gum decreased significantly in relation to dough without gums and dough with only guar gum. Optical microscopy analyses showed that the gas cell production after frozen storage period was reduced, which is in agreement with the proofing rate results.  相似文献   

5.
Chemical leaveners are used in doughs to generate carbon dioxide, as an alternative to yeast, in making a range of bakery products. In this study, the effects of fungal α-amylase and ascorbic acid on chemically leavened doughs were followed by measuring dough extensibility, true rheological properties, the amount of free liquid in doughs following ultracentrifugation and the quality of baked products. As with yeasted doughs, the bake qualities of chemically leavened doughs also improved in the presence of fungal α-amylases. The bake qualities were not affected when the equivalent amount of ascorbic acid was added. The differences in dough formulations were detected from measurements of true rheological properties, not from extensibilities of doughs. The amount of free liquid was larger and of lower viscosity in doughs containing α-amylases. The properties of the continuous liquid phase were found to be important in defining the rheological and baking qualities of doughs.  相似文献   

6.
Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH=1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60–70°C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.  相似文献   

7.
A continuous spectrophotometric assay was developed to measure ascorbic acid oxidation in crude Na2SO4 extracts of flour. The rate of ascorbic acid oxidation in flour extracts measured using this method was similar to the rate in flour-water suspensions and 2–4 fold less than the rate in dough measured using an indophenol-xylene extraction method. Flour extracts appeared to contain two ascorbic acid oxidising factors; one with optimal activity at pH 6·3 and 30 °C and the other with optimal activity at pH 10 and 40 °C. The pH 6·3 factor had properties similar to those of ascorbate oxidase (EC 1·10·3·3) in its pH and temperature stability, strong inhibition by NaN3, KCN and diethyldithiocarbamate, inactivation by proteases, and greater stereospecificity towards -ascorbic acid than -isoascorbic acid. The pH 6·3 factor was most concentrated in the pollard milling fraction of wheat and was lowest in flour. The pH 10 factor had several properties indicating non-enzymic oxidation of ascorbic acid; it was not inactivated by proteases, it was inhibited poorly or not at all by the above ascorbate oxidase inhibitors, and it had low specificity for stereoisomers of ascorbic acid.  相似文献   

8.
The influence of guar and xanthan gum and their combined use on dough proofing rate and its calorimetric properties was investigated. Fusion enthalpy, which is related to the amount of frozen water, was influenced by frozen dough formulation and storage time; specifically gum addition reduced the fusion enthalpy in comparison to control formulation, 76.9 J/g for formulation with both gums and 81.2 J/g for control, at 28th day. Other calorimetric parameters, such as Tg and freezable water amount, were also influenced by frozen storage time. For all formulations, proofing rate of dough after freezing, frozen storage time and thawing, decreased in comparison to non-frozen dough, indicating that the freezing process itself was more detrimental to the proofing rate than storage time. For all formulations, the mean value of proofing rate was 2.97 ± 0.24 cm3 min−1 per 100 g of non-frozen dough and 2.22 ± 0.12 cm3 min1 per 100 g of frozen dough. Also the proofing rate of non-frozen dough with xanthan gum decreased significantly in relation to dough without gums and dough with only guar gum. Optical microscopy analyses showed that the gas cell production after frozen storage period was reduced, which is in agreement with the proofing rate results.  相似文献   

9.
Response surface methodology described the effects of salt, lactic acid, shortening, and exogenous trehalose and dough mixing temperature (DMT) and their interactions on the three rheological and fermentation parameters. These included maximum dough height (Hm), maximum height of gas release (Hm′) and CO2 production, measured by the Rheofermentometer F3, and bread specific volume (Sp. Vol.) of frozen sweet dough. The models could estimate the four parameters with R2 values of 0.76, 0.69, 0.93, and 0.59, respectively. Salt significantly influenced all four parameters in a negative way. DMT affected positively the Hm and Sp. Vol. of bread. Lactic acid affected Hm only, but its interactions with other variables influenced all four parameters. Shortening level affected Hm′ and CO2 production positively and Sp. Vol. negatively. The added exogenous trehalose improved Hm, Hm′, and CO2 production significantly, but not the Sp. Vol. of bread. Among the three Rheofermentometer parameters, Hm showed the highest correlation with Sp. Vol. (R2 = 0.75). DMT for the maximum Hm and Sp. Vol. varied with the level of other ingredients. Trehalose alone could not overcome the challenges in a sweet frozen dough system to improve the Sp. Vol., and its combined effects with other ingredients will need to be evaluated to restore the impaired gas retention of the frozen sweet dough.  相似文献   

10.
Bread with 48.5% soy ingredients was assessed for quality during frozen storage of the dough. Soy protein was hypothesized to prevent water migration during frozen storage, thereby producing dough that would exhibit fewer structural changes than traditional wheat bread. Wheat and soy bread were baked from dough that was fresh or frozen (−20 °C, 2 or 4 wks). Dough and bread were assessed for physical properties including moisture content, percent “freezable” and “unfreezable” water, dough extensibility, and bread texture. The bread was subjected to an untrained sensory panel. The soy bread was denser, chewier, and had a higher moisture content than wheat bread. When baked from fresh or frozen dough, soy bread was rated “moderately acceptable” or higher by 70% of panelists. Soy minimized changes in dough extensibility and resistive force to extension, leading to minimal changes in bread hardness. Although consumers could distinguish between bread baked from soy dough that was fresh or frozen for 4 wks, sensorial and textural data suggested that the rate at which the quality of the soy dough deteriorated was slower than that of wheat dough. In conclusion, the dough of consumer-acceptable soy bread retained quality characteristics during frozen storage slightly better than wheat dough.  相似文献   

11.
Response surface methodology described the effects of salt, lactic acid, shortening, and exogenous trehalose and dough mixing temperature (DMT) and their interactions on the three rheological and fermentation parameters. These included maximum dough height (Hm), maximum height of gas release (Hm′) and CO2 production, measured by the Rheofermentometer F3, and bread specific volume (Sp. Vol.) of frozen sweet dough. The models could estimate the four parameters with R2 values of 0.76, 0.69, 0.93, and 0.59, respectively. Salt significantly influenced all four parameters in a negative way. DMT affected positively the Hm and Sp. Vol. of bread. Lactic acid affected Hm only, but its interactions with other variables influenced all four parameters. Shortening level affected Hm′ and CO2 production positively and Sp. Vol. negatively. The added exogenous trehalose improved Hm, Hm′, and CO2 production significantly, but not the Sp. Vol. of bread. Among the three Rheofermentometer parameters, Hm showed the highest correlation with Sp. Vol. (R2 = 0.75). DMT for the maximum Hm and Sp. Vol. varied with the level of other ingredients. Trehalose alone could not overcome the challenges in a sweet frozen dough system to improve the Sp. Vol., and its combined effects with other ingredients will need to be evaluated to restore the impaired gas retention of the frozen sweet dough.  相似文献   

12.
During breadmaking, a continuous protein network is formed which confers visco-elasticity to dough. The properties of this protein network are highly dependent on the characteristics of the gluten proteins of the wheat flour. A good quality (highly elastic) gluten network retains the carbon dioxide that is produced by the yeast, giving dough and bread with optimal properties. However, the properties of the gluten proteins can differ substantially between wheat flours and are highly dependent on genetic, environmental and post-harvest conditions. Deficiencies in wheat quality for breadmaking can be overcome by incorporating exogenous components which alter the functionality of the gluten proteins during breadmaking. These include additives (e.g. potassium bromate, iodate, chlorine dioxide and chlorine, azodicarbonamide, ascorbic acid and peroxides) and enzymes affecting protein crosslinking. Transglutaminase, glucose oxidase, hexose oxidase and laccase all promote the formation of covalent bonds between gluten proteins and, hence, can serve as alternatives to chemical bread improvers.  相似文献   

13.
Ice structuring proteins (ISPs) are proteins that can modify and inhibit the growth of ice. ISPs may improve the quality of frozen dough by stabilizing ice crystals and maintaining the texture of frozen dough. In this study, effects of ISPs from winter wheat were examined on the thermophysical properties of dough, which include freezing point depression, freezable water fraction, apparent specific heat, and effective thermal conductivity. The thermophysical properties were measured by differential scanning calorimetry (DSC) and line source probe methods. The results showed that, compared to the control, adding 0.6% ISPs induced a maximum freezing point depression of 0.23 °C and decreased the amount of freezable water by 8%. ISPs had little effect on the apparent specific heat and the effective thermal conductivity in the unfrozen ranges. However, the thermophysical properties in the frozen ranges were significantly affected by ISPs. The determined thermophysical properties are important to model heat transfer during freezing of dough.  相似文献   

14.
小麦面粉蛋白的含量和类型决定着小麦面粉的加工品质。为量化比较小麦面粉蛋白对品质影响的差异,以11个不同品质类型的品种为材料,分析了面粉蛋白巯基集团与面粉质量的相关性,发现自由巯基含量与面团稳定时间有极显著正相关性,与面筋指数有显著正相关性;基于面粉蛋白的自由巯基和分子内二硫键含量差异,建立了一个简单的品质贡献量化评价模型;依托蛋白质巯基预测结果,对90个不同类型的面粉蛋白的品质贡献进行了量化比较。结果表明,高分子量麦谷蛋白亚基中得分较高的是1Dy10、DX5和1Dy3;低分子量麦谷蛋白亚基中,位于 Glu-B3、 Glu-D3位点的蛋白得分达到7.2分,高于高分子量麦谷蛋白最高分的1Dy10(6.3分)。因为低分子量麦谷蛋白在面粉中的含量远超高分子量麦谷蛋白,推测面团强度的主要决定因素是低分子量麦谷蛋白,而不是传统观点认为的高分子量麦谷蛋白亚基。另外,一些燕麦类似蛋白和部分醇溶蛋白也对面团强度有一定贡献。  相似文献   

15.
硫营养对绿茶产量和品质的影响   总被引:1,自引:0,他引:1  
研究了硫营养对绿茶产量和品质的影响及其可能的机理。试验设2个硫处理(0,50 kg S.ha-1.a-1),每个处理重复4次,完全随机区组设计。结果表明:施硫能够提高产量、增加氨基酸和抗坏血酸(AsA和DAsA)含量,降低茶多酚和酚氨比(TP/AA)。施硫对茶叶品质的改善与降低多酚氧化酶(PPO)的活性、提高硝酸还原酶(NR)和苯丙氨酸解氨酶(PAL)活性有关。  相似文献   

16.
Ascorbic acid (AA) is used as bread improver, as its addition to dough causes an increase in loaf volume and an improvement in crumb structure. To explain these effects we review the stereospecificity of the improver action and the properties of ascorbate oxidase and glutathione dehydrogenase and the occurrence of low molecular thiols in flour and their concentration changes during dough mixing in the presence and absence of AA. On the basis of the results the improver action of AA is explained by a reaction sequence leading to a rapid removal of endogenous GSH, which otherwise would cause dough weakening by sulphhydryl/disulphide interchange reactions with gluten proteins. To test this hypothesis the binding sites of endogenous GSH in gluten proteins have been determined by the addition of35S-labelled GSH as a tracer to flour before dough mixing. The distribution of radioactivity in the gliadin and glutenin fractions of gluten obtained from dough indicates that the major portion of GSH is bound to glutenins. The isolation and sequence analysis of radioactive cystine peptides from an enzymatic digest of glutenins demonstrates that GSH is almost exclusively linked to those cysteine residues of LMW subunits that have been proposed to form intermolecular disulphide bonds.  相似文献   

17.
The effects of ice structuring proteins (ISPs) from white wheat and storage conditions on the water holding capacity (WHC) and breadmaking properties of frozen dough were investigated. The WHC of frozen dough was measured by centrifugation and the breadmaking properties were assessed as proofing time and bread specific volume. It was found that the prolonged frozen storage and freeze–thaw cycles decreased the WHC and breadmaking properties of dough. ISPs were highly effective in increasing the WHC of frozen dough and improving the breadmaking properties. There was a strong correlation between WHC and breadmaking properties (proofing time and bread specific volume) of frozen dough.  相似文献   

18.
The amount of ice in both unfrozen steamed bread dough (UFD) and prefermented frozen steamed bread dough (PFD) with and without glycerol was investigated by differential scanning calorimetry (DSC). The quality of unfrozen steamed bread (UFB)/prefermented frozen dough steamed bread (PFB) was also evaluated. Frozen stability and steaming performance of prefermented frozen dough were negatively correlated with ice crystal growth. Glycerol effectively prevented the formation of ice crystals during freezing and frozen storage, maintaining the quality of steamed bread from prefermented frozen dough even over a period of 30 days. The best steamed bread performance was observed with the dough containing 2% of glycerol (flour weight basis) addition. Prefermenting conditions significantly affected the quality of UFB/PFB. The highest quality scores of steamed bread from prefermented frozen dough were obtained from 32 °C and 85% rh for 40 min.  相似文献   

19.
The use of enzymes such as peroxidases or glucose oxidase instead of chemical oxidants is a very interesting option for improving breadmaking performance of doughs. In this study the effect of such enzymes on bulk rheological properties of dough was quantified and their influence on the polymer network in dough deduced.Small deformation oscillation and relaxation tests (strain 0·001) are not suitable for discriminating between doughs prepared in the presence of the different enzymes. Flow relaxation tests at high deformation and long relaxation times showed a clear distinction between the effect of peroxidase and glucose oxidase. Peroxidase increases only the number or lifetime of transient bonds, whereas glucose oxidase additionally produced cross-links that were permanent on time scales up to 3 h. Peroxidase probably introduced a second, more transient structure (arabinoxylan network) through the gluten network, whereas glucose oxidase may also have strengthened the gluten network. A higher water addition could not compensate for the effect of peroxidase; on longer time scales the stress remained at a higher level. Similar results were obtained in large deformation biaxial and uniaxial extension tests. Peroxidases only increased stress levels. The addition of glucose oxidase resulted in a higher stress and more intense strain hardening. Only in biaxial extension was an influence of pH observed. An increase in stress level was accompanied by a decrease in fracture strain, making predictions of the effects on bread structure complicated.  相似文献   

20.
This work consisted of two complementary sets of experiments in which breads differing in their recipe and/or process were characterised according to their odorant perception, volatile compound composition and physical properties. The results revealed that commercial partially baked and/or partially baked frozen breads were characterised by a different odour compared to commercial conventional, fully baked frozen and frozen dough breads, which were perceived similarly. These differences were explained by their variable aromatic composition. By analysing breads based on the same recipe but from different processes, it was demonstrated that adding a freezing stage before dough proofing or at the end of the conventional process, as well as after partial baking, did not influence bread aroma. Likewise, partial baking had no effect on bread odour and aromatic profile. Thus, the aromatic differences between commercial conventional, fully baked frozen and frozen dough breads on the one hand, and commercial partially baked breads on the other hand, were due to their different formulations. Concerning bread physical properties, the recipe also influenced bread crust/crumb ratio and density. Moreover, adding a partial baking stage to the process led to breads with a more compact crumb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号