首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was performed to provide a detailed atlas of the normal arterial and venous canine vasculature in the cranial abdomen by dual‐phase computed tomographic angiography. Five adult beagles were positioned in dorsal recumbency on a multislice helical CT scanner. An unenhanced survey CT scan from the diaphragm to the pelvic inlet was performed. Bolus‐tracking software was used for the dual‐phase angiogram, and contrast medium was administered in a cephalic vein. The arterial phase was scanned from the mid‐abdomen to the cranial aspect of the diaphragm; the portal phase was scanned a few seconds after the arterial phase in the opposite direction. The DICOM studies from all dogs were analysed. Representative images were selected and anatomic structures labelled. Maximum intensity projections and three‐dimensional images were generated using software techniques. A detailed atlas of the venous and arterial vasculature of the cranial canine abdomen was created with the help of bolus‐tracking dual‐phase computed tomographic angiography (CTA). Practitioners can use this anatomic atlas with its detailed venous and arterial phase CT angiograms of the canine cranial abdomen to compare normal versus abnormal vascular anatomy.  相似文献   

2.
The aim of this study was to provide a detailed anatomic atlas of the cranial abdomen by means of computed tomography (CT). Three mature dogs, all mixed breed males, were used. The dogs were sedated, anaesthetized and positioned in sternal recumbency. CT scans from the eighth thoracic vertebra to the fourth lumbar vertebra were performed using a third-generation equipment (TOSHIBA 600HQ scanner) with 1 cm slice thickness. CT-images of the cranial abdomen were taken with soft-tissue window (WL: −14, WW: 658) settings. Dogs were killed and vascular-injection technique was performed: red and blue latex filled the vascular system. Injected dogs were frozen in the same position as used for CT examination and sectioned with an electric bandsaw at 1-cm-thick intervals. The cuts matched as closely as possible to the CT-images. The anatomic sections were compared and studied with the corresponding CT-images, and clinically relevant abdominal anatomic structures were identified and labelled on the corresponding CT-images. The results of our study could be used as a reference for evaluating CT-images of the canine cranial abdomen with abdominal diseases.  相似文献   

3.
4.
Eight Beagle dogs were anesthetized and were imaged using a single channel helical CT scanner. The contrast medium used in this study was iohexol (300 mg I/ml) and doses were 0.5 ml/kg for a cine scan, 3 ml/kg for an enhanced scan. The flow rate for contrast material administration was 2 ml/sec for all scans. This study was divided into three steps, with unenhanced, cine and enhanced scans. The enhanced scan was subdivided into the arterial phase and the venous phase. All of the enhanced scans were reconstructed in 1 mm intervals and the scans were interpreted by the use of reformatted images, a cross sectional histogram, maximum intensity projection and shaded surface display. For the cine scans, optimal times were a 9-sec delay time post IV injection in the arterial phase, and an 18-sec delay time post IV injection in the venous phase. A nine-sec delay time was acceptable for the imaging of the canine hepatic arteries by CT angiography. After completion of arterial phase scanning, venous structures of the liver were well visualized as seen on the venous phase.  相似文献   

5.
6.
7.
The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was frozen. The body was then sectioned at 13-mm intervals, with the cuts matched as closely as possible to the CT slices. The frozen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In previous papers, the head and neck, and the thorax and cranial abdomen of the mesaticephalic (beagle) dog were presented. In this paper, the caudal part of the abdomen and pelvis of the bitch and male dog are presented.  相似文献   

8.
A technique for regional delivery of contrast medium to the foot of the horse to increase the diagnostic utility of computed tomography (CT) for the characterization of soft tissue structures within the hoof capsule was developed. An intraarterial catheter was placed under ultrasound guidance into the medial palmar artery at the level of the carpus to facilitate a steady-state infusion of iodinated contrast medium. Two 5 mm collimated contiguous acquisition CT scans were performed in 10 horses without lameness or radiographic evidence of distal sesamoid bone degeneration. CT examination was performed before and during regional arterial infusion of iodinated contrast medium administered at a rate of 2 ml/s. Cross-sectional area and mean pre- and post-contrast attenuation of the deep digital flexor tendon and the collateral ligaments of the distal interphalangeal joint were quantified from CT images. Soft tissue anatomy of the foot was also qualitatively characterized from pre- and postcontrast images. Catheterization was successful and without complication in all horses. The evaluated tendons and ligaments were clearly visible and had a small (8-20 Hounsfield Unit) but significant (P < 0.05, paired t-test) increase in attenuation during the steady-state infusion of contrast medium. This study should enhance the diagnostic potential of CT by providing baseline quantitative data for comparison with horses affected with soft tissue injuries in the distal extremity causing lameness that is alleviated with a palmar digital nerve block.  相似文献   

9.
Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a left renal artery originating from the aorta at a 90 degrees angle with the cranial mesenteric artery. CTA of the feline renal vascular anatomy is feasible, and reconstruction techniques provide excellent anatomic vascular detail. CTA is now used routinely at VHUP to screen all potential feline renal donors.  相似文献   

10.
11.
Computed tomographic images of two adult domestic short-haired cats were obtained with a whole body scanner. Images of the thorax and abdomen were compared with cross-sectional anatomy cadaver specimens from the same two cats. Anatomic structures were first identified on the cadaver specimens with the aid of numerous anatomy texts and references and were then identified and labeled on the computed tomographic images. Results from this project provide an atlas of normal cross-sectional gross and CT anatomy of the feline thorax and abdomen that can be used in the interpretation of any cross-sectional imaging modality.  相似文献   

12.
The purpose of this study was to provide a new reference for interpretation of the normal anatomy of the canine thorax as imaged using computed tomography (CT). Three mature dogs, all mixed breed males, were used for this study. The dogs were sedated, anaesthetized and maintained in sternal recumbency. CT study from the first to the thirteen thoracic vertebra was performed with a TOSHIBA 600 HQ scanner (third generation equipment). Dogs were killed and vascular-injection technique was performed: red latex and blue latex filled vascular system. Injected dogs were frozen and sectioned with an electric bandsaw, the cuts matched as closely as possible to the CT images. The CT images from this study are intended as a reference for clinical CT imaging studies of the thoracic cavity of the dog and for interpreting lesions of the thorax and associated structures.  相似文献   

13.
High resolution computed tomography (CT) was used to determine the normal appearance of the brain of an adult Beagle dog. Objects as small as 0.6 mm for bony structures (high contrast) and 1.5–2.0 mm for soft tissue structures (low contrast) could be resolved in the CT images. Multiplanar imaging using direct transverse and reformatted dorsal and sagittal images made it possible to obtain a three dimensional presentation of anatomy. Selective viewing, where CT number window and level settings were varied, was used to optimize visualization of specific brain structures. Normal high contrast components, cerebrospinal fluid, and osseous land-marks, were important aids in identification of various intracranial structures. Quantitative densitometry was performed to characterize various regions of the brain in terms of their x-ray attenuation values or CT numbers. This study indicated that high resolution CT provides a qualitative and quantitative appraisal of the canine brain that is unavailable using conventional radiographic technics.  相似文献   

14.
The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was placed in a walk-in freezer until completely frozen. The body was then sectioned at 13-mm intervals, with the cuts matched as closely as possible to the CT slices. The frozen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In a previous paper, the head and neck of the mesaticephalic (beagle) dog was presented. In this paper, the thorax and cranial part of the abdomen of the dog are presented.  相似文献   

15.
We report a canine computed tomography (CT) pulmonary angiography technique using multidetector CT (MDCT). CT pulmonary angiography using a 16 slice MDCT was performed on five healthy, anesthetized beagles. A helical acquisition with pitch of 1.4 was used. The time delay for the angiographic study was determined using a bolus‐tracking program. A dose of 400 mg I/kg of nonionic contrast medium (Iohexol 300 mg I/ml) was administered to each dog via a cephalic catheter using an angiographic power injector at a rate of 5 ml/s. In two dogs a second study, using a contrast medium dose of 200 and 600 mg I/kg was performed. Arterial enhancement of transverse and reformatted images was classified subjectively as excellent, good, or poor, and assessed objectively by measuring Hounsfield units at the right main pulmonary artery. Angiographic studies were evaluated by two radiologists to determine the number of subsegmental arterial branches visualized. The median number of subsegmental arterial branches identified was five (range: 2–7). Based on the time attenuation curve obtained by the bolus‐tracking program, there was consistent enhancement of the right main pulmonary artery beginning at 6 s and peaking at 8 s in 4/5 dogs. The contrast medium dose of 400 mg I/kg produced good to excellent vascular enhancement in the same 4/5 dogs. A dose of 200 mg I/kg resulted in poor enhancement. CT pulmonary angiography using MDCT and an automated bolus‐tracking program allows rapid, consistent evaluation of the pulmonary vasculature using a single dose of 400 mg I/kg of contrast medium.  相似文献   

16.
Helical abdominal computed tomography (CT) was performed in nine normal beagle-mix dogs. Following cephalic vein injection of ionic iodinated contrast medium via power injector (rate 5 ml/s) dual-phase CT was performed in all dogs. A delayed scan was performed in five dogs between 5 and 13 min after the contrast medium injection. The median time of appearance of contrast medium in the aorta and gastroduodenal artery was 6.3 and 7 s, post start injection and 12 and 12.2 s in the gastroduodenal and portal vein, resulting in a purely arterial pancreatic time window of 5-6s. Pancreatic veins and parenchyma remained enhanced until the end of the dynamic scan (40s). The pancreatic parenchyma showed heterogeneous arterial and homogenous venous contrast enhancement which was slightly hypoattenuating compared to the liver. Delayed scans provided best delineation of the pancreas from the liver. The common bile duct could be identified ventral and to the right of the portal vein joining the dorsomedial aspect of proximal duodenum. Because of the very short time window and variable onset of pure arterial enhancement careful planning of dual-phase studies with previous dynamic CT is recommended. Dual-phase CT angiography enables assessment of the arterial supply, parenchymal perfusion and venous drainage of the canine pancreas.  相似文献   

17.
By computed tomography the liver has an intermediate degree of attenuation, with a CT value (HU) between 70 and 75. However, this number may vary according to the generation of the apparatus, the use of contrasts medium, the efficiency of the detector, etc. The purpose of the present work was to evaluate the liver of the dog and related structures by means of a six-generation spiral CT scanner (Toshiba Ex Vision [[Au: please provide manufacturers details for 'Toshiba Ex Vision': city, state code (if USA) and Country]]), and the previous injection of intravenous contrast medium via cephalic vein. Four half-breed mature dogs (4–6 years, 15–20 kg) were used, two males and two females. The dogs were anaesthetized and kept over a stretcher in sternal recumbency. To evaluate the liver two different CT windows with different window width and window level were applied: soft tissue window (WW 652; WL -34) and mediastinal-vascular window (WW 352; WL 220). The CT images obtained allowed an excellent resolution at the level of the hepatic lobules, the gall bladder, the porta vein, the hepatic artery, the caudal cava vein, etc. The attenuation shades of these structures were very similar in the two used windows, however a better contrast was obtained with the soft tissue window.  相似文献   

18.
OBJECTIVE: To evaluate nonselective computed tomographic (CT) venography for evaluating the cervical internal vertebral venous plexus (IVVP), define the diameter and area dimensions of the IVVP, and determine the relationship between dimensions of the cervical IVVP and other vertebral components in medium-sized dogs. Animals-6 healthy dogs that weighed 18 to 27 kg. Procedure-Helical CT scans were performed from C1 to C7 before and after IV injection of contrast medium (480 mg of iodine/kg) and a continuous infusion (240 mg of iodine/kg). Image data were transferred to a CT workstation, and measurements were performed on displayed transverse images. Diameter and area measurements of the vertebral canal, dural sac, IVVP, and vertebral body were obtained at C3 to C7. RESULTS: Opacification of vertebral venous structures was achieved in all dogs with no adverse reactions. Sagittal diameters of the IVVP for C3 to C7 ranged from 0.6 to 3.2 mm. Transverse diameters ranged from 2.32 to 5.74 mm. The IVVP area represented 12.4% of the mean vertebral canal transverse area and 30.61% of the mean vertebral epidural space area. Area measurements of the IVVP were significantly correlated with vertebral canal area and dural sac area. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that nonselective CT venography is a safe, sensitive method for performing morphometric assessments of the cervical IVVP in dogs. Findings support the theory that there may be a physiologic or developmental relationship between cervical vertebral canal components.  相似文献   

19.
20.
Epidural injections are commonly performed blindly in veterinary medicine. The aims of this study were to describe the lumbosacral ultrasonographic anatomy and to assess the feasibility of an ultrasound‐guided epidural injection technique in dogs. A cross sectional anatomic atlas of the lumbosacral region and ex vivo ultrasound images were obtained in two cadavers to describe the ultrasound anatomy and to identify the landmarks. Sixteen normal weight canine cadavers were used to establish two variations of the technique for direct ultrasound‐guided injection, using spinal needles or epidural catheters. The technique was finally performed in two normal weight cadavers, in two overweight cadavers and in five live dogs with radiographic abnormalities resulting of the lumbosacral spine. Contrast medium was injected and CT was used to assess the success of the injection. The anatomic landmarks to carry out the procedure were the seventh lumbar vertebra, the iliac wings, and the first sacral vertebra. The target for directing the needle was the trapezoid‐shaped echogenic zone between the contiguous articular facets of the lumbosacral vertebral canal visualized in a parasagittal plane. The spinal needle or epidural catheter was inserted in a 45° craniodorsal–caudoventral direction through the subcutaneous tissue and the interarcuate ligament until reaching the epidural space. CT examination confirmed the presence of contrast medium in the epidural space in 25/25 dogs, although a variable contamination of the subarachnoid space was also noted. Findings indicated that this ultrasound‐guided epidural injection technique is feasible for normal weight and overweight dogs, with and without radiographic abnormalities of the spine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号