首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
利用大型径流场研究太湖地区稻田磷素径流排放   总被引:2,自引:0,他引:2  
2001~2002年利用大型径流场在太湖地区乌栅土上研究常规施肥条件下稻田径流磷排放情况。结果表明:稻季径流磷主要为颗粒磷,比例为50.1%~98.8%,溶解磷比例较低;磷素径流排放主要发生在水稻生育前期,稻季后期排放量较少;2001、2002年稻季径流输出总磷量分别为0.97、0.24 kg.hm-2,均低于同期降雨和灌溉输入总量,用磷浓度较高的水体灌溉稻田可能是减少周围水体磷总量的有效方法。研究该地区水体富营养化时不可忽视降雨输入磷。  相似文献   

2.
模拟降雨条件下太湖地区稻田氮素径流流失特征   总被引:2,自引:0,他引:2  
为了解太湖水网地区稻田氮素径流流失特征,在不同施肥处理试验小区的不同时期,进行人工模拟降雨试验.结果表明,降雨后稻田总氮(TN)流失量随着施氮量的增加而增加,施氮初期是氮素流失高峰期.第一次施氮后5 d(降雨前有田面水),0、225、300和375 kg/hm~2 4种施氮水平的稻田TN流失量依次递增,依次相差均在0.15kg/hm~2以上;第二次施氮后15d(降雨前无田面水),施氮量对TN流失量影响不大,各施氮水平的稻田TN流失量依次相差均在0.05 kg/hm~2以下.氮素流失形态以硝态氮和铵态氮为主,在第一次施氮后3d的稻田径流TN中,铵态氮和硝态氮所占比例近50%.此外,在一次降水过程中,无论降雨前有无田面水,产生径流的初期都是氮素流失的高峰期.  相似文献   

3.
太湖典型地区水稻田面水氮素时空变异特征研究   总被引:1,自引:0,他引:1  
选择太湖典型地区常熟市新庄镇水稻田为研究对象,研究稻田田面水三氮(总氮、铵态氮、硝态氮)浓度时空变异规律,为制定控制该地区稻田氮排放对周边水体污染的技术措施提供决策依据.试验区面积120 m2,采取网格法布设120点,在施基肥、穗肥后第2,4,6,8 d,施蘖肥后第2,5,7,9 d分别采集田面水测定TN(总氮)、NH4+ - N和NO3- - N的质量浓度,借助地统计学方法研究了该试验区田面水三氮浓度时空变异规律.结果表明:TN、NH4+ - N和NO3- - N浓度在施肥后呈现出不同的变化趋势.在本试验条件下,如果施肥后8 d排水,则蘖肥后排水污染风险最大,其次是基肥,穗肥风险最小.氮素空间分布结果表明,田面水三氮浓度具有中等程度的空间相关性.田面水三氮浓度由东向西呈现逐渐增大趋势,稻田东部田面水的渗漏以及水流方向(自东向西)可能是导致田面水三氮浓度空间变异的主要原因.建议采用生态塘滞留初期排水,再采取生物、生态技术对其净化处理,以降低稻田排水对周边水体的污染风险.  相似文献   

4.
太湖地区典型小城镇降雨径流NP负荷空间分布的研究   总被引:10,自引:5,他引:10  
通过对太湖地区典型乡镇镇区交通干道商业区、镇居民区和附近农村居民点的 8次降雨地表径流的调查,分析了小城镇地表径流的 TN、 TP、- N、- N含量的空间分布状况.结果认为,小城镇及附近农村降雨地表径流氮、磷负荷是区域重要的非点源污染源.镇附近农村居民点降雨径流 TN、 TP浓度分别达 7.26± 4.43 mg@ L- 1和 2.21± 0.90 mg@ L- 1, 镇商业区和居民点降雨径流 TN、 TP浓度相对较低,但远高于周围水提浓度,大大超过地面水Ⅴ类水质标准. TN/TP比值的差异说明, 3类观测区域降雨径流污染物来源明显不同.  相似文献   

5.
牛军捷 《安徽农学通报》2021,27(14):96-99,107
为了解豆科绿肥紫云英配施化肥降低稻田氮素径流损失的效果,采用田间定位试验,设置不施氮肥N-P-K:0-80-120kg/hm2(Control),常规施肥N-P-K:200-80-120kg/hm2(urea),紫云英配施化肥N-P-K:140-80~120+紫云英22500kg/hm2(urea+CM)3种施肥处理,测定稻田中总氮(TN)、铵态氮(NH4+-N)及硝态氮(NO3--N)的径流损失量.结果表明,与Control处理相比,施肥显著增加了稻田氮素径流损失量,urea和urea+CM处理的总氮损失总量分别达到Control处理的6.53倍、4.73倍.与urea处理相比,urea+CM处理下硝态氮的径流损失量无明显差异,而铵态氮径流损失量和总氮径流损失量则显著降低,分别减少4.00kg/hm2、5.40kg/hm2,降幅分别达到51.0%、27.6%.因此,紫云英配施化肥能有效地减少稻田氮素的径流损失,降低研究区域的环境风险.  相似文献   

6.
稻田径流易发期不同类型肥料的氮素流失风险   总被引:1,自引:5,他引:1  
依据60年典型自然降雨资料分析了太湖地区稻田径流易发期,结合不同肥料减量运筹长期定位试验(2009年开始)近3年的径流监测数据,比较了径流易发期内不同处理的实际径流氮素控制效果。结果表明,太湖地区水稻生长前期降雨概率较大,6月21日—7月6日单日降雨概率均超过50%。从阶段统计结果来看,基肥期和蘖肥期(含基肥-蘖肥阶段)降雨概率和降雨量均明显高于穗肥期、蘖肥-穗肥阶段和穗肥后至成熟阶段,降雨概率分别达48.15%和49.81%,降雨量分别为12.81 mm和12.84 mm,均超过实际监测到径流的同期最低降雨量11.5 mm,产生径流可能性较大,是稻季径流易发期。从定位试验的实际产生径流和田面水氮素浓度结果来看,易发期径流和田面水氮素以铵态氮为主,硝态氮差异不显著。与常规用量分次施肥处理(CN)相比,化肥减量优化处理(RF)和有机无机减量配施处理(OCN)径流易发期径流氮素浓度分别较CN处理平均降低8.83%和19.18%。缓控释肥减量替代处理(SCU)的基肥期和基肥-蘖肥阶段径流氮素浓度和田面水氮素浓度明显高于其他处理,径流氮素浓度较CN处理分别增加了20.3%和11.72%,但蘖肥期径流氮素浓度减少30.72%。全有机肥减量替代处理(OF)肥期径流和田面水氮素浓度降低,其中基肥期径流氮素浓度较CN处理降低9.04%、蘖肥期降低28.53%,但基肥-蘖肥阶段氮素浓度较CN处理增加了19.7%,增加了氮素径流损失风险。不同氮肥减量措施能够降低易发期内不同阶段径流氮素浓度,但在径流易发期的径流氮素损失控制效果不能一概而论。  相似文献   

7.
通过田间试验研究三个供氮水平下(施氮50 kg/hm2、150 kg/hm2、250 kg/hm2)施用肥料添加剂对苏南太湖地区水稻产量、氮素吸收利用及土壤氮平衡的影响。结果表明,施氮和肥料添加剂对水稻产量、氮肥吸收利用及表观损失氮均有显著影响,但只有在水稻产量和氮肥农学利用率指标上二者表现出显著的交互作用(P0.05);随施氮量增加,水稻产量、累积吸氮量、土壤残留无机氮(Nmin)、表观损失氮增加,氮肥吸收利用率和农学利用率降低;与单施尿素相比,尿素配施肥料添加剂可进一步增加水稻产量、累积吸氮量,并能提升氮肥利用率和降低表观损失氮量,且该效应总体上随施氮量增加而愈趋明显;施用肥料添加剂对水稻营养生长期的氮素积累影响要明显强于生殖生长期。在本研究条件下,综合分析水稻产量、氮肥利用及氮平衡指标,不施用肥料添加剂时,施氮150 kg/hm2可获得较好的农学和环境效应。  相似文献   

8.
太湖上游典型城镇地表径流面源污染特征   总被引:7,自引:2,他引:7  
选择太湖上游典型城镇,在不同临前降雨条件下,对城镇地表径流系统地进行空间采样,分析采样样本的统计分布特征。结果显示,受城镇复杂人类活动的影响,城镇地表径流面源污染输出具有较大的空间差异,针对典型城镇整体的空间采样样本符合对数正态分布,基于样本频率分布特征,统计城镇地表径流的面源污染浓度,其中COD为7.729(7.299,8.184)mg.L-1,TN和TP分别为1.790(1.752,1.829)mg.L-1和0.117(0.107,0.129)mg.L-1。对不同临前降雨条件下、不同用地类型的样本分别进行统计,获得不同临前降雨条件、不同城镇用地类型的地表径流面源污染浓度统计特征,证实了临前降雨条件、城镇用地类型对城镇地表径流面源污染输出有较大影响。  相似文献   

9.
在四川省眉山市通过径流场试验研究了不同施氮行为下,地表径流中氮的流失特征。试验结果表明,氨氮和总氮的流失均随着时间的推移而不断降低,氨氮的流失在总氮中所占比例较少,硝态氮为其主要的流失形式。氮素的施用量越高,其流失率越高。全施用有机肥的处理比全施用化肥处理的流失率低0.4个百分点。有机肥和无机肥混合的平衡施肥能有效减少氨氮和总氮的流失,且保持较高的产量。全化肥施肥处理收获的油菜产量,比平衡施肥处理下收获的油菜产量高7.1%,比全有机肥处理下收获的油菜产量高10.6%。有机肥可起到非常关键的氮素缓释作用,有机肥和无机肥配合施用,在保持高产的同时,可有效地减少养分的流失,提高氮肥利用率,减少水体污染。  相似文献   

10.
广东稻田氮素径流流失特征   总被引:2,自引:1,他引:2  
2008—2012年间,对分布于粤中、粤北和粤西的增城、清远和高州三个稻田试验点进行了连续5年的径流养分定点监测试验,研究当地农户常规施肥模式下稻田氮素养分的径流流失特征及其潜在环境风险。径流监测结果表明,三个试验点的稻田径流事件主要发生在早稻季节。增城、清远和高州试验点施肥处理铵态氮浓度分别为0.05~25.05、0.02~19.83 mg·L-1和0.02~55.4 mg·L-1,总氮浓度分别为0.33~36.51、0.46~21.01 mg·L-1和0.49~61.96 mg·L-1。结果显示,施肥明显增加径流水铵态氮和总氮含量,施氮后10 d内径流水铵态氮和总氮浓度均高于地表水Ⅴ类水标准(2.0 mg·L-1),具有一定的环境污染风险;施氮对径流水硝态氮浓度具有一定影响,三个试验点径流水硝态氮浓度均在10 mg·L-1的地表水标准限值内;稻田氮年流失负荷表现出时空差异性大的特点,增城、清远和高州试验点施肥处理总氮年流失负荷分别为24.31~53.68 kg·hm-2、8.71~23.76 kg·hm-2和13.32~88.16 kg·hm-2,相应氮流失系数为1.4%~3.9%、0.1%~5.5%和0.9%~21.6%。不同稻季总氮流失分析显示,53%~86%的总氮流失负荷发生在早稻季,与本地区降雨时间分布有直接关系。  相似文献   

11.
不同施肥方式下稻田氮磷流失特征   总被引:5,自引:0,他引:5  
采用大田小区试验,研究3种不同施肥方式下稻田系统氮(N)、磷(P)流失特征。实验结果表明,施用尿素和缓释肥的混施处理(MT)田面水中总氮(TN)和总磷(TP)平均浓度均为最高,分别为24.01和3.78mg/L,降雨产生径流时的N、P流失风险最大。整个水稻季,MT处理的N、P径流流失负荷分别为23.91和2.67kg/hm2,均为3种施肥处理中最高;MT处理的N、P渗漏流失负荷也为最高,分别为9.19和1.79kg/hm2。相对于MT处理,施用尿素和BB肥的无机处理(CT)及施用有机肥的有机处理(OT)能分别减少14.69%和29.18%的N总流失负荷及61.85%和68.97%的P总流失负荷。N、P的径流流失是稻田N、P流失的主要途径。  相似文献   

12.
太湖流域非点源氮污染对水质影响的定量化研究   总被引:28,自引:10,他引:28  
采用田间实验与实地调查相结合的方法,研究了太湖一级保护区武进市雪堰镇水稻季节各种类型非点源氮污染的负荷分配情况。结果表明,雪堰镇各种类型农业非点源污染中,农田氮排放总量为24166kg,占排放总量的72.7%;农村居民氮排放总量为6272kg,占排放总量的18.9%;城镇居民氮排放总量为2400kg,占排放总量的7.2%;养殖业氮排放总量为392kg,占排放总量的1.2%。在当前的非点源氮污染治理中,除采取有力措施控制农田养分外,农村和城镇居民生活污水和人粪尿的排放也应引起重视。  相似文献   

13.
水稻田面水中氮磷素的动态特征研究   总被引:31,自引:6,他引:31  
采用独立排灌系统的田间试验研究了水稻田面氮素、磷素的动态特征。结果表明,分次施肥后的次日,田面水中氨氮、总氮浓度明显升高,随着时间的推移,氮素浓度下降很快。特别是第1次施氮后第9d,各处理氨氮浓度分别为施后第1d浓度的1.19%~2.70%,全氮则变为6.03%~18.74%(对照N-I除外)。氨态氮/全氮比值也呈类似趋势,相比较而言,硝态氮含量要远远低于氨氮,最大值为2.07m g·L-1。同时还表现出不同的趋势,其峰值在第3d出现。另外,不同的施氮量的作用下,等量的磷肥所产生的田面效应表现不同,且大体表现为施氮量多者,田面水磷含量也相应多的现象。从环境污染角度考虑,控制氮素、磷素田面流失主要时期为施肥后1周内。  相似文献   

14.
稻田控制排水对减少氮磷损失的影响   总被引:8,自引:0,他引:8  
地面排水是稻田氮磷损失的重要途径。击溅侵蚀、排水沟坡面和沟底冲刷导致农田氮磷进入地表径流。控制排水可减少地面排水量和排水中氮磷浓度,尤其是降低径流中氮磷浓度,从而减少稻田氮磷损失。土壤颗粒沉淀、硝化、反硝化反应以及作物吸收是排水中氮磷浓度降低的主要原因。通过控制涝水在稻田和排水沟中的滞留时间,增加排水沟口溢流堰高度,降低径流水力坡度和挟沙能力是控制排水的主要手段。最后提出了稻田控制排水需要进一步研究的问题。  相似文献   

15.
青铜峡灌区水稻田三氮变化特征试验研究   总被引:2,自引:3,他引:2  
以宁夏青铜峡灌区水稻田三氮(总氮、氨氮、硝氮)作为研究对象,从田间运移、土壤剖面中的变化以及在排水沟内受到的消解作用方面进行了分析。结果表明:(1)水稻田间,排水中总氮浓度大于其在引水中浓度;5、6月份田间积水中总氮浓度小于其在引水、排水中浓度,7、8月份刚好相反。引水中氨氮浓度小于其在田间积水、排水中浓度。5—7月排水中硝氮浓度>其在引水中浓度>其在田间积水中浓度,8月份变化没有明显规律。(2)土壤剖面中0~20cm土层三氮含量最高,随着土壤剖面加深,呈递减趋势,总氮在灌溉后的含量高于灌溉期间,氨氮、硝氮灌溉后的含量低于灌溉期间。(3)排水沟内三氮均受到消解作用,消解幅度呈氨氮>总氮>硝氮的趋势,且与植被覆盖度、沟道长度、水流速度等因素关系密切。  相似文献   

16.
为了节约农业生产的成本,减少肥料的损失,提高肥料的利用率,明确水稻因控水管理造成的氮素流失数量。进行了水田氮肥损失研究,试验结果表明:2010年水田放水2次损失纯氮为37.8 kg/hm2,占投入总氮量的16%。因此,建议农业生产中尽可能地减少放水次数。  相似文献   

17.
The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regulation of runoff TN loss from paddy field-based two-cropping rice in Dongting Lake, China, and probes the best fertilization management for controlling N loss. Studies were conducted through modeling alluvial sandy loamy paddy soil (ASP) and purple calcareous clayey paddy soil (PCP) using lysimeter, following the sequence of the soil profiles identified by investigating soil profile. After application of urea in paddy field-based two-cropping rice, TN and NHa+-N concentrations in floodwater reached peak on the 1st and the 3rd day, respectively, and then decreased rapidly over time; all the floodwater NO3--N concentrations were very low; the pH of floodwater gradually rose in case of early rice within 15 d (late rice within 3 d) after application of urea, and EC remained consistent with the dynamics of NH4^+-N. The applied CRNF, especially 70% CRNF, led to significantly lower floodwater TN and NH4^+ concentrations, pH, and EC values compared with urea within 15 d after application. The monitoring result for N loss due to natural rainfall runoff indicated that the amount of TN lost in runoff from paddy field- based two-cropping rice with urea application in Dongting Lake area was 7.47 kg ha^-1, which accounted for 2.49% of urea- N applied, and that with CRNF and 70% CRNF application decreased 24.5 and 27.2% compared with urea application, respectively. The two runoff events, which occurred within 20 d after application, contributed significantly to TN loss from paddy field. TN loss due to the two runoffs in urea, CRNF, and 70% CRNF treatments accounted for 72, 70, and 58% of the total TN loss due to runoff over the whole rice growth season, respectively. And the TN loss in these two CRNF treatments due to the first run-off event at the 10th day after application to early rice decreased 44.9 and 44.2% compared with urea, respectively. In conclusion, the 15-d period after application of urea was the critical time during which N loss occurred due to high floodwater N concentrations. But CRNF decreased N concentrations greatly in floodwater and runoff water during this period. As a result, it obviously reduced TN loss in runoff over the whole rice growth season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号