首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Use of nutrient efficient crop species or cultivars within species in combination with improved crop production practices offer the best option for meeting the future food requirements of growing world populations. Efficiency improvement has a key role for nutrient use and it improves both productivity of yield and minimizes risks of losses that potentially harm the environment. To improve nutrient use efficiency (NUE), one strategy is to select cultivars of crops with high NUE. Both nitrogen (N) and phosphorus (P) are among essential macronutrients commonly applied to agricultural crops to optimize yields. Evaluation of potato cultivars with high N and P efficiency is essential for sustainable production of the crop. In Ethiopia, however, little research has been done to elucidate better NUE of potato crop until recently. This study was, thus, designed to evaluate selected potato cultivars (Belete, Gudene, Jalene, Marachere and one local check) for NP use efficiency under low levels of the nutrients in Wolaita Sodo University, Ethiopia during 2014 and 2015. Factorial combination of 3 levels of each N (0, 55.5 and 111 kg N ha?1 ) and P (0, 19.5 and 39 kg P ha?1 ) were assigned to the main plots and the 5 cultivars to subplots of split-plot design in three replications. Efficiency indices such as agronomic efficiency, physiological efficiency and recovery efficiency were computed for combined NP nutrients. Results showed that agronomic nitrogen use efficiency, apparent phosphorus use efficiency and phosphorus use efficiencies were significantly influenced by the interaction effect of rates of NP nutrition and variety. Application of NP more than 55.5:19.5 kg ha?1 will not beneficial due to their less or equal use and recovery efficiencies to 55.5:19.5 kg NP ha?1. Belete was the most NP efficient variety followed by Jalene and Gudene in all efficiency indices. Therefore, Belete, Jalene and Gudene return better for NP at 55.5:19.5 kg ha?1 for economical use of fertilizes while obtaining satisfactory yield. It can be concluded that yield response variation of the varieties was related to their differences in NP uptake and use efficiencies; and the improved potato varieties were superior to local check in using NP nutrients efficiently.  相似文献   

2.
了解水分、氮素及其互作对水稻产量与水、氮利用效率的影响,对协同提高水稻产量与水氮利用效率有重要意义。本文概述了水稻节水灌溉技术、氮肥利用效率与氮肥施用技术、水分与氮素对水稻产量及水氮利用效率的耦合效应、作物-土壤关系及水氮调控机制等方面取得的进展;讨论了存在的问题,这些问题包括:高产水稻作物与土壤的水氮互作效应尚不明确;高产水稻水氮耦合与高效利用的分子机理不清楚;协同提高水稻产量与水氮利用效率的调控途径尚未掌握。针对这些问题,建议今后重点研究:高产水稻作物与土壤的水氮互作效应及其机制;水氮互作调控水稻吸收利用水分和氮素的生理与分子机理;协同提高水稻产量和水氮利用效率的调控途径与关键技术。  相似文献   

3.
Optimizing nitrogen (N) fertilizer management in irrigated potato (Solanum tuberosum L.) on coarse-textured soils is challenging. The “4R” nutrient stewardship framework of using N fertilizer at the right rate, right source, right placement and right time provides approaches to improve fertilizer use efficiency while maintaining or improving yield. This 3-years replicated field plot study evaluated effects from a series of N fertilization strategies including 10 combinations of sources, placement and timing, as well as fertigation, on irrigated processing potato (cv. Russet Burbank) grown for a total of five site-years in the Province of Manitoba, Canada. Treatments were designed to provide early to late availability of N to the potato crop. Nitrogen was applied to 80% of Provincial N recommendation to increase the likelihood of observing improved fertilizer use efficiency and effects of treatments on yields. Measurements were tuber yield, size distribution, specific gravity, hollow-heart rate, fertilizer apparent N recovery (ANR) and agronomic nitrogen use efficiency (NUE). Results showed differences in yield, quality, ANR and NUE between fertilizer treatments were generally very small or absent. Average tuber marketable yields for fertilizer treatments were significantly greater than those for the unfertilized control (P?<?0.001). Split application of urea at planting and hilling, and urea at planting with fertigation occasionally increased tuber marketable yields on sites of coarse textured soils (P?<?0.05). Use of polymer-coated urea (ESN) or stabilized urea with inhibitors (SuperU) did not affect yield, quality or N use of potato. Site-year difference (P?<?0.001) were apparent for all measures highlighting the importance of soil and climatic conditions on agronomic and environmental effects of N management practices. The results indicate current grower practice of split urea application at planting and hilling and urea at planting following by in-season fertigation are sound. Results indicate growers could shift to the more convenient practice of ESN at planting without reducing yields. Absence of treatment effects suggests N was generally not a limiting factor for the current study, indicating that the current recommendation for potato production in Manitoba over-estimate site-specific crop N needs.  相似文献   

4.
Maximising potato nitrogen use efficiency (NUE) is necessary to combine high yields, market requirements, high economic income and low environmental impact. A 5-year study was conducted to assess the cultivar effect on NUE components in France. Seven trials were carried out in the Beauce, Picardie and Nord-Pas de Calais regions. The protocol combined two factors: cultivar (‘Agata’, ‘Bintje’, ‘Innovator’, ‘Lady Claire’ and ‘Spirit’) and nitrogen application along a complete response curve (six to seven rates). Total tuber yield, 50 mm tuber yield and nitrogen uptake at haulm killing were measured. We demonstrate that the potato cultivar has a clear effect on NUE components. This effect is supported both by nitrogen uptake efficiency (NupE) and by nitrogen utilisation efficiency (NutE). It implies that the potato cultivars tested generate different nitrogen requirements per yield unit to reach the optimum yield. The way to characterise these differences for all cultivars available in registration trials must be considered before taking into account a cultivar effect on NUE in nitrogen recommendations for farmers.  相似文献   

5.
《Journal of Crop Improvement》2013,27(1-2):157-185
SUMMARY

Improving nitrogen use efficiency (NUE) is an important objective of agroecosystem management. We define and demonstrate key indicators of NUE that enable a broader assessment of N management strategies. Nitrogen efficiency components and indexes were defined to assess soil and crop physiological processes, and agronomic and environmental factors related to N use. Measurements of grain yield, grain N, aboveground plant N, applied N, post-harvest root-zone soil N, and N losses via subsurface drains were used to assess N retention efficiency, available N uptake efficiency, N utilization efficiency, N harvest index, N yield efficiency, N reliance index, grain N accumulation efficiency, N balance index, N fertilizer utilization efficiency, and N loss index. Nitrogen use indicators were evaluated for two field studies: (1) hard red spring wheat with four N levels and two tillage treatments: no-tillage (NT) and conventional tillage (CT); and (2) corn in crop sequences of continuous corn (C-C), corn-soybean (C-S), two years of corn following alfalfa (ALF-C-C), and two years of corn following perennial grass (CRP-C-C). Tillage, crop rotation, and applied N had large and variable effects on different indicators of N use. N efficiency components and indexes were useful for monitoring cropping system N use, assessing N management strategies, and identifying key areas for improvements in NUE.  相似文献   

6.
马铃薯生产的氮肥管理策略   总被引:6,自引:0,他引:6  
氮是影响马铃薯产量和品质的重要因素,多年来中国马铃薯生产过程中氮肥管理始终缺乏科学的指导,导致许多优质马铃薯品种的产量优势和品质优势难以得到充分的发挥。通过合理施用氮肥,协调马铃薯茎叶生长与块茎生长,促进块茎的形成和膨大,减少氮肥损失,提高氮肥利用率,是马铃薯氮肥管策略的重要内容,同时也是农业可持续发展的重要保障。针对氮肥施用量和施用时期对马铃薯生长与块茎产量的影响及马铃薯氮素营养诊断措施,综述国内外马铃薯氮肥管理的研究结果,以期为中国马铃薯养分管理提供研究思路,同时也为马铃薯生产的氮肥施用策略提供参考。  相似文献   

7.
玉米氮效率及其研究进展   总被引:11,自引:2,他引:11       下载免费PDF全文
王进军  黄瑞冬 《玉米科学》2005,13(1):089-092
玉米氮效率的基因型差异决定了不同氮肥供应条件下氮素吸收能力的差异,选用氮高效品种可以在低氮条件下获得高产,减少氮肥的浪费.近年来国内外对玉米氮效率的研究主要有以下几个方面:植株性状与氮效率的关系、氮效率的生理生化基础、氮效率的遗传改良等.对玉米氮效率及研究进展进行了综述,并讨论了如何继续开展对玉米氮效率的研究工作。  相似文献   

8.
Summary Fifteen experiments were carried out in different sites of Italy, Belgium, Scotland and The Netherlands from 1995 to 1999 to study the possible use of chlorophyll meter to assess the nitrogen status and to guide nitrogen fertilization of the potato crop. The results are gathered here and reviewed together with available information in literature. The paper deals with measuring principles of chlorophyll meter; relation between chlorophyll meter readings and analytical measurements of chlorophyll, analytical measurements of nitrogen, crop nitrogen content, tuber yield, and physiological processes in leaves; variations in chlorophyll meter readings related to nitrogen supply, potato cultivar, crop management, and sampling methods; use of chlorophyll meter readings for decision making in the management of supplemental nitrogen fertilization (assessment of chlorophyll meter critical threshold, plant response to addition of supplementary N).  相似文献   

9.
不同玉米自交系氮效率的分析   总被引:5,自引:5,他引:5  
试验在4个氮处理水平上对8个玉米自交系的氮效率进行了研究。结果表明,玉米自交系在产量、生物量和氮累积量上存在显著的差异。据氮效率分析,黄C属低氮、高氮处理下产量均较高的双高效型,340属低氮高效型自交系,00冬属高氮高效型自交系,C8605属低氮、高氮处理下产量均较低的双低效型自交系。通径分析表明,在3个施氮处理中氮吸收效率对氮效率的作用均大于氮利用效率对氮效率的作用,且低氮下吸收效率对氮效率的作用大,高氮下利用效率对氮效率的作用大。  相似文献   

10.
氮肥运筹对夏玉米氮素利用及土壤无机氮时空变异的影响   总被引:2,自引:0,他引:2  
姜涛  李玮 《玉米科学》2013,21(6):101-106
研究不同施氮量及基肥追肥比例对土壤无机氮时空分布及玉米氮肥利用效率的影响。结果表明,不同施氮量和基追比显著影响土壤剖面硝态氮含量。各施氮处理不同生育期0~60 cm土层硝态氮含量均显著高于不施氮肥处理,且随施氮量的增加土壤中硝态氮含量增加。夏玉米生长季土壤铵态氮含量较低,且时空变化不明显。玉米氮素农学效率(NAE)、氮素利用效率(NUE)随施氮量的增加显著降低;氮素表观回收率(NRE)有相同的变化趋势,但差异不显著;氮素收获指数(NHI)随施氮量的增加显著增大。相同施氮水平下,“50%基肥+50%大喇叭口肥基追比”的NAE、NUE、NHI和玉米产量显著高于其他处理。因此,在玉米生产中应避免播种时一次性大量施用氮肥,增加后期施氮比例可显著提高氮肥利用效率和玉米产量。  相似文献   

11.
Improving nitrogen use efficiency is important for the potato crop, because of its relatively low ability to take up available soil mineral nitrogen (N). Splitting of N fertilizer application is a suitable approach to better match N need and supply. In-season crop N monitoring methods are therefore required to support such strategies. This paper deals with the state of the art and potential development of characteristics, use and implementation of well known and more recent methods aimed to assess in-season potato Crop Nitrogen Status (CNS). A short overview of this concept is given for the potato crop. The most important and available methods for CNS assessment are evaluated for their accuracy, precision, sensitivity, sensibility and feasibility. These are: the petiole sap nitrate concentration test; the leaf chlorophyll concentration measurement using a hand-held chlorophyll meter; the measurement of crop light reflectance through a hand-held radiometer using passive sensors. More recent methods still under investigation based on near, ground-based, air-borne or space-borne remote sensing are discussed for their scientific and practical interest in the near future. The current and potential use and implementation of these methods into decision support systems for potato N fertilization management aimed at improving the potato crop nitrogen use efficiency are analysed by: comparing relative and raw data; establishing threshold values of CNS; and combining or integrating the CNS values into models dedicated to N recommendation or to crop growth simulation.  相似文献   

12.
【目的】探究水氮管理措施对不同氮效率水稻根系构型、氮素吸收利用和产量形成的影响,以及根系性状特征与氮素吸收利用和产量关系。【方法】试验采用三因素裂裂区设计,主区为2个不同氮效率水稻品种德香4103(氮高效型)和宜香3724(氮低效型),裂区设置"常规灌溉"和"控制性交替灌溉"2种水分管理方式,裂裂区为SPAD指导施肥、优化施肥以及农民习惯施肥3种施氮模式,运用岭回归分析方法探究根系构型与氮素吸收利用和产量的关系。【结果】水稻抽穗期根系性状、产量、每穗粒数、千粒重及总颖花量均存在显著的基因型差异。氮高效品种德香4103每穗粒数多,群体库容量大,产量较氮低效品种宜香3724高0.24%~11.31%;控制性交替灌溉有利于水稻千粒重的增长,常规灌溉则对水稻有效穗数、每穗粒数及群体颖花量提高更为有利;SPAD指导施肥和优化施肥处理能够提高水稻有效穗数和每穗粒数,扩大群体颖花量以保证其对农民习惯施肥的产量优势;由于水氮互作效应的存在,控制性交替灌溉下施氮处理与空白处理水稻千粒重的差距比常规灌溉的大幅降低,使得控制性交替灌溉下施用氮肥的增产效果更佳。德香4103的氮肥生理利用率较宜香3724平均高8.69%,常规灌溉下水稻氮积累量较高,控制性交替灌溉下氮肥回收率、农学利用率、生理利用率均较优;与农民习惯施肥处理相比,SPAD指导施肥与优化施肥模式更有利于水稻氮素吸收利用效率的提高。拔节期、抽穗期和成熟期水稻根系构型与产量岭回归方程的决定系数范围为0.4198~0.9028,其中,抽穗期根系性状与产量关系最为密切,氮高效和氮低效品种的决定系数均超过0.9。在拔节期,水稻细分枝根长对产量影响最大;在抽穗期,氮高效和氮低效品种存在差异,前者是粗分枝根长,后者是细分枝根表面积对产量影响最大;在成熟期,不定根长与产量关系最为密切。水稻抽穗期根系构型对氮积累量变化的解释程度较高,岭回归方程决定系数均接近0.7。就水氮管理措施而言,氮高效和氮低效水稻均应采用常规灌溉配套SPAD指导施肥或控制性交替灌溉结合优化施肥来实现产量的提高。【结论】水稻抽穗期根系构型与产量、氮积累量关系密切,采用合理的水氮管理措施能够实现水稻产量和氮素吸收利用效率的同步提高。  相似文献   

13.
J. Vos 《Potato Research》1997,40(2):237-248
Summary The response of potato to different rates of nitrogen supply ranging from 0–40 g m−2 N was studied in five field experiments near Wageningen. NL (520 North). In total two late potato cultivars and two sites were used during successive seasons. The results are summarized in a set of regression equations separately for total crop and tubers. The relation between nitrogen taken up (g m−2) in the total crop and total dry matter production (g m−2) could be described with the exponential equation: 1942–1900 * 0.93X (r2=0.953, n=62). Nitrogen concentrations in the dry matter increased linearly with nitrogen uptake. Harvest indices for dry matter and nitrogen tended to decline with increase in N uptake. Cultivars differed only in the effect on N on tuber dry matter concentration. The relation between nitrogen uptake and nitrogen supply could be fitted with quadratic regression models. but coefficients were influenced by site and season.  相似文献   

14.
Low-input and organic farming systems have notable differences in nitrogen (N) sources, cycling and management strategies compared to conventional systems with high inputs of synthetic N fertilizer. In low-input and organic systems, there is greater reliance on complex rotations including annual and perennial crops, organic N sources, and internal N cycling that more closely mimic natural systems. These differences in farming system practices fundamentally affect N availability and N use efficiency (NUE) and could impact crop traits and breeding strategies required to optimize NUE. We assess genetic and environmental factors that could assist breeders in improving crop performance in low-input and organic farming systems by examining NUE in natural and agricultural ecosystems. Crop plants have often been bred for high N productivity, while plants adapted to low N ecosystems often have lower productivity and higher levels of internal N conservation. Breeders can potentially combine N productivity and N conservation through the use of elite and wild germplasm. Beneficial genetic traits include the ability to maintain photosynthesis and N uptake under N stress and the ability to extract soil N at low concentrations, perhaps through beneficial associations with soil microorganisms. In addition, breeding for specific adaptation to climactic and management practices so that crop uptake patterns match N availability patterns, while minimizing pathways of N loss, will be critical to improving NUE.  相似文献   

15.
【目的】探明不同氮利用率水稻品种的氮素积累与转运特征及其机制。【方法】2个氮高效品种(武运粳30号和连粳7号)和2个氮低效品种(扬粳4038和宁粳1号)种植于大田,设置2个施氮量:全生育期不施氮(0N)和全生育期施氮180kg/hm2(180N),比较分析了不同氮利用率粳稻品种干物质生产、氮素积累与转运差异及其机制。【结果】与氮低效品种相比,氮高效品种具有较高的产量、氮肥利用率、总颖花量和结实率,较高的花前干物质转运量和花后干物质积累量,分蘖至穗分化始期和抽穗至成熟期较高的净同化率和作物生长率,抽穗期较高的糖花比,灌浆期较高的籽粒库活性、籽粒中脱落酸与1-氨基环丙烷-1-羧酸含量的比值和茎鞘中较高的非结构性碳水化合物的转运和蔗糖合成相关酶活性以及蔗糖转运蛋白基因的表达量,抽穗后较高的氮转运、氮素吸收量,灌浆期较高的比叶氮含量、叶片中细胞分裂素含量、氮代谢酶活性以及氮素转运相关基因的表达量。【结论】氮高效品种穗分化前和抽穗后较高的物质生产效率以及灌浆期较高的碳氮转运与积累是产量和氮肥利用率协同提高的重要机制。  相似文献   

16.
施氮量对强筋小麦产量、氮素利用率和品质的影响   总被引:11,自引:0,他引:11  
为探明协同提高强筋小麦产量、氮素利用率和品质的施氮量,以强筋小麦品种济麦20(中穗型)和洲元9369(大穗型)为材料, 研究了180、240和300 kg·hm-2三个氮肥水平(分别用N180、N240和N300表示)对强筋小麦产量、氮素利用率、品质及其相关指标的影响。结果表明,相同施氮量下,洲元9369的产量、氮素利用率、面团形成时间、面团稳定时间、面包体积和面包评分均高于济麦20。当施氮量由N180增至N240时,2个品种的产量无显著变化,但沉降值、面团形成时间、面团稳定时间、面包体积和面包评分均显著提高;施氮量增至N300后,2个品种的产量和品质又都显著下降,籽粒总蛋白含量、谷蛋白含量、SDS-不可溶性谷蛋白含量、醇溶蛋白含量和谷蛋白聚合指数均明显降低,而SDS-可溶性谷蛋白含量和谷醇比却表现为上升趋势。经相关分析,SDS-不可溶性谷蛋白含量、谷蛋白聚合指数与面团形成时间、面团稳定时间、面包体积和面包评分均呈显著正相关。以上结果表明,谷蛋白聚合程度降低是过量施氮条件下强筋小麦品质下降的主要原因。综合考虑小麦产量、氮素利用率和籽粒品质,240 kg·hm-2为本研究条件下的最佳施氮量。  相似文献   

17.
In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in ten rice genotypes were investgated at the elongation, booting, heading and maturity stages under six N levels in a pot experiment with soil-sand mixtures at various ratios. NAE in various rice genotypes firstly increased, peaked under a medium nitrogen rate of 0.177 g/kg and then decreased, but NUE and NHI always decreased with increasing nitrogen levels. NAE in various rice genotypes ever increased with growing process and NUE indicated a descending tendency of elongation stage>heading stage>maturity stage>booting stage. N level influenced rice NAE, NUE and NHI most, followed by genotype, and the both effects were significant at 0.01 level. In addition, the interaction effects of genotype and nitrogen level on rice NAE and NUE were significant at 0.01 level, but not significant on rice NHI. Because the maximum differences of NAE and NUE were found at the elongation stage, it was thought to be the most suitable stage for identification and screening these two paremeters. Therefore, the optimum conditions for identification and screening of rice NAE, NUE and NHI in a pot experiment were the nitrogen rate of 0.157 g/kg at the elongation stage, low nitrogen at the elongation stage, and the nitrogen rate of 0.277 g/kg at the maturity stage, respectively.  相似文献   

18.
氮肥减施对京科968与郑单958氮效率及产量的影响   总被引:3,自引:2,他引:1  
以郑单958与京科968为材料,在减施氮肥(正常施氮量210 kg/hm~2)14.3%~28.6%水平下,比较玉米品种氮效率与产量。结果表明,施氮肥150~180 kg/hm2,郑单958产量下降2.39%~4.03%,京科968产量下降1.67%~2.99%。随着施氮量减少,氮肥偏生产力、氮肥利用效率,氮肥农学利用效率升高,氮肥表观利用效率、100 kg子粒需氮量降低,氮收获指数保持基本稳定。适度减施氮肥,可有效提高玉米生产效率。施氮处理下不同器官的氮转运率与对子粒的氮贡献率高于不施氮处理,不同器官的氮转运率顺序为穗轴叶片苞叶叶鞘茎秆;对子粒的氮贡献率表现为叶片茎秆穗轴叶鞘苞叶。京科968氮收获指数、氮肥偏生产力、氮肥表观利用效率均优于郑单958,氮肥农学利用效率、氮肥利用效率与子粒吸氮量与郑单958相当。京科968氮吸收效率优于郑单958,具备较好的耐低氮特性。  相似文献   

19.
本研究通过低氮压力选择,筛选出甘蔗氮高效种质,分析影响甘蔗氮高效的重要指标,为甘蔗氮高效育种及栽培提供理论依据。以58份甘蔗种质资源为材料,在苗期采用正常供氮(2 mmol/L N)和低氮(0.2 mmol/L N)处理,分析甘蔗植株形态、干重及氮素在各器官中累积分配的特征。通过主成分分析方法筛选影响甘蔗氮高效利用的重要指标,通过聚类分析对58份种质进行聚类。结果表明,低氮(0.2 mmol/L N)处理可以明显从植物形态区分不同种质的氮利用差异,58份种质低氮条件下的干重范围为0.64~14.75 g/株,氮累积量为5.53~63.00 mg/株,氮利用率范围为115.40~279.30 g/g。对低氮压力下甘蔗干重及氮累积等25个指标进行主成分分析后,提取出4个主要成分,总贡献率为92.35%。通过高、低氮条件下与氮利用效率有关的氮转移系数及基因潜力等19个指标分析后提取出5个主成分,总贡献率为82.21%。影响甘蔗氮高效的重要指标有甘蔗的干重(全株、叶、根)、氮累积量(全株、叶、茎)、氮利用率(全株、叶)、叶的相对氮利用率、茎的基因潜力、茎的相对干物质量和茎的相对氮累积量。经聚类分析后初步将58份甘蔗种质分为氮高效基因型、偏氮高效基因型、偏氮低效基因型和氮低效基因型。  相似文献   

20.
前期控氮对夏玉米产量、物质生产及氮素利用的影响   总被引:1,自引:0,他引:1  
试验以郑单958为材料,在79500株/hm2密度下研究了前期控氮对玉米产量、物质生产及氮素利用的影响。结果表明,在大喇叭口期施氮120kg/hm2的条件下,前期按30~60kg/hm2进行适度控氮,产量可达到10108.5~10170.0kg/hm2,氮肥利用率为32.78%~33.35%。前期适当控氮保证玉米苗期对氮素的需求,达到蹲苗的效果,控上促下,培育壮苗,提高根系的吸收和合成能力。前期适度控氮还可保持植株后期较强的光合生产能力,增强根系吸氮能力,保证子粒有充足的碳氮来源,并促进干物质及氮素向子粒的运转,实现玉米产量与氮素利用的协同提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号