首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In general, vaccines containing inactivated equine herpesvirus-1 (EHV-1) fail to prevent abortion in pregnant mares following infection with a virulent strain of EHV-1. We have tested the hypothesis that resistance to EHV-1-induced abortion in pregnant mares is associated with high frequencies of EHV-1 specific, major histocompatibility complex (MHC) class I-restricted, cytotoxic T lymphocytes (CTL) in the circulation. To test this theory, three groups of pregnant mares were assembled with varying backgrounds of infection or vaccination in an attempt to mimic the immune status of the general population. Group 1 mares (n=9) were untreated controls selected at random. Group 2 mares (n=5) were vaccinated three times intramuscularly with inactivated EHV-1. Group 3 mares (n=3) had been infected with EHV-1 on four previous occasions. The frequency of CTL in blood leucocytes was measured by limiting dilution analysis at three time points; at the beginning of pregnancy (approximately 28 weeks before infection) in the Group 2 and Group 3 mares (4-7 weeks of gestation) (Group 1 was unavailable for sampling) and then 2 weeks before (30-40 weeks of gestation) and 3 weeks after experimental infection in all the mares. Serum samples were collected to monitor complement fixing (CF) antibody titres. Mares in all three groups were infected experimentally with EHV-1 strain Ab4/8 by the intranasal route after which they were monitored clinically to determine the outcome of pregnancy and samples were collected to determine the duration of nasopharyngeal shedding and cell-associated viraemia. The untreated control mares showed low pre-infection CTL. After experimental infection, they all seroconverted, aborted and demonstrated expected clinical and virological signs. Some vaccinated mares (3/5) had elevated titres of CF antibody prior to their first vaccination. All the vaccinated mares seroconverted after vaccination and exhibited higher CTL frequencies than controls before infection. Four of the five foaled normally. The multiply infected mares had low CF antibody titres prior to infection and showed neither seroconversion nor clinical or virological signs after infection. All multiply infected mares exhibited high frequencies of CTL before infection and they all foaled normally. The CTL frequencies observed differed significantly from the expected frequencies in the control and multiply infected groups at 2 weeks pre-infection (P=0.034) and between the foaling and aborting mares at 2 weeks pre-infection (P=0.005) and 3 weeks post-infection (P=0.015). The results show a positive correlation between the number of virus-specific CTL in the peripheral blood of pregnant mares and their protection against abortion induced by EHV-1 infection. Therefore, as indicated by this study, rational approaches to the development of new vaccines for EHV-1 should stimulate cytotoxic immune responses and develop virus-specific CTL as pre-requisites for protection against abortion.  相似文献   

2.
Equine herpesvirus 1 (EHV-1) is a major cause of respiratory disease and abortion in horses worldwide. Although some vaccines have been shown experimentally to reduce disease, there are few reports of the responses to vaccination in the field. This study measured antibody responses to vaccination of 159 mares (aged 4-17 years) and 101 foals (aged 3-6 months) on a large stud farm with a killed whole virus EHV-1/4 vaccine used as per the manufacturer's recommendations. Using an EHV glycoprotein D (gD)-specific ELISA and a type-specific glycoprotein G (gG) ELISA, respectively 13.8 and 28.9% of mares, and 42.6 and 46.6% of foals were classed as responding to vaccination. Additionally, 16.4 and 17.6% of mares were classified as persistently seropositive mares. Using both assays, responder mares and foals had lower week 0 mean ELISA absorbances than non-responder mares and foals. Responder mares were ten times more likely to have responder foals, and non-responder mares were six times more likely to have non-responder foals than other mares using the gG ELISA. Mares aged 7 years or less and foals aged 4 months or more were more likely to respond to vaccination than animals in other age groups. There was no association between response of mares and the number of previous vaccinations received and persistently seropositive mares did not respond to vaccination. This study documents the responses of mares and foals to vaccination in a large scale commercial environment in 2000, and suggests that knowledge of antibody status may allow a more selective vaccination strategy, representing considerable savings to industry.  相似文献   

3.
Equine herpesvirus-1 (EHV-1) is one of the most common and ubiquitous viral pathogens infecting equines, particularly horses worldwide. The EHV-1 is known to induce not only humoral but also cellular immune responses in horses. Respiratory distress, abortion in pregnant mares, neurological disorders, and neonatal foal deaths represent EHV-1 infection. Despite the limited success of inactivated, subunit, live, and DNA vaccines, over the past few decades, vaccination remains the prime preventive option to combat EHV-1 infection in horses. However, current vaccines lack the potentiality to protect the neurological form of infections in horses. There is desperate necessity to search effectual EHV-1 vaccines that may stimulate not only mucosal and systemic cellular immunity but also humoral immunity in the horses. This review highlights the state of knowledge regarding EHV-1 biology, EHV-1 pathogenesis, and disparate vaccines studied in the past to prevent EHV-1 infection. The review also underlines the best management strategies which certainly need to be adopted by veterinarians in order to avoid and prevent EHV-1 infection and outbreak in horses in the future.  相似文献   

4.
Horses are commonly vaccinated to protect against pathogens which are responsible for diseases which are endemic within the general horse population, such as equine influenza virus (EIV) and equine herpesvirus-1 (EHV-1), and against a variety of diseases which are less common but which lead to greater morbidity and mortality, such as eastern equine encephalomyelitis virus (EEE) and tetanus. This study consisted of two trials which investigated the antigenicity of commercially available vaccines licensed in the USA to protect against EIV, EHV-1 respiratory disease, EHV-1 abortion, EEE and tetanus in horses. Trial I was conducted to compare serological responses to vaccines produced by three manufacturers against EIV, EHV-1 (respiratory disease), EEE, and tetanus given as multivalent preparations or as multiple vaccine courses. Trial II compared vaccines from two manufacturers licensed to protect against EHV-1 abortion, and measured EHV-1-specific interferon-gamma (IFN-gamma) mRNA production in addition to serological evidence of antigenicity. In Trial I significant differences were found between the antigenicity of different commercial vaccines that should be considered in product selection. It was difficult to identify vaccines that generate significant immune responses to respiratory viruses. The most dramatic differences in vaccine performance occurred in the case of the tetanus antigen. In Trial II both vaccines generated significant antibody responses and showed evidence of EHV-1-specific IFN-gamma mRNA responses. Overall there were wide variations in vaccine response, and the vaccines with the best responses were not produced by a single manufacturer. Differences in vaccine performance may have resulted from differences in antigen load and adjuvant formulation.  相似文献   

5.
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.  相似文献   

6.
Equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) cause infections of horses worldwide. While both EHV-1 and EHV-4 cause respiratory disease, abortion and myeloencephalopathy are observed after infection with EHV-1 in the vast majority of cases. Disease control is achieved by hygiene measures that include immunization with either inactivated or modified live virus (MLV) vaccine preparations. We here compared the efficacy of commercially available vaccines, an EHV-1/EHV-4 inactivated combination and an MLV vaccine, with respect to induction of humoral responses and protection of clinical disease (abortion) in pregnant mares and foals on a large stud with a total of approximately 3500 horses. The MLV vaccine was administered twice during pregnancy (months 5 and 8 of gestation) to 383 mares (49.4%), while the inactivated vaccine was administered three times (months 5, 7, and 9) to 392 mares (50.6%). From the vaccinated mares, 192 (MLV) and 150 (inactivated) were randomly selected for serological analyses. There was no significant difference between the groups with respect to magnitude or duration of the humoral responses as assessed by serum neutralization assays (median range from 1:42 to 1:130) and probing for EHV-1-specific IgG isotypes, although neutralizing responses were higher in animals vaccinated with the MLV preparation at all time points sampled. The total number of abortions in the study population was 55/775 (7.1%), 9 of which were attributed to EHV-1. Seven of the abortions were in the inactivated and two in the MLV vaccine group (p=0.16). When foals of vaccinated mares were followed up, a dramatic drop of serum neutralizing titers (median below 1:8) was observed in all groups, indicating that the half-life of maternally derived antibody is less than 4 weeks.  相似文献   

7.
In this study, experimental canarypox virus (ALVAC) and plasmid DNA recombinant vaccines expressing the gB, gC and gD glycoproteins of EHV-1 were assessed for their ability to protect conventional ponies against a respiratory challenge with EHV-1. In addition, potential means of enhancing serological responses in horses to ALVAC and DNA vaccination were explored. These included co-administration of the antigen with conventional adjuvants, complexation with DMRIE-DOPE and co-expression of the antigen along with equine GM-CSF. Groups of EHV primed ponies were vaccinated twice intra-muscularly with one dose of the appropriate test vaccine at an interval of 5 weeks. Two to 3 weeks after the second vaccination, ponies were infected intra-nasally with the virulent Ab4 strain of EHV-1 after which they were observed clinically and sampled for virological investigations. The results demonstrated that DNA and ALVAC vaccination markedly reduced virus excretion after challenge in terms of duration and magnitude, but failed to protect against cell-associated viremia. Noteworthy was the almost complete absence of virus excretion in the group of ponies vaccinated with ALVAC-EHV in the presence of Carbopol adjuvant or DNA plasmid formulated with aluminium phosphate. The administration of the DNA vaccine in the presence of GM-CSF and formulated in DMRIE-DOPE and of the ALVAC vaccine in the presence of Carbopol adjuvant significantly improved virus neutralising antibody responses to EHV-1. These findings indicate that DNA and ALVAC vaccination is a promising approach for the immunological control of EHV-1 infection, but that more research is needed to identify the immunodominant protective antigens of EHV-1 and their interaction with the equine immune system.  相似文献   

8.
The aim of the present study was to clarify whether an EHV-1 induced abortion can be prognosticated by an increase of antibody titres, virus shedding and/or viraemia and whether the current abortion diagnostic is suitable. In this context the immune response post immunization and a possible reactivation were of great interest. For this purpose blood samples of 32 mares between the ages of 5-21 years were regularly investigated during a period of two years before and after vaccination and pregnancy. Neutralization tests, indirect immunofluorescence tests as well as PCR and virus isolation were used for EHV-1 diagnostics. It could be shown that the horses reacted individually to vaccination. In 14 cases a EHV-1-reactivation was suggested. An abortion prognosis was not possible even using serological, virological and molecular biological parameters. In addition, virus shedding and antibody titres were individual. An acute infection was detectable by a significant rise of antibodies and viraemia as well as virus shedding in the secretions. For the abortion diagnostics the antigen detection in combination with virus isolation and PCR from fetal lungs gave reliable results. In addition, the virological and serological investigation of the mare is recommendable. For prophylaxis we would advise a regular vaccination and strict hygiene.  相似文献   

9.
Sero-epidemiological studies conducted between 1995 and 1997 on two large Thoroughbred stud farms in the Hunter Valley of NSW showed clear evidence of EHV-1 infection in foals as young as 30 days of age. Similarly, serological evidence suggested that these foals were infected with EHV-1 from their dams or from other lactating mares in the group, with subsequent foal to foal spread of infection prior to weaning. These studies also provided evidence of EHV-1 infection of foals at and subsequent to weaning, with foal to foal spread of EHV-1 amongst the weanlings. These data indicated that the mare and foal population was a reservoir of EHV-1, from which new cases of infection propagated through the foal population both before and after weaning. The results of these studies support the long standing management practices of separating pregnant mares from other groups of horses to reduce the incidence of EHV-1 abortion. Also, these results have important implications for currently recommended vaccination regimens, as the efficacy of vaccination in already latently infected horses is unknown.  相似文献   

10.
The specificity of selected immune responses to equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4) was examined in 3 colostrum-deprived specific-pathogen-free foals. Single foals were vaccinated with inactivated EHV-1, inactivated EHV-4, or control cell lysate plus adjuvant followed by successive intranasal challenge exposures with EHV-1 and EHV-4 or with EHV-4 and EHV-1. Vaccination with inactivated virus preparations elicited cellular immune responses and antibody which were augmented by subsequent challenge exposures. Cellular immune responses, as measured by in vitro lymphocyte blastogenesis, were cross-reactive after foals were given either EHV-1 or EHV-4. Serum virus-neutralizing antibody responses were type-specific for foals given EHV-1, but were cross-reactive after EHV-4 administrations. It was concluded that diseases caused by EHV-1 and EHV-4 may be more effectively controlled with a bivalent vaccine containing both EHV-1 and EHV-4 than with the presently used monovalent vaccines based on EHV-1 alone.  相似文献   

11.
Equine herpesvirus type-1 (EHV-1) and equine arteritis virus (EAV) are infectious agents that cause serious health risks to horse populations and are disbursed worldwide, which can lead to significant financial losses. In addition to being responsible for abortion and neonatal death, these viruses are associated with respiratory illness. Although previous research and reviews have been written on these viruses, both viruses still affect horse populations around the world and the vaccines currently available are not completely protective, especially against EHV-1 and equine herpes myeloencephalopathy (EHM). Moreover, EAV is considered a threat to the $102 billion equine industry in the United States. As a result, these viruses represent a huge threat to the horse industry and efforts geared towards preventing the outbreak of the disease are strongly encouraged. For this reason, updates about these viruses are necessary and require more and more discussion on the nature and characteristics of these viruses to know how to overcome them. Prevention and control of abortion and neonatal foal death caused by each of the two viruses depend on appropriate management strategies coupled with prophylactic vaccination. This review presents the latest detailed information on EHV-1 and EAV from several aspects such as transmission, clinical signs, pathogenesis, latest developments on the treatment of the diseases, vaccination, and finally challenges and future perspectives. The information presented herein will be useful in understanding EHV-1 and EAV and formulating policies that can help to limit the spread of these viruses within horse populations.  相似文献   

12.
Evidence is presented to show that activation of endothelial and leucoyte adhesion molecules is a key step in transferring virus from infected leucocytes; and determines the restricted tissue tropism. A range of tissues from 2 experimentally infected mares in late pregnancy at 4 and 8 days after infection with EHV-1 were compared with those from normal pregnant and nonpregnant mares. Rabbit antisera to equine activated endothelial cell molecules were used to identify which tissues expressed these molecules in normal nongravid and gravid mares, and to investigate whether the range of tissues was altered in pregnant mares as a consequence of infection. The results indicated that the endothelium of the pregnant reproductive tract did express these molecules. In the 2 pregnant mares infected with EHV-1, the endothelial cells in the nasal mucosa also expressed these activated endothelial cell molecules. Therefore, the sites expressing these molecules closely correlated with those where virus infection of endothelial cells has been described and is consistent with experimental in vitro data, indicating that expression of these molecules is an essential stage in the transference of virus from leucocytes to endothelial cells.  相似文献   

13.
Equine herpesvirus-1 (EHV-1) remains a frequent cause of upper respiratory tract infection and abortion in horses worldwide. However, little is known about the local antibody response elicited in the upper airways of horses following exposure to EHV-1. This study analysed the mucosal humoral immune response of weanling foals following experimental infection with virulent EHV-1, or vaccination with either of 2 commercial vaccines. Twenty weanlings were assigned to 5 groups and were inoculated with, or vaccinated against, EHV-1 following different regimens. Finally, all weanlings were simultaneously challenged intranasally with virulent EHV-1 Army 183 (A183). Nasal wash and serum samples were collected at regular intervals until 13 weeks after final challenge. Nasal washes were assayed for EHV-1-specific equine IgGa, IgGb, IgG(T), IgA, IgM and total virus-specific antibody using an indirect, quantitative ELISA. Total serum antibody responses were also monitored, and clinical signs of EHV-disease were recorded for each individual. Virus-specific IgA dominated the mucosal antibody response elicited in weanlings inoculated with A183, being detectable at up to 3.1 microg/mg total IgA 13 weeks after challenge. Neither inactivated EHV-1 administered i.m., nor attenuated EHV-1 administered intranasally induced detectable mucosal antibodies. EHV-1-specific mucosal antibodies impeded EHV-1 plaque formation in vitro. Such virus-neutralising antibody probably contributes to a reduction of shedding of EHV-1 from the respiratory tract of virus-infected horses.  相似文献   

14.
Equine herpesvirus-1 (EHV-1) is an alphaherpesvirus which is a major cause of abortion in mares and it is of a considerable economic importance worldwide (Crabb and Studdert, 1996). EHV-1 has been isolated in New Zealand from cases of abortion and perinatal mortalities (Hutton and Durham, 1997; Horner, 1989). Recently, a herpesvirus was isolated from a lung sample from an aborted foetus and this virus was identified as EHV-1 by the immunoperoxidase technique with the use of a monoclonal antibody specific for EHV-1.  相似文献   

15.
Twenty-one pregnant mares were inoculated with EHV1. Nineteen became infected as evidenced by clinical signs and/or viremia but only one mare aborted a virus-infected fetus. The viremias were leukocyte-associated and appeared to be non-productive, latent infections of these cells. Infectivity, detectable by cocultivation, persisted in the circulating leukocytes for as long as 9 days without resulting in abortion. The data suggest that it is extremely difficult to evaluate the efficacy of vaccines in preventing EHV1 (Rhinopneumonitis) abortion due to the paucity of non-exposed mares, lack of tests which measure residual protection, and an incomplete understanding of the pathogenic mechanisms involved in abortion due to this virus.  相似文献   

16.
ABSTRACT: Equine herpesvirus-1 (EHV-1) infection remains a significant problem despite the widespread use of vaccines. The inability to generate a protective immune response to EHV-1 vaccination or infection is thought to be due to immunomodulatory properties of the virus, and the ORF1 and ORF2 gene products have been hypothesized as potential candidates with immunoregulatory properties. A pony infection study was performed to define immune responses to EHV-1, and to determine if an EHV-1 ORF1/2 deletion mutant (ΔORF1/2) would have different disease and immunoregulatory effects compared to wild type EHV-1 (WT). Infection with either virus led to cytokine responses that coincided with the course of clinical disease, particularly the biphasic pyrexia, which correlates with respiratory disease and viremia, respectively. Similarly, both viruses caused suppression of proliferative T-cell responses on day 7 post infection (pi). The ΔORF1/ORF2 virus caused significantly shorter primary pyrexia and significantly reduced nasal shedding, and an attenuated decrease in PBMC IL-8 as well as increased Tbet responses compared to WT-infected ponies. In conclusion, our findings are (i) that infection of ponies with EHV-1 leads to modulation of immune responses, which are correlated with disease pathogenesis, and (ii) that the ORF1/2 genes are of importance for disease outcome and modulation of cytokine responses.  相似文献   

17.
Equine herpesvirus-1 (EHV-1) is responsible for respiratory disease and abortion in pregnant mares. Some high virulence isolates of EHV-1 also cause neurological disease. The pathogenesis of both abortion and neurological disease relates in part, to thrombus formation occurring in the pregnant uterus and central nervous system. The differences in disease outcome may relate to differing abilities of high and low virulence EHV-1 isolates to cause cell-associated viraemia, infect endothelial cells and cause thrombosis at sites distant from the respiratory tract. This study attempted to identify in vitro assays, which could be used to characterise the interaction between these isolates, equine endothelial cells and clotting factors. No significant difference was found between the growth kinetics of high and low virulence isolates of EHV-1 in polarised endothelial cells. For both isolates, virus was released preferentially from the apical surface of the polarised cells. The functional effects of viral infection on endothelial cells, with reference to virally-induced thrombosis were then investigated. Endothelial cells were grown on microcarrier beads, infected with EHV-1 and assayed for procoagulant activity. No significant difference in clotting time was observed between mock and EHV-1 infected endothelial cells in microcarrier cultures. Thus the degree of thrombosis may reflect a more complex interaction between endothelial cells, circulating leucocytes and other factors in the microenvironment.  相似文献   

18.
OBJECTIVE: To determine the incidence of equine herpesvirus-1 (EHV-1) infection among Thoroughbreds residing on a farm on which the virus was known to be endemic. DESIGN: Prospective cohort study. ANIMALS: 10 nonpregnant mares, 8 stallions, 16 weanlings, 11 racehorses, and 30 pregnant mares and their foals born during the 2006 foaling season. PROCEDURES: Blood and nasopharygeal swab samples were collected every 3 to 5 weeks for 9 months, and placenta and colostrum samples were collected at foaling. All samples were submitted for testing for EHV-1 DNA with a PCR assay. A type-specific EHV-1 ELISA was used to determine antibody titers in mares and foals at birth, 12 to 24 hours after birth, and every 3 to 5 weeks thereafter. RESULTS: Results of the PCR assay were positive for only 4 of the 1,330 samples collected (590 blood samples, 590 nasopharyngeal swab samples, 30 placentas, and 30 colostrum samples), with EHV-1 DNA detected in nasal secretions from 3 horses (pregnant mare, stallion, and racehorse) and in the placenta from 1 mare. Seroconversion was detected in 3 of 27 foals during the first month of life. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that there was a low prevalence of EHV-1 infection among this population of Thoroughbreds even though the virus was known to be endemic on the farm and that pregnant mares could become infected without aborting. Analysis of nasopharyngeal swab samples appeared to be more sensitive than analysis of blood samples for detection of EHV-1 DNA.  相似文献   

19.
A German abortion isolate of EHV-1 (strain M8) was grown in equine dermal (ED) cells at a low multiplicity of infection in presence of 5-bromo-2-deoxy uridine. The resulting stock was dialysed, titrated and cloned by terminal dilution in ED cells grown in 96-well microtitration plates. Of 192 clones each originating from a single focus, clone 147 (C147) was found to be restricted for growth at and above temperatures of 38.5 degrees C. It was also restricted for growth at 37 degrees C in rabbit kidney (RK-13) cells which are widely used for the isolation and titration of EHV-1; hence clone 147 was EHV-4-like.Clone 147 showed a remarkable efficacy as a vaccine in protecting conventional pregnant Welsh Mountain pony mares against abortions due to EHV-1. A single intranasal (IN) vaccination protected five out of six (83.3%), and four out of five (80%) of mares upon challenge 4 and 5-6 months, respectively, after the immunisation, whereas all six unvaccinated mares aborted between 9 and 19 days after IN EHV-1 challenge. With the exception of the day 9 abortion, foetuses of the remaining five mares were EHV-1 infected. Placenta from the early aborting mare was, however, EHV-1 positive. Both groups of vaccinated mares were also significantly protected against clinical reaction (notably pyrexia), nasal shedding and viraemia following challenge infection.  相似文献   

20.
From 1988 to 1991, 51 pregnant pony mares were challenged intranasally or by aerosol with an isolate of EHV-1 (AB4) originally recovered from a quadriplegic mare. This resulted in 32 abortions, occurring from 9 to 29 days after infection. In 14 of the early abortions (Days 9-14), EHV-1 was not demonstrated in the foetal tissues by virus isolation or immunostaining despite no other non-viral cause for the abortion being evident. Application of the polymerase chain reaction to foetal tissues from 9 of these cases also proved negative. One of the 14 mares was destroyed immediately after abortion, and post-mortem examination revealed severe and widespread vasculitis, thrombosis and secondary ischaemic damage in the endometrium with replication of EHV-1 in endothelial cells. These findings suggest that EHV-1 abortion can occur due to endometrial damage without the establishment of a foetal infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号