首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 25-week laboratory study was carried out to determine sulfur, carbon, and nitrogen mineralization rates in soil samples obtained from representative soils in France. Their relationship with some of the soil properties was investigated to find a predictor of mineralized S in soils. At 20°C and 80% water-holding capacity, the S mineralization rate ranged from 0.02 to 0.16 mg kg−1 day−1. It was significantly positively related to soil organic C and N and to C and N mineralization rates. It was weakly related to total soil S. The results suggest that the S mineralization is predominantly driven by heterotrophic microbial activity. A predictive equation for S mineralization based on soil C content, soil pH, and clay content is proposed.  相似文献   

2.
 Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5  °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were measured during the experiment. An incubation study was also conducted under three temperature regimes, 5, 15, and 25  °C, and under four moisture regimes of 20, 120, 220, and 320% to further evaluate these environmental factors on dehydrogenase activity and microbial biomass. Soil moisture content and microbial biomass controls were significantly lower (30% and 2 μg g–1 soil, respectively) in the heated plots during the treatment period, suggesting that moisture content was important in controlling microbial biomass. In the incubation study, temperature appeared more important than moisture in controlling microbial biomass and dehydrogenase activity. Increasing temperature between 5  °C and 25  °C resulted in significant decreases in microbial biomass and dehydrogenase activity. Received: 7 August 1998  相似文献   

3.
ABSTRACT

Effects of temperature and moisture on nitrogen (N) mineralization from organic amendments in high tunnel farming systems are rarely studied to assist N fertilizer management for high N-demand crops with short cycles. In this study, soils from a new high tunnel site were incubated at four temperatures (2, 10, 20, & 30°C) and five gravimetric water contents (15, 20, 25, 30, & 35%) with and without a dried and ground alfalfa amendment. Net N mineralization was determined by measuring NH4+-N and NO3-N contents periodically over 84 days. Significant main effects of temperature and moisture were found (p < .0001) and tendencies of a significance of alfalfa amendment (p = .0855) and interaction between amendment and temperature (p = .0842) were observed. Only a significant increase of the net mineralized N at 30ºC in amended soil was observed compared to unamended soil (p = .0043). Estimated from the first-order exponential model, maximum potential mineralized N was 1.2 times greater while mineralization rate was up to 2.1 times greater in amended soil compare to un-amended soil. Q10 estimated from the Arrhenius model ranged from 1.62 to 2.04 in the amended soil and 1.66 to1.85 in the un-amended soil. The average optimal soil water content for maximum N mineralization estimated from the Gaussian function model was 33.8% in amended soil and 35.9% in un-amended soil. The results from this study can be used to suggest soil moisture and temperature management strategies to control N availability in high tunnel systems.  相似文献   

4.
We studied the changes in composition of the soil solution following mineralization of N at different temperatures, with a view to using TDR to calculate temperature coefficients for the mineralization of N. Mineralization from soil organic nitrogen was measured during aerobic incubation under controlled conditions at six temperatures ranging from 5.5 to 30°C, and at constant water content in a loamy sand soil. We also monitored during the incubation the concentrations of SO42–, Cl, HCO3, Ca2+, K+, Mg2+ and Na+, and the pH and the electrical conductivity in 1:2 soil:water extracts. Zero‐order N mineralization rates ranged between 0.164 at 5.5°C and 0.865 mg N kg?1 soil day?1 at 30°C. There was a significant decrease in soil pH during incubation, of up to 0.6 pH units at the end of the incubation at 30°C. The electrical conductivity of the soil extracts increased significantly at all temperatures (the increase between the start and the end of the incubation was 4‐fold at 30°C) and was strongly correlated with N mineralization. The ratio of bivalent to monovalent cations increased markedly during mineralization (from 2.2 to 5.9 at 30°C), and this increase influenced the evolution of the electrical conductivity of the soil solution through the differences in molar‐limiting ion conductivity between mainly Ca2+ and K+. Zero‐order mineralization rate constants, k, for NO3 concentrations calculated from TDR varied between 0.070 (at 5.5°C) and 0.734 mg N kg?1 soil day?1 (at 30°C), which were slightly smaller, but in the same range, as the measured rates. Underestimation of the measured N mineralization rates was due, at least in part, to differences in cation composition of the soil solution between calibration and mineralization experiments. A temperature‐dependence model for N mineralization from soil organic matter was fitted to both the measured and the TDR‐calculated mineralization rates, k and kTDR, respectively. There were no significant differences between the model parameters from the two. Our results are promising for further use of TDR to monitor soil organic N mineralization. However, the influence of changing cation ratios will also have to be taken into account when trying to predict N mineralization from measured electrical conductivities.  相似文献   

5.
[目的] 冻融过程土壤呼吸在年土壤呼吸总量中占有重要比例,研究探讨土壤冻融过程中含水量、冻结温度和冻融循环次数对土壤碳矿化动态的影响。[方法] 以黑龙江省嫩江县鹤山农场九三水土实验站黑土为研究对象,开展室内冻融程度模拟试验,进行7次冻融循环,设置100%田间持水量(100%WHC)、60%田间持水量(60%WHC)和30%田间持水量(30%WHC)3种土壤含水量;10 ℃恒温处理(对照)、-5 ℃冻结处理(轻度冻结)和-15 ℃冻结处理(重度冻结)3种环境温度。[结果] 冻融循环次数、含水量和冻结温度对CO2排放量有显著影响,影响度分别为-0.63,0.21,0.14。解冻过程显著增加土壤碳矿化量;轻度冻结时,前3次冻融循环60%WHC土壤碳矿化量比100%WHC和30%WHC分别提高33.0%,35.2%,后4次冻融循环差异不明显;重度冻结时,前2次冻融循环100%WHC土壤碳矿化量,比60%WHC和30%WHC土壤分别提高25.2%,68.0%,后5次冻融循环差异不明显。[结论] 冻融循环次数对土壤CO2排放量影响最大,含水量次之,冻结温度最小。冻融作用增加低含水量土壤的CO2累积排放量;降低高含水量土壤的CO2累积排放量;而对中等含水量土壤,轻度冻结增加CO2累积排放量,重度冻结降低CO2累积排放量。一级动力学方程对冻融土壤CO2排放量的拟合效果较好(R2>0.997),含水量和冻结温度对有机碳矿化潜力C0值有显著影响。  相似文献   

6.
14C-labelled maleic hydrazide (MH) was added to each of three soils at a concentration of 4 mg kg?1, and its degradation measured by the release of 14CO2 after 2 days. Between 1 and 30°C, at a constant moisture content (full field capacity), the mean degradation rate increased by a factor of 3 for each temperature increment of 10°C (Q10 = 3). The mean activation energy was 78 kJ mol?1. Above 35°C, the degradation rate decreased.At soil moisture contents between wilting point and 80–90% of field capacity, the degradation rate doubled with an increase in moisture content of 50% of field capacity (constant temperature, 25°C). Above field capacity, the degradation rate was either unchanged or decreased. Below wilting point the degradation was very slow, even after 2 months.The rate of decomposition of MH at all temperatures and moisture contents was lowest in the soil with the highest content of organic matter and the lowest clay content. This soil had the highest Freundlich K value, and presumably adsorbed MH the most strongly, although the lower clay content may also play a role in the lower decomposing capacity of this soil.  相似文献   

7.
 Animal slurries are stored for a variable period of time before application in the field. The effect of cattle slurry storage time and temperature on the subsequent mineralization of C and N in soil was studied under laboratory conditions. Urine and faeces from a dairy cow were sampled separately and mixed to a slurry. After 4 weeks of storage under anaerobic conditions at 15  °C, the NH4 + N content exceeded the original urinary N content of the slurry; the NH4 + content increased only slightly during the following 16 weeks of storage. After 4 weeks of storage, the proportion of slurry C in volatile fatty acids (VFA) amounted to 10% and increased to 15% after 20 weeks. Straw addition to the slurry caused an increase of VFA-C in stored slurry, but had a negligible influence on the proportion of slurry N in the form of NH4 +. Slurries subjected to different storage conditions were added to a sandy and a sandy loam soil. After 1 week, the preceding storage period (0–20 weeks) and temperature (5  °C or 15  °C) had no significant effect on the net release of inorganic N from the slurry in soil. Thus, the increased NH4 + content in the slurry after storage was followed by increased net N immobilization in soil. Additional straw in the slurry caused increased net N immobilization only in the sandy loam soil. Following anaerobic storage, 8–14% of slurry C was released in gaseous form, and the net mineralization of slurry C after 12 weeks in soil amounted to 54–63%. The extra net mineralization of C in soil due to straw in slurry was equivalent to 76% of straw C, suggesting that the straw accelerated the mineralization of C derived from faeces, urine and/or soil. Received: 25 August 1997  相似文献   

8.
The substitution of the widely practiced crop‐residue burning by residue incorporation in the subtropical zone requires a better understanding of factors determining nutrient mineralization. We examined the effect of three temperature (15°C, 30°C, and 45°C) and two moisture regimes (60% and 90% water‐filled pore space (WFPS)) on the mineralization‐immobilization of N, P, and S from groundnut (Arachis hypogae) and rapeseed (Brassica napus) residues (4 t ha–1) in two soils with contrasting P fertility. Crop‐residue mineralization was differentially affected by incubation temperature, soil aeration status, and residue quality. Only the application of groundnut residues (low C : nutrient ratios) resulted in a positive net N and P mineralization within 30 days of incubation, while net N and P immobilization was observed with rapeseed residues. Highest N and P mineralization and lowest N and P immobilization occurred at 45°C under nearly saturated soil conditions. Especially net P mineralization was significantly higher in nearly saturated than in aerobic soils. In contrast, S mineralization was more from rapeseed than from groundnut residues and higher in aerobic than in nearly saturated soil. The initial soil P content influenced the mineralization of N and P, which was significantly higher in the soil with a high initial P fertility (18 mg P (kg soil)–1) than in the soil with low P status (8 mg P (kg soil)–1). Residue‐S mineralization was not affected by soil P fertility. The findings suggest that climatic conditions (temperature and rainfall‐induced changes in soil aeration status) and residue quality determine N‐ and S‐mineralization rates, while the initial soil P content affects the mineralization of added residue N and P. While the application of high‐quality groundnut residues is likely to improve the N supply to a subsequent summer crop (high temperature) under aerobic and the P supply under anaerobic soil condition, low‐quality residues (rapeseed) may show short‐term benefits only for the S nutrition of a following crop grown in aerobic soil.  相似文献   

9.
Ammonification of soil organic N and nitrification of ammonium-N was studied in Tindall clay loam over a range of temperatures from 20–60 C. Nitrification rates at each temperature were constant throughout the 28 day incubation, whereas most of the ammonification occurred in the first 7 days. The optimum for nitrification was close to 35 C. exhibiting a sharp peak at this temperature at which the potential rate was 4.8 μg N/g day?1, compared with 0.5 μg N/g day?1 at 20°C and 0.25 μg N/g day?1 at 60°C. The optimum temperature for ammonification was approximately 50°C at which the rate was 2.8 μg N/g day?1 in the first 7 days but only 0.5 μg N/g day?1 between 14 and 28 days.The temperature responses could be described mathematically with functions of the type logoN = k × 1/T.The results are discussed in relation to daily patterns of N mineralization in the field where temperatures show diurnal fluctuation.  相似文献   

10.
Goal, Scope and Background  Temperature and soil moisture content are important environmental variables in bioremediation technologies. Optimizing these variables in-situ would enhance and maintain remediation of hazardous wastes during cold winter seasons or in cold regions and may lead to reduced maintenance and/or cost. The effect of elevated temperature and soil moisture on bioremediation efficiency was investigated using a laboratory mesocosm approach. Selected polycyclic aromatic hydrocarbons (PAHs) and phenols degradation in contaminated flooded soils, commonly found in Superfund sites situated in coastal plains sediments/soils, were evaluated in the mesocosms. Material and Methods  Four laboratory mesocosm treatments in triplicate simulating in-situ bioremediation of contaminated site soils using an immobilized microbe bioreactor system, i.e., bioplug, were established to evaluate temperature effects. Elevated temperature treatments of site soils with and without contaminant-specific microorganisms were established at a temperature of 42±2°C. Similarly, treatment of site soils with and without contaminant-specific microorganisms were established at an ambient temperature of 21±1°C. Composite samples were analyzed for selected PAHs and chlorinated phenols to determine rates of mineralization and overall remediation efficiency for different temperature regimes. Results  Mesocosm studies indicated that the high temperature inoculated treatment demonstrated a significant reduction in mean total PAHs and total phenols with a kinetic rate (KR) of 76±13 ng g−1 d−1 in 49 days (approximately 84% reduction; p<0.01) The KR for low temperature inoculated treatment was 54±1 ng g−1 d−1 in 49 days (approximately 66% reduction; p<0.01). High temperature non-inoculated mesocosms exhibited significant mineralization of all constituents with KR of 15±6 ng g−1 d−1 (approximately 65% reduction; p<0.01) in 49d compared to 54% reduction for low temperature non-inoculated treatment with KR of 12±3 ng g−1 d−1 (p=0.1794). Phenol compounds in inoculated treatments were also significantly reduced (65%, p<0.01) at elevated temperatures compared to ambient (52%, p<0.01). Discussion  Increased bioavailability and desorption were noted for elevated temperature and moisture in the soil laboratory mesocosms simulating a field in situ remediation protocol. This protocol employing the application of immobilized microflora indicated that in situ systems provide an economical advantage if optimal elevated temperature and moisture are controlled properly. Results also suggested that temperature and moisture optimization needs to be combined with efficient nutrients delivery systems for impacted soils/sediments. Conclusions  The study demonstrated that temperature and soil moisture contents are important factors in the success of in-situ bioremediation techniques at hazardous waste sites situated in a coastal zone. Kinetic rates were significantly enhanced to remediate known recalcitrant compounds (PAHs and phenols) in aged soil. Recommendations and Perspectives  The placement of a preferred microbial consortia such as an immobilized microbial population in an entrained bioreactor, i.e., bioplug, can significantly reduce constituents of concern in a timely manner for contaminated soils/sediments. However, frequent monitoring of the soil temperature, moisture content, nutrient level, and dissolved oxygen is necessary to achieve predictable kinetic rates of mineralization. ESS-Submission Editor: Dr. Teresa Cutright (tcutright@uakron.edu)  相似文献   

11.
Laboratory experiments were conducted to (i) study the influence of chemical composition of organic substrates (green manure, rice straw, wheat straw, and farmyard manure) and temperature on carbon (C) mineralization under flooded and nonflooded moisture conditions, (ii) study the relationship between C mineralization and chemical composition of organic materials, and (iii) model C mineralization kinetics under different temperature and moisture conditions. The proportion of added C mineralized under nonflooded conditions ranged between 45 and 66% at 35 °C compared to 18 to 42% at 15 °C. Flooding the soil reduced the proportion of added C mineralized, which ranged between 25 to 47% at 35 °C and 6 to 20% at 15 °C. Water-soluble components, cellulose, lignin, and nitrogen content of the organic source significantly influenced C mineralization. Temperature sensitivity of decomposition depended on the quality of the organic substrate with relatively less decomposable farmyard manure (FYM) being more sensitive (Q10 ?3.0) than the easily decomposable green manure (Q10 ?2.5). A first-order monocomponent model that is based on relative rate of mineralization and includes a parameter for speed of aging best described C mineralization under both the temperature and moisture conditions. It was concluded that FYM with preponderance of recalcitrant components and low decomposability provides greater C sequestration potential than green manure and crop residues.  相似文献   

12.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

13.
Influence of varied soil temperature and moisture on microbial activities under laboratory conditions Under laboratory conditions the influence of temperature (10°C, 20°C, fluctuation from 5° to 30°C within 12 h with additional freezing for 3 days) and soil moisture (30%, 60% w.h.c., remoistening to 60% for 1 week) on several microbial activities was investigated. The biomass-related, glucose-induced short-term respiration and the dehydrogenase activity (TTC reduction) were higher at 10°C in most cases as compared to 20°C. Independent of freezing fluctuating temperature caused the lowest activities. The nitrogen mineralization (including nitrification), however, was affected in the opposite way. No marked influences were observed with β-glucosidase, arylsulfatase, and alkaline phosphatase. In the sandy loam nearly no effects of the soil moisture occurred and in the loamy sand especially the dehydrogenase activity was higher at 30% w.h.c., whereas the nitrogen mineralization was lower. From the results it can be concluded, that ecological conditions favouring mineralization without substrate addition may even reduce microbial biomass by decomposition.  相似文献   

14.
Nitrogen mineralization and immobilization were investigated in two soils incubated with ammonium sulphate or pig slurry over a range of temperatures and moisture contents. A reduction in the mineralization of soil organic N was observed in soils incubated with 100 μg NH4+-Ng?1 soil as ammonium sulphate at 30°C but not at lower temperatures. Addition of 100 μg NH4+-N g?1 soil as pig slurry resulted in a period of nett immobilization lasting up to 30 days at 5°C. Although the length of the immobilization phase was shorter at higher temperatures the total N immobilized was similar. The subsequent rate of mineralization in slurry-treated soils was not significantly greater (P = 0.05) than in untreated soils. There was no evidence of any subsequent increased mineralization arising from the immobilized N or slurry organic N for up to 175 days. The rate of immobilization was found to increase with increasing moisture content, though the period of nett immobilization was shorter, so that the amount of N immobilized was similar over a range of moisture contents from 10 to 40%. Approximately 40% of the NH4+-N in the slurry was immobilized under the incubation conditions used.  相似文献   

15.
The objective of this study was to examine the effects of soil moisture, irrigation pattern, and temperature on gaseous and leaching losses of carbon (C) and nitrogen (N) from soils amended with biogas slurry (BS). Undisturbed soil cores were amended with BS (33 kg N ha−1) and incubated at 13.5°C and 23.5°C under continuous irrigation (2 mm day−1) or cycles of strong irrigation and partial drying (every 6 weeks, 1 week with 12 mm day−1). During the 6 weeks after BS application, on average, 30% and 3.8% of the C and N applied with BS were emitted as carbon dioxide (CO2) and nitrous oxide (N2O), respectively. Across all treatments, a temperature increase of 10°C increased N2O and CO2 emissions by a factor of 3.7 and 1.7, respectively. The irrigation pattern strongly affected the temporal production of CO2 and N2O but had no significant effect on the cumulative production. Nitrogen was predominantly lost in the form of nitrate (NO3). On average, 16% of the N applied was lost as NO3. Nitrate leaching was significantly increased at the higher temperature (P < 0.01), while the irrigation pattern had no effect (P = 0.63). Our results show that the C and N turnovers were strongly affected by BS application and soil temperature whereas irrigation pattern had only minor effects. A considerable proportion of the C and N in BS were readily available for soil microorganisms.  相似文献   

16.
The study examined the influence of compost and mineral fertilizer application on the content and stability of soil organic carbon (SOC). Soil samples collected from a long-term field experiment were separated into macroaggregate, microaggregate, and silt + clay fractions by wet-sieving. The experiment involved seven treatments: compost, half-compost N plus half-fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and control. The 18-year application of compost increased SOC by 70.7–121.7%, and mineral fertilizer increased by 5.4–25.5%, with no significant difference between control soil and initial soil. The C mineralization rate (rate per unit dry mass) in microaggregates was 1.52–2.87 mg C kg−1 day−1, significantly lower than in macroaggregate and silt + clay fractions (P < 0.05). Specific C mineralization rate (rate per unit SOC) in silt + clay fraction amounted to 0.48–0.87 mg C g−1 SOC day−1 and was higher than in macroaggregates and microaggregates. Our data indicate that SOC in microaggregates is more stable than in macroaggregate and silt + clay fractions. Compost and mineral fertilizer application increased C mineralization rate in all aggregates compared with control. However, compost application significantly decreased specific C mineralization rate in microaggregate and silt + clay fractions by 2.6–28.2% and 21.9–25.0%, respectively (P < 0.05). By contrast, fertilizer NPK application did not affect specific C mineralization rate in microaggregates but significantly increased that in silt + clay fractions. Carbon sequestration in compost-amended soil was therefore due to improving SOC stability in microaggregate and silt + clay fractions. In contrast, fertilizer NPK application enhanced SOC with low stability in macroaggregate and silt + clay fractions.  相似文献   

17.
Anthropogenic N-deposition represents a significant input of N into semi-arid chaparral and coastal sage scrub (CSS) shrublands of southern California. High levels of atmospheric N deposition have the potential to increase soil C and N mineralization, and we hypothesize that semi-arid shrubland soil exposed to long-term (decades) high N deposition will have significantly higher C and N mineralization potentials. This hypothesis was tested in a laboratory incubation where the inorganic N (NH4+NO3) and CO2 production of soils maintained at a constant temperature of 25°C and a soil moisture of 0.25 g H2O/g (65% water-filled pore space) were sampled sequentially over a 50-week period. The temporal trend in cumulative C and N mineralization was well described by a first- and zero-order model, respectively. Long-term atmospheric N deposition significantly increased potential N mineralization but not C mineralization, and both the rate and total N mineralization were significantly positively correlated with the surface (0–10 cm) soil δ 15N natural abundance and negatively correlated with the surface soil C:N ratio. While the incubation techniques used here do not provide realistic estimates of in situ C or N mineralization, these assays indicate that atmospheric N deposition has significantly altered ecosystem N storage and cycling.  相似文献   

18.
银中杨光合作用和蒸腾作用对土壤干旱的响应   总被引:5,自引:0,他引:5       下载免费PDF全文
 以银中杨3年生苗木为试验材料,通过盆栽试验,研究土壤干旱程度、干旱持续时间和逐渐干旱对银中杨叶片气体交换参数的日变化和光响应过程的影响。结果表明:银中杨具有较强的抗旱性;适度干旱有利于银中杨光合作用;逐渐干旱过程中,土壤含水量在40.1%~20.2%范围内,光合速率随着含水量的减少而降低,但降低幅度较小,表观量子效率基本不变;土壤含水量为15.5%时的光合能力则大幅度下降;银中杨的光饱和点在750~1300μmol.m-2.s-1之间,随着土壤含水量的下降,光饱和点降低;光合速率和腾速率与气孔导度的正相关性较强,与胞间CO2则有负相关的趋势;在逐渐干旱过程中,水分利用率随着含水量的下降而上升,但长时间的严重干旱胁迫导致水分利用率降低;在相同含水量条件下,逐渐干旱对各光合参数的影响均小于梯度干旱,这说明银中杨光合作用能忍受暂时的干旱,重度水分胁迫持续时间较长时,光合速率和蒸腾速率大幅度降低,这是银中杨对干旱的一种适应方式。  相似文献   

19.
Abstract

Crop yield response to micronutrient fertilization is difficult to predict, particularly under unfavorable environmental conditions as these may alter both crop nutrient demand and the soil micronutrient supply to plant roots. The research objective was to evaluate the effect of various soil temperature and moisture conditions on crop growth response to added micronutrient copper (Cu), zinc (Zn), and boron (B) along with soil micronutrient supply and distribution among fractions. Brown and Dark Brown farm soils collected from southern Saskatchewan were used to grown wheat, pea and canola within controlled environment chambers. The biomass yields of all crops decreased under cold soil temperature and moisture stress (drought and saturated) conditions. Greater plant uptake of Cu, Zn, and B was associated with optimum (i.e., field capacity) soil moisture and warm temperature (23°C) growing conditions, compared to drought (i.e., 50% field capacity), saturated, and cold (5°C) temperature conditions. Environmental stress had the greatest impact on pea growth, reducing crop yield and micronutrient utilization efficiency more than 95%. Soil supplies of Cu and Zn were most negatively impacted by drought stress due to reduced mobility of these diffusion limited nutrients. The extractable micronutrients levels and chemical speciation fractions of Cu, Zn, and B indicating that bioavailability and micronutrient transformation were not affected during our short-term (i.e., six-weeks) study. However, it is suggested that assessments of micronutrient forms also be conducted on soil samples under actual moisture and temperature conditions as they exist in the experiment, as well as on dried, processed samples.  相似文献   

20.
 The present research was conducted to determine the relationship between the degradation of rimsulfuron and soil microbial biomass C in a laboratory-incubated clay loam soil (pH=8.1; organic matter=2.1%) under different conditions and at different initial dosages (field rate, 10 and 100 times the field rate). The half-life values varied between 0.4 and 103.4 days depending on temperature, soil moisture and initial dose. Evidence suggested that rimsulfuron could pose environmental risks in cold and dry climatic conditions. Significant decreases in microbial biomass C content in rimsulfuron-treated soil, compared to untreated soil, were observed initially, especially at higher temperatures and low moisture levels, but never exceeded 20.3% of that in control soil. The microbial biomass C content then returned to initial values at varying times depending on incubation conditions. The relationship between herbicide degradation and microbial biomass C content gave parabolic curves (P<0.005 in all cases) under all conditions tested. Generally, maximum biomass C decrease coincided with the decrease in the concentration of rimsulfuron to about 50% of the initial dose, except at 10  °C and 100×, when biomass began to recover as early as 65–70% of the initial dose. The final equations could be useful to deduce the decrease of soil microbial biomass in relation to herbicide concentration. From the degradation kinetics of the herbicide, the time required to reach this decrease can also be calculated. Received: 19 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号