首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of some diluted emulsifiable concentrate formulations in clear liquid fertilizers, as affected by the nature and concentration of the salt solutions, was checked by a static test. The time-induced changes in the concentration of the dispersed phase were estimated by visual observations and turbidity measurements. For each formulation a specific relationship between the electrical conductivity of all the fertilizer solutions and the emulsion stability was found. This was valid for a pH range between 4.6–6.3; in alkaline conditions the emulsion stability was relatively lower. A critical electrical conductivity range, above which irreversible destabilization occurred, was observed for each formulation: 100-120 dS m?1 for fenamiphos, 60-70 dS m?1 for metolachlor, 30-50 dS m?1 for chlorpyrifos, and about 45 dS m?1 for S-ethyl dipropylthiocarbamate (EPTC). The correlation observed between the emulsion stability and the electrical conductivity could be used in a simple and rapid qualitative test to estimate the physical compatibility between emulsifiable concentrate formulations and liquid fertilizers.  相似文献   

2.

Salinity affects many areas in our country and around the world, resulting in dramatic reductions in plant yields. In this study, the plant yield, some plant quality parameters, and soil salinity in the plant root area were investigated by irrigating tobacco plants (Nicotiana tabacum L.) with different salinity irrigation waters. The experiment was carried out in pots in 4 replicates according to the randomized plot design. Six different salinity of irrigation water applications were applied in the experiment (S0?=?0.38 dS m?1, S1?=?2 dS m?1, S2?=?5 dS m?1, S3?=?8 dS m?1, S4?=?11 dS m?1, S5?=?15 dS m?1). According to the data obtained at the end of the research, as the salinity of irrigation water increased, plant length, leaf width, leaf length, leaf dry weight and leaf number decreased. It was determined that there was a certain increase in nicotine content in the face of the decrease of all examined physical parameters in irrigation water increase. In addition, the salinity values in the plant root zone soils and the salinity values in the outlet (drainage) water have also increased. Salinity threshold value of the tobacco plant was determined to be 2.04 dS m?1. With an increase in salinity by one unit, there was a 7.1% decrease in leaf dry weight. It was determined that the tobacco plant is vulnerable to salinity based on the data collected.

  相似文献   

3.
EM38在黄河三角洲地区土壤盐渍化快速检测中的应用研究   总被引:13,自引:0,他引:13  
针对目前黄河三角洲地区存在的土壤盐渍障碍问题,以该地区典型地块为研究对象,电磁感应仪EM38检测与田间采样相结合,分析土壤电导率的剖面分布特征,建立磁感式表观电导率与土壤电导率间的回归模型,并对运用电磁感应仪EM38划分土壤盐渍剖面类型进行探讨。结果表明:研究区表层土壤盐分具有较强的表聚性与变异强度,剖面各土层电导率间存在着关联性;土壤电导率与磁感表观电导率EMh、EMv间呈极显著的相关关系和对数相关关系,EMh对浅层土壤电导率的解译精度较高,对深层土壤电导率、EMv的解译精度要高于EMh;利用电磁感应仪EM38可将研究区土壤盐渍剖面准确划分为表聚型、底聚型与均匀型三种类型,其中表聚型与底聚型是研究区最主要的盐渍剖面类型,进一步的统计分析证明了采用电磁感应仪EM38对土壤盐渍剖面的分类结果具有较高的精度与可信度。该结果对研究黄河三角洲地区土壤盐渍化的发生机理、预测与评估该地区土壤盐渍化的发生发展具有重要参考意义。  相似文献   

4.
Spatial information on soil salinity is increasingly needed for decision making and management practices in arid environments. In this article, we attempted to investigate soil salinity variation via a digital soil mapping approach and genetic programming in an arid region, Chah-Afzal, located in central Iran. A grid sampling strategy with 2-km distance was used. In total, 180 soil surface samples were collected and then analyzed. A symbolic regression was then adopted to correlate electrical conductivity (ECe) with a suite of auxiliary data including predicted maps of apparent electrical conductivity (vertical: ECav and horizontal: ECah), Landsat spectral data and terrain attributes derived from a digital elevation model. The accuracy of the genetic programming model was evaluated using root mean square error (RMSE), mean error (ME), and coefficient of determination (R2) based on an independent validation data set (20% of database or thirty soil samples). In general, results showed that ECah had the strongest influence on the prediction of soil salinity followed by salinity index wetness index, Landsat Band 3, multi-resolution valley bottom flatness index, elevation, and normalized difference vegetation index. Furthermore, results indicated that the genetic programming model predicted ECe over the study area accurately (R2 = 0.87, ME = ?1.04 and RMSE = 16.36 dSm?1). Overall, it is suggested that similar applications of this technique could be used for mapping soil salinity in other arid regions of Iran.  相似文献   

5.
应用地统计学的半方差分析和Kriging空间插值,以新疆第二师三十一团灌区为例,分析了塔里木河下游绿洲灌区不同深度土壤全盐及盐基离子的空间变异特征与分布规律。结果表明:研究区春季土壤总体呈碱性,各土层阴离子均以SO■为主,阳离子均以K~+和Na~+为主,灌区内根域层(0~60 cm)土壤盐分、Ca~(2+)、Cl~-的半方差函数模型符合高斯模型,Mg~(2+)、K~++Na~+符合球状模型,深层(60~100 cm)土壤盐分、HCO~-_3、SO■符合指数模型,各变量空间自相关范围差异较大。盐分分布特征受人类活动和地势、水源的影响较大,根域层(0~60 cm)土壤盐分含量呈现由西北部向东南部逐渐升高的趋势,变化范围在2.28~3.27 g·kg~(-1)之间,深层(60~100 cm)土壤盐分含量呈现由西北部向东南部逐渐降低的趋势,变化范围在2.31~4.63 g·kg~(-1)之间。HCO~-_3在整体上与根域层(0~60 cm)土壤盐分含量分布特征相同,其它各离子含量无明显变化规律。灌区内土壤盐分垂直分布的总趋势大致相同,根域层(0~60 cm)土壤含盐量与深层(60~100 cm)土壤含盐量差异不大,变化范围在2.28~4.63 g·kg~(-1)之间。  相似文献   

6.
The objective of this study was to investigate the potential of native Thai species for reclaiming salt-affected areas in Thailand. Plant species diversity in Nakhon Ratchasima Province in northeast Thailand, and their soil characteristics (texture, electrical conductivity (ECe), exchangeable sodium percentage (ESP), and pH) were measured. A total of 19 species in 16 genera of 12 families were found, among which the most abundant species belonged to the Poaceae and Cyperaceae families. The highest values of ECe were found near the surface (0–20?cm) with an average range between 30–80?dS?m?1, while lower values in the range of 15–25?dS?m?1 were found at lower depths (20–100?cm). Soil conditions in the subplots with plant coverage showed lower ECe and ESP when compared to plots without vegetation. Seeds from the three most frequently occurring species, including Azima sarmentosa, Gymnosporia mekongensis, and Buchanania siamensis, were then tested for germination at different salinities. Seeds of all three species germinated at high salinities, from 25–45?dS?m?1, with total germination ranging 40–90%. Together with the ability to germinate at high salinities, these native species showed deep, rapid root elongation, likely to escape high surface ECe levels (approximately the top 30?cm). Planting these species in areas with vegetation coverage would aid successful reclamation of saline areas. Reclaiming salt-affected soils will not only improve local farmer’s economic status, but can also reduce the extent of deforestation, benefiting the entire ecosystem.  相似文献   

7.
根据2009年伊犁河流域土壤盐分与地下水条件的监测和取样分析资料,运用相关分析法与主成分分析法,对伊犁河流域土壤盐分与地下水埋深、矿化度、电导率、p H值与主要离子之间的关系进行了分析。结果表明:1研究区土壤盐分垂直分布呈现强烈表聚性;研究区内58.18%地下水样为淡水,40.00%为微咸水,1.82%为咸水,地下水矿化度平均值为2.50 g·L-1左右,属于微咸水;研究区地下水矿化度、电导率与主要离子组成呈现强烈的空间变异性。2研究区垂直河道方向的各采样线土壤盐分与地下水矿化度的变化趋势基本相似;地下水埋深与矿化度受到灌区农业活动的影响,导致研究区土壤次生盐渍化。3主成分分析结果表明,影响研究区土壤含盐量的地下水环境因子可以归纳为地下水矿化度、EC、Cl-、Mg2+、Na+与地下水埋深。  相似文献   

8.
Soil salinity and ground surface morphology in the Lower Cheliff plain(Algeria) can directly or indirectly impact the stability of environments. Soil salinization in this area is a major pedological problem related to several natural factors, and the topography appears to be important in understanding the spatial distribution of soil salinity. In this study, we analyzed the relationship between topographic parameters and soil salinity, giving their role in understanding and estimating the spatial distribution of soil salinity in the Lower Cheliff plain. Two satellite images of Landsat 7 in winter and summer 2013 with reflectance values and the digital elevation model(DEM) were used. We derived the elevation and slope gradient values from the DEM corresponding to the sampling points in the field. We also calculated the vegetation and soil indices(i.e. NDVI(normalized difference vegetation index), RVI(ratio vegetation index), BI(brightness index) and CI(color index)) and soil salinity indices, and analyzed the correlations of soil salinity with topography parameters and the vegetation and soil indices. The results showed that soil salinity had no correlation with slope gradient, while it was significantly correlated with elevation when the EC(electrical conductivity) values were less than 8 d S/m. Also, a good relationship between the spectral bands and measured soil EC was found, leading us to define a new salinity index, i.e. soil adjusted salinity index(SASI). SASI showed a significant correlation with elevation and measured soil EC values. Finally, we developed a multiple linear regression for soil salinity prediction based on elevation and SASI. With the prediction power of 45%, this model is the first one developed for the study area for soil salinity prediction by the combination of remote sensing and topographic feature analysis.  相似文献   

9.
应用区域采样点数据,结合地统计学与空间简单克里金插值等分析方法,分析了玛纳斯河流域中游平原灌区膜下滴灌棉田表层土壤盐分的空间变异性。结果表明:棉花采收后表层土壤含盐量变异系数为35.617%,表现为中等强度变异性,服从正态分布;具有强二阶趋势效应,灌区中部趋势影响力变化剧烈;块金系数小于25%,具有很强的空间相关性,其变异主要受空间结构性因素的影响;沿等高线方向表现为各向异性,垂直等高线方向表现为各向同性;棉花采收后表层土壤含盐量具有明显的连续变化,灌区内不存在盐土、重度盐化土和中度盐化土,轻度盐化土在整个灌区占主导地位并广泛分布于各子灌区,非盐化土主要分布在南部山前地区和东北局部地区。  相似文献   

10.
Soil salinization is a major problem affecting soils and threatening agricultural sustainability in arid and semi-arid regions,which makes it necessary to establish an efficient strategy to manage soil salinity and confront economic challenges that arise from it.Saline soil recovery involving drainage of shallow saline groundwater and the removal of soil salts by natural rainfall or by irrigation are good strategies for the reclamation of salty soil.To develop suitable management strategies for salty soil reclamation,it is essential to improve soil salinity assessment pro cess/mechanism and to adopt new approaches and techniques.T his study mapped a recovered area of 7200 m2 to assess and verify variations in soil salinity in space and time in K airouan region in Central Tunisia,taking into account the thickness of soil materials.Two electromagnetic conductivity meters(EM38 and EM31)were used to measure the electrical conductivity of saturated soil-paste extract(ECe)and apparent electrical conductivity(E Ca).Multiple linear regression was established between ECe and ECa,and it was revealed that ECa-EM38 is optimal for E Ce prediction in the surface soils.Salinity maps demonstrated that the spatial structure of soil salinity in the region of interest was relatively unchanged but varied temporally.Variation in salinity at the soil surface was greater than that at a depth.These findings can not only be used to track soil salinity variations and their significance in the field but also help to identify the spatial and temporal features of soil salinity,thus improving the efficiency of soil management.  相似文献   

11.
应用传统统计学和地统计学方法,分析了2005年4~11月期间烟台农科院苹果园土壤电导率的空间变异性,并进行了Moran’s I系数分析和Kriging估值。结果表明:土壤电导率具有明显的空间变异性,半方差函数和Moran’s I系数分析说明了4月30日、6月29日和11月16日的空间自相关范围较大,相关性较强;4月20日、7月14日和8月16日的变程偏小,空间相关性较弱。土壤电导率的均值和变异系数随时间变化总体上近似呈现出先增加后减小的趋势,在空间分布上不同时期果园表层土壤电导率分布格局差异较大,土壤电导率的破碎化比较严重。  相似文献   

12.
通过优选的空间插值方法、网格单元法、地理加权回归(GWR)与最小二乘法(OLS)等方法的综合运用,系统研究典型干旱区绿洲的浅层地下水特征(埋深、电导率)与表层土壤特征(含水率、电导率)的空间分异与局部空间关系。结果表明:空间拟合方法上,表层土壤电导率与含水率的空间关系回归适用OLS模型,其余指标间空间关系采用GWR模型更优;空间关系上,土壤电导率与含水率的全局相关系数为极显著的0.85,局部相关性上绿洲西部明显高于东部;土壤电导率与地下水电导率的全局相关系数极显著(R=0.602),但局部相关性上同时具有正相关与负相关特征;土壤含水率与埋深、地下水电导率与埋深均呈全局负相关,但在局部出现正相关;地下水埋深由绿洲西北至东南逐渐增加,地下水电导率由西南至东北依次呈现低—高—低的特征,表层土壤电导率与含水率由西至东均呈现低—高—低—次高的特征; GWR较OLS方法能够反映更多的空间异质特征,通常在总体相关水平下,局部可能出现相关性相反或大小不同的相关性。  相似文献   

13.
In arid and semi-arid regions, freshwater scarcity and high water salinity are serious and chronic problems for crop production and sustainable agriculture development. We conducted a field experiment to evaluate the effect of irrigation water salinity and nitrogen(N) application rate on soil salinity and cotton yield under drip irrigation during the 2011 and 2012 growing seasons. The experimental design was a 3×4 factorial with three irrigation water salinity levels(0.35, 4.61 and 8.04 dS/m) and four N application rates(0, 240, 360 and 480 kg N/hm2). Results showed that soil water content increased as the salinity of the irrigation water increased, but decreased as the N application rate increased. Soil salinity increased as the salinity of the irrigation water increased. Specifically, soil salinity measured in 1:5 soil:water extracts was 218% higher in the 4.61 dS/m treatment and 347% higher in the 8.04 dS/m treatment than in the 0.35 dS/m treatment. Nitrogen fertilizer application had relatively little effect on soil salinity, increasing salinity by only 3%–9% compared with the unfertilized treatment. Cotton biomass, cotton yield and evapotranspiration(ET) decreased significantly in both years as the salinity of irrigation water increased, and increased as the N application rate increased regardless of irrigation water salinity; however, the positive effects of N application were reduced when the salinity of the irrigation water was 8.04 dS/m. Water use efficiency(WUE) was significantly higher by 11% in the 0.35 dS/m treatment than in the 8.04 dS/m treatment. There was no significant difference in WUE between the 0.35 dS/m treatment and the 4.61 dS/m treatment. The WUE was also significantly affected by the N application rate. The WUE was highest in the 480 kg N/hm2 treatment, being 31% higher than that in the 0 kg N/hm2 treatment and 12% higher than that in the 240 kg N/hm2 treatment. There was no significant difference between the 360 and 480 kg N/hm2 treatments. The N use efficien  相似文献   

14.
Soils in arid climates affected by drastic disturbance do not recover without reclamation efforts, and saline-sodic conditions caused by development activities are especially problematic. To improve reclamation success, we created seeded depressions that held three types of sand capillary barriers in October 2013. Sand was placed above (mulch), below (capillary barrier), and encompassing (dual barrier) seeded native soil at ridge and depression sites near Wamsutter, WY, representative of natural gas extraction areas. We compared grass growth, salinity, and moisture among the treatments and under depressions without sand amendments (pit) and plots seeded by standard procedures (control). At the ridge site, the mulch treatment supported 249 stems?m?2 in the seeded patches surviving to August 2014, compared with 110 and 89 stems?m?2 in the pit and lower barrier treatments, respectively, less than 50 stems?m?2 in the dual barrier treatments, and none in the control. The dual barrier and mulch treatments performed best at the depression site, with 40–50 stems?m?2 in August compared with none in the other three treatments. Changes in soil moisture and salinity were variable, but indicate positive effects of capillary barriers. Capillary barriers led to reductions or smaller increases in salinity than in treatments without a capillary barrier. While mulch treatments effectively increased grass growth at both sites, the dual barriers only showed positive impact at the depression site, possibly due to adequate moisture. Sand is readily available in many regions, and scaling up from test plots may be achieved with existing equipment.  相似文献   

15.
This study investigated survival of the pathogens Phytophthora ramorum, P. alni and P. kernoviae as zoospores or sporangia in response to an important water quality parameter, electrical conductivity (EC), at its range in irrigation water reservoirs and irrigated cropping systems. Experiments with different strengths of Hoagland’s solution showed that all three pathogens survived at a broad range of EC levels for at least 3 days and were stimulated to grow and sporulate at ECs > 1·89 dS m?1. Recovery of initial populations after a 14‐day exposure was over 20% for P. alni subsp. alni and P. kernoviae, and 61·3% and 130% for zoospores and sporangia of P. ramorum, respectively. Zoospore survival of these pathogens at ECs < 0·41 dS m?1 was poor, barely beyond 3 days in pure water; only 0·3% (P. alni), 2·9% (P. kernoviae) and 15·1% (P. ramorum) of the initial population survived after 14 days at EC = 0·21 dS m?1. The variation in rates of survival at different EC levels suggests that these pathogens survive better in cropping systems than in irrigation water. Containment of run‐off and reduction in EC levels may therefore be non‐chemical control options to reduce the risk of pathogen spread through natural waterways and irrigation systems.  相似文献   

16.
In deserts, shrubs determine landscape structure and influence plant productivity by creating nutrient-enriched environments. Attributes vary among shrub species, thus their contribution to soil characteristics is expected to vary as well, and nutrient input under shrub cover will depend on species attributes. We propose that plant size determines the contribution to soil chemical characteristics. Therefore, the contribution of larger species will be higher than smaller ones. Also, each species will contribute differentially for each chemical parameter. To corroborate these premises, we measured six soil chemical characteristics in areas covered by shrubs and in bare soil, as well as among five nurse species, in four sites of the Monte desert (La Rioja, Argentina). A multivariate analysis of variance (MANOVA) indicated significant variation between cover conditions and locations. Supporting previous studies, the presence of shrubs improved soil properties. Chemical concentration between soils under shrubs and bare soils, respectively, showed as mean and (SD) were: carbon(%): 0.82 (0,47), 0.52 (0.22); nitrates (ppm): 33,33 (67,36), 2.63 (0.56); phosphorous(ppm): 16.76 (25.02), 6.56 (1.92); electrical conductivity (dS m?1): 0.24 (0,43), 0.03 (0,02); pH: 6.93 (0.56), 7.62 (0.53); and water content (%): 3,17 (8.94), 2.47 (9.15). Chemical characteristics also varied according to the nurse species. Larger nurse species affected the ensemble of chemical characteristics, after controlling for cover condition and site. Larger plant species (Bulnesia retama, Prosopis torquata, and Zuccagnia punctata) were significantly associated with higher carbon and higher nitrates concentration. These results suggest that soil properties are enhanced by the size of nurse plant species.  相似文献   

17.

The impact of straw incorporation (6 Mg ha -1 year -1 ) into agricultural soils compared with straw removal on organic matter mineralization and salinity was studied. The mineralization coefficient (CO 2 -C evolved/organic C ratio) was obtained to evaluate organic matter mineralization. Soil salinity was measured as means of electrolytic conductivity of saturation paste extract. Both parameters were measured seasonally during two years in two salt-affected soils of the semiarid Central Ebro Valley (northeast Spain), a saline soil and a saline-sodic soil. The electrolytic conductivity (ranging from 2.5 dS m -1 to 24.3 dS m -1 ) and the mineralization coefficient (ranging from 5.9 10 -4 day -1 to 37.9 10 -4 day -1 ) varied widely during seasonal samplings of both soils. The lowest electrolytic conductivity values, coincided with the highest mineralization coefficient values. Straw mulching and burying decreased significantly the average seasonal electrolytic conductivity of both soils: 2.5 times in the saline soil, and 1.9 times in the saline-sodic soil. The EC reduction only increased significantly (P < 0.05) the mineralization coefficient on saline soil (1.6 times). Straw amendment, followed by rainy periods, allowed the soluble salts leaching but did not modify significantly sodium content. A logarithmic regression was found between mineralization coefficient and electrolytic conductivity (r 2 = 0.41), considering both soils. Infiltration, water aggregate stability, and qCO 2 were improved with the straw amendment, but only in saline soil. Soil differences showed the existence of a double effect: an osmotic and a specific ion effect.  相似文献   

18.
为揭示长期咸水滴灌对灰漠土物理化学特性及棉花生长的影响,研究了咸水灌溉11 a后土壤盐分、容重、水力特性、棉花耐盐生理特征及产量.试验设置3个灌溉水盐度水平:0.35 dS·m-1(淡水)、4.61 dS·m-1(微咸水)和8.04 dS·m-1(咸水).研究表明:与淡水灌溉相比,微咸水和咸水灌溉显著增加土壤容重、盐分...  相似文献   

19.
Soil contains water and nutrients necessary for the development of cultivated plants and serves as a substrate and support in terrestrial ecosystems. For reasons inherent to the nature of soil, salt content can considerably limit the growth of plants. With the implementation of salinity-tolerant crops, saline soils can be transformed into productive and sustainable areas. In Tunja, Colombia, a trial was developed to quantify the changes in growth, water intake, fiber, nitrogen and chlorophyll content in Furcraea hexapetala plants exposed to NaCl saline conditions. Plantlets obtained from bulbs were grown in an aerated nutrient solution under greenhouse conditions. Measurements of 30, 60 or 90?mmol NaCl was added to the nutrient solution and control plants were left without addition of salt. As a consequence of salinity, leaf area, leaf area ratio, water uptake, absolute growth rate, relative growth rate, fiber content, dry matter, chlorophyll and nitrogen content in leaves were reduced. The accumulation of dry matter in leaves, stem and roots was especially affected when the plants were exposed to 90?mmol of NaCl. Accumulated dry matter increased in the stems, but reduced in the leaves. These results suggest that plants of Furcraea hexapetala can tolerate up to 60?mmol of NaCl (4.9?dS?m?1) without substantially affecting the parameters that determine the growth or the fiber content in the leaves.  相似文献   

20.
基于EM38和遥感影像的土壤表观电导率建模研究   总被引:2,自引:0,他引:2  
选取阿克苏地区渭干河-库车河绿洲外围的典型盐渍化区域作为研究对象,应用EM38大地电导率仪测量该地区样点表观电导率,选取四种不同的土壤盐分指数,结合同时期的遥感影像建立基于影像波段的土壤盐分指数回归模型,通过统计软件进行相关分析,发现表观电导率与土壤盐分指数S2即(b1-b3)/(b1+b3)的相关性最高,然后将不同层的土壤表观电导率同S2进行曲线拟合,对不同模型的拟合效果进行对比分析,结果表明:增长模型即复合比级数曲线模型的拟合度最高,通过精度验证,模型不适用于灌区,而荒漠区的各层的预测值与实测值相关分析结果都达到显著性水平,利用该模型可进行荒漠地区表观电导率的反演,因此基于电磁感应技术的土壤表观电导率建模研究可以为快速土壤盐渍化监测提供一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号