首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new gravitational lens system, the triple radio source MG2016+112, has been discovered. Five emission lines at a redshift of 3.2733+/-0.0014 have been identified in the spectra of two stellar objects of magnitude 22.5 coincident with radio components 3.4 arc seconds apart. The lines are the narrowest ever observed in objects at such a large redshift. The redshift of a 23rd-magnitude extended optical object coincident with the third radio component has not been determined spectroscopically, but its known optical properties are consistent with those of a giant elliptical galaxy with a redshift of about 0.8.  相似文献   

2.
The optical double quasar 0957+561 has been interpreted as the gravitational double image of a single object. A radio map made with the Very Large Array of the National Radio Astronomy Observatory shows unresolved sources coincident With the optical images as well as a complex of related extended emission. Although the results cannot rule out the gravitational lens hypothesis, the complex radio structure is more easily interpreted as two separate quasars. The optical and radio properties of the two quasars are so similar that the two must have been formed at the same time with similar initial conditions.  相似文献   

3.
The pulse structure of the four known pulsars is given. The pulse is about 38 milliseconds for the two pulsars of longest period, and within the pulsewidth three subpulses typically appear. The pulsar of next longest period typically radiates two pulses separated about 23 milliseconds in time. The one short-period pulsar emits single pulses of constant shape. The first subpulses of all pulsars have nearly the same shape. The shape of the first subpulse agrees well with the pulse shape expected from a radio-emitting sphere which is excited by a spherically expanding disturbance, and in which the radio emission, once excited, decays exponentially.  相似文献   

4.
Quantum communication relies on the availability of light pulses with strong quantum correlations among photons. An example of such an optical source is a single-photon pulse with a vanishing probability for detecting two or more photons. Using pulsed laser excitation of a single quantum dot, a single-photon turnstile device that generates a train of single-photon pulses was demonstrated. For a spectrally isolated quantum dot, nearly 100% of the excitation pulses lead to emission of a single photon, yielding an ideal single-photon source.  相似文献   

5.
The circularly polarized emission from the pulsar CP 0328 has an approximately flat spectrum in the 1-megahertz band centered at 113.6 megahertz, whereas the linearly polarized emission varies with frequency and from pulse to pulse. A simple model for the source that has a constant Faraday rotation measure fits some of the linearly polarized spectra observed for individual pulses, but changes in the rotation measure of as much as 30 radians per square meter are required between adjacent pulses. The simple model does not fit the average spectrum of the linearly polarized emission, although the average spectrum had the same form on two nights.  相似文献   

6.
Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.  相似文献   

7.
Experimental techniques are now available for the generation of repetitive and single coherent optical pulses of extremely short time duration and high peak power. These pulses should find extensive application in basic and applied research. Additional shortening of optical pulse durations can be obtained by means of the stimulated Raman effect, second-harmonic generation, or amplification with nonlinear laser amplifiers.  相似文献   

8.
Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).  相似文献   

9.
The sharply defined optical and radio pulses from pulsars make possible a test of the variation of the speed of light with frequency, and of the possible existence of a photon mass. The data indicate that the mass of a real photon is less than 10(-44) gram. Detection of extragalactic pulsars could allow a substantial improvement of this limit.  相似文献   

10.
Observations now require that there be a continuous supply of energy to the giant extragalactic radio sources. These observations also suggest that this energy input may be in the form of streams or jets of gas emanating from the centers of galaxies and quasi-stellar objects. Current data indicate that the large-scale jet structures are not moving with relativistic speeds, as previously proposed. Slow-moving jets, which possess turbulent interiors and are dominated by relatively cool gas, can account for the observed jet properties at optical and radio wavelengths. Extremely small-scale jets observed adjacent to the central energy source may or may not be in relativistic motion.  相似文献   

11.
The nature of pulse propagation through a material with a negative value of the group velocity has been mysterious, as simple models seem to predict that pulses will propagate "backward" through such a material. Using an erbium-doped optical fiber and measuring the time evolution of the pulse intensity at many points within the fiber, we demonstrate that the peak of the pulse does propagate backward inside the fiber, even though the energy flow is always in the forward direction.  相似文献   

12.
The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.  相似文献   

13.
We report on the generation of picosecond self-mode-locked pulses from midinfrared quantum cascade lasers, at wavelengths within the important molecular fingerprint region. These devices are based on intersubband electron transitions in semiconductor nanostructures, which are characterized by some of the largest optical nonlinearities observed in nature and by picosecond relaxation lifetimes. Our results are interpreted with a model in which one of these nonlinearities, the intensity-dependent refractive index of the lasing transition, creates a nonlinear waveguide where the optical losses decrease with increasing intensity. This favors the generation of ultrashort pulses, because of their larger instantaneous intensity relative to continuous-wave emission.  相似文献   

14.
Femtosecond optical measurement techniques have been used to study the primary photoprocesses in the light-driven transmembrane proton pump bacteriorhodopsin. Light-adapted bacteriorhodopsin was excited with a 60-femtosecond pump pulse at 618 nanometers, and the transient absorption spectra from 560 to 710 nanometers were recorded from -50 to 1000 femtoseconds by means of 6-femtosecond probe pulses. By 60 femtoseconds, a broad transient hole appeared in the absorption spectrum whose amplitude remained constant for about 200 femtoseconds. Stimulated emission in the 660- to 710-nanometer region and excited-state absorption in the 560- to 580-nanometer region appeared promptly and then shifted and decayed from 0 to approximately 150 femtoseconds. These spectral features provide a direct observation of the 13-trans to 13-cis torsional isomerization of the retinal chromophore on the excited-state potential surface. Absorption due to the primary ground-state photoproduct J appears with a time constant of approximately 500 femtoseconds.  相似文献   

15.
X-ray pulsations have been observed in the Crab Nebula at a frequency closely matching the radio and optical pulsations. About 5 percent of the total x-ray power of the nebula appears in the pulsed component. The x-ray pulsations have the form of a main pulse and an interpulse separated by about 12 milliseconds.  相似文献   

16.
Ultrashort laser pulses have thus far been used in two distinct modes. In the time domain, the pulses have allowed probing and manipulation of dynamics on a subpicosecond time scale. More recently, phase stabilization has produced optical frequency combs with absolute frequency reference across a broad bandwidth. Here we combine these two applications in a spectroscopic study of rubidium atoms. A wide-bandwidth, phase-stabilized femtosecond laser is used to monitor the real-time dynamic evolution of population transfer. Coherent pulse accumulation and quantum interference effects are observed and well modeled by theory. At the same time, the narrow linewidth of individual comb lines permits a precise and efficient determination of the global energy-level structure, providing a direct connection among the optical, terahertz, and radio-frequency domains. The mechanical action of the optical frequency comb on the atomic sample is explored and controlled, leading to precision spectroscopy with an appreciable reduction in systematic errors.  相似文献   

17.
Pulsed excitation fields are routinely used in most laser and nuclear magnetic resonance (NMR) experiments. In the NMR case, constant amplitude (rectangular) pulses have traditionally been used; in laser spectroscopy the exact pulse shape is often unknown or changes from shot to shot. This article is an overview of the effects of radio-frequency and laser pulse shapes and the instrumental requirements for pulse shaping. NMR applications to selective excitation, solvent suppression, elimination of phase roll, and reduced power dissipation are discussed, as are optical applications to soliton generation, velocity selective excitation, and quantitative population transfer.  相似文献   

18.
Optical pulses in the 5-femtosecond range are produced by a variety of methods. Although different in technical detail, each method relies on the same three key components: spectral broadening due to the nonlinear optical Kerr effect, dispersion control, and ultrabroadband amplification. The state of the art of ultrashort pulse generation is reviewed with a focus on direct laser oscillator schemes.  相似文献   

19.
The pulsating radio star reported by Hewish et al. (1) has been studied in the blue region of the optical spectrum and found to have a pulse amplitude less than 10 percent of the photon count expected for 18th magnitude. No upper limit to a sinusoidal oscillation less than or equal to a complete modulation can be set.  相似文献   

20.
Single soft-x-ray pulses of approximately 90-electron volt (eV) photon energy are produced by high-order harmonic generation with 7-femtosecond (fs), 770-nanometer (1.6 eV) laser pulses and are characterized by photoionizing krypton in the presence of the driver laser pulse. By detecting photoelectrons ejected perpendicularly to the laser polarization, broadening of the photoelectron spectrum due to absorption and emission of laser photons is suppressed, permitting the observation of a laser-induced downshift of the energy spectrum with sub-laser-cycle resolution in a cross correlation measurement. We measure isolated x-ray pulses of 1.8 (+0.7/-1.2) fs in duration, which are shorter than the oscillation cycle of the driving laser light (2.6 fs). Our techniques for generation and measurement offer sub-femtosecond resolution over a wide range of x-ray wavelengths, paving the way to experimental attosecond science. Tracing atomic processes evolving faster than the exciting light field is within reach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号