首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Soil organic carbon (SOC) sequestration in croplands plays a critical role in climate change mitigation and food security, whereas the stability and saturation of the sequestered SOC have not been well understood yet, particularly in rice (Oryza sativa L.) fields. The objective of this study was to determine the long-term effect of inorganic fertilization alone or combined with organic amendments on SOC stability in a double rice cropping system, and to characterize the saturation behavior of the total SOC and its fractions in the paddy soil.

Materials and methods

Soils were collected from a long-term field experiment in subtropical China where different fertilization regimes have been carried out for 31 years. The total SOC pool was separated into four fractions, characteristic of different turnover rates through chemical fractionation. Annual organic carbon (C) inputs were also estimated by determining the C content in crop residues and organic amendments.

Results and discussion

Relative to the initial level, long-term double rice cropping without any fertilizer application significantly increased SOC concentration, suggesting that double rice cropping facilitates the storage and accumulation of SOC. The partial substitution of inorganic fertilizers with organic amendments significantly increased total SOC concentration compared to the unfertilized control. Total SOC increased significantly with greater C inputs and did not show any saturation behavior. Increased SOC was primarily stored in the labile fraction with input from organic amendments. However, other less labile SOC fractions showed no further increase with greater C inputs exhibiting C saturation.

Conclusions

While the paddy soil holds a high potential for SOC sequestration, stable C fractions saturate with increasing C inputs, and thus, additional C inputs mainly accumulate in labile soil C pools.  相似文献   

2.

Background aim and scope  

Soil organic carbon (SOC) accumulation is strongly affected by soil erosion and deposition that differ at slope positions of a watershed. However, studies on the effects of topography on soil aggregation and SOC dynamics, especially after the implementation of vegetation restoration, are rare. Poorly understood mechanisms and a lack of quantification for the suite of ecological benefits brought by the impacts of topography after planting further obstructed our understanding of terrestrial ecosystem carbon (C) sequestration. The purposes of this study are to (1) quantify the impacts of vegetation restoration on size and stability of soil aggregates and the sequestration of C in soil and (2) to address the impacts of various slope locations on aggregates and SOC distribution.  相似文献   

3.

Purpose

Land use changes have a significant impact on soil carbon emission and sequestration worldwide. Accurate evaluation of the effect of land use change (cultivation and abandonment) on soil carbon content of subalpine meadows is required to monitor the soil carbon dynamics of rangeland ecosystems in China.

Materials and methods

Based on collection of soil cores and vegetation, investigations of four types of land use (undisturbed natural meadow, land cultivated for 20?years, land abandoned for 3?years following cultivation, and land abandoned for 10?years following cultivation) were undertaken in the headwater area of the Heihe River in northwest China. Three soil carbon fractions [soil organic carbon (SOC), light fraction organic carbon (LFOC), and microorganism biomass carbon (MBC)] were determined in the laboratory, and the relative abundances of LFOC/SOC and MBC/SOC were calculated.

Results and discussion

Repeated cultivation by ploughing reduced the carbon content of the top soil layer, resulting in more uniform vertical distribution of soil organic matter. Ten years after cessation of cultivation, the organic carbon content within the top 10-cm soil layer (0?C10?cm) had reached 90?% of the content in native meadows, equivalent to a mean annual sequestration rate of 1.73?t?C?ha?1. The rate of LFOC restoration was faster than that of SOC restoration. The variation in the ratio of MBC to SOC (0.91?C1.07?%) was small.

Conclusions

The activity of cultivation reduced all indicators of soil carbon status, which were not completely restored to the level of natural meadow, even after abandonment of cultivation for 10?years. Nevertheless, abandonment of cultivation is a practical, even if long-term, means of improving carbon sequestration in subalpine meadow of China.  相似文献   

4.

Purpose  

Fertilization is an essential management method to maintain and increase soil organic carbon (SOC) content in agroecosystems. Fertilizer application is known to markedly influence the turnover of labile and refractory SOC components. However, the dynamics of lignin in response to different types of fertilization remains unclear. This study addresses the impact of long-term fertilization on lignin accumulation in an arable soil.  相似文献   

5.

Purpose  

It is known that soil organic matter (SOM) dynamics are sensitive to fertilizations, but it is different from soil to soil. It is unclear how the long-term applications of organic manure and mineral fertilizers impact the accumulation and distribution of soil organic carbon (SOC) and total nitrogen (TN) especially in soil aggregate fractions of Chinese Mollisols, which have been intensively cultivated for decades under maize monocropping and conventional tillage ways. Thereby, the research of this kind is very important for the sustainable use of agricultural land in China, where land resources are extremely limited for its huge population. The objectives of this study were to identify how the long-term fertilization treatments would affect the aggregate, SOC and TN distribution pattern in the Chinese Mollisol, and how soil aggregation contribute to the storage and stabilization process of SOC and TN.  相似文献   

6.
The fertilization with organic amendments and digestates from biogas plants is increasingly used to increase carbon stock and to improve the soil quality, but little is still known about their long-term effects. A common method to analyse organic amendments and their mineralization is incubation experiments, where amendments get incubated with soil while CO2 release is measured over time. In a previous study, carbon models have been applied to model the carbon dynamics of incubation experiments. The derived parameters describing the carbon turnover of the CCB model (CANDY Carbon Balance) are used to simulate the SOC and SON dynamics of a long-term field trial. The trial was conducted in Berge (Germany) where organic amendments like slurry, farmyard manure or digestates were systematically applied. To grant a higher model flexibility, the amounts of crop residues were calculated for roots and stubble separately. Furthermore, the mineralization dynamics of roots and stubble are considered by the model parameters for each crop. The model performance is compared when using the dry matter and carbon content received from the field trial and the incubation experiments, to evaluate the transferability. The results show that the incubation parameters are transferable to the field site, with rRMSE < 10% for the modelled SOC and rRMSE between 10% and 15% for the SON dynamics. This approach can help to analyse long-term effects of unexplored and unusual organic fertilizers under field conditions, whereat the model is used to upscale the C dynamics from incubation experiments, considering environmental conditions.  相似文献   

7.
通过对滨海盐化潮土小麦—玉米轮作2年田间定位试验,研究不同改良剂施用对土壤团聚体分布、稳定性及土壤团聚体中有机碳含量、各级团聚体有机碳对总有机碳贡献率的影响。试验共设置3个处理:对照(CK)、有机土壤改良剂(OSA)和有机—无机土壤改良剂(CSA),分析土壤团聚体分布、水稳性大团聚体(R_(0.25))、平均重量直径(mean weight diameter,MWD)、几何平均直径(geometric mean diameter,GMD)、分形维数(D)、有机碳储量(soil organic carbon storage,SOCS)和有机碳贡献率(contribution rate of organic carbon)。结果表明,滨海盐化潮土水稳性团聚体组成主要以0.25 mm粒径为主,改良剂施用后土壤R_(0.25)显著提高,其影响主要集中在5 mm和2~5 mm粒径级,OSA处理2个粒级团聚体含量较CK分别显著增加167.38%和59.00%,CSA处理分别显著增加89.17%和100.66%。施用OSA与CSA同时显著提高了土壤团聚体MWD和GMD值,说明2种改良剂的施用均有利于提高大团聚体数量及稳定性。施用改良剂2年处理土壤各粒级团聚体中有机碳含量均有所提高,OSA处理以1~2 mm粒级提高最多,CSA以2~5 mm粒级提高最多,且前者达显著水平。与CK相比,改良剂可促使土壤有机碳向大团聚体富集,显著提高1~2 mm粒级团聚体对土壤总有机碳的贡献率93.62%~109.76%,降低或显著降低1~2 mm粒级团聚体对土壤总有机碳的贡献率20.55%~24.92%。在小麦—玉米轮作模式下,改良剂施用不仅可以显著提高滨海盐化潮土水稳性大团聚体含量和稳定性,还可显著增加水稳性大团聚体有机碳含量与储量,是加强盐碱土壤有机碳库积累的有效措施。  相似文献   

8.
  目的  探究施用不同种类和数量改良剂对矿区复垦土壤水稳性团聚体和有机碳的影响。  方法  在山西省古交市屯兰煤矿复垦6年的地块上设置随机区组试验,在0 ~ 20 cm土层按土壤重量的1%、3%、5%分别施用腐殖酸和泥炭两种改良剂,于施用后1年和2年时两次取样测定0 ~ 20 cm土壤团聚体组成、有机碳含量及其组分,对不同种类和数量改良剂的改良效果进行评价。  结果  施用腐殖酸、泥炭后1年时各处理土壤 > 2 mm水稳性团聚体质量分数均高于对照,增幅为1.53% ~ 62.27%,且土壤水稳性团聚体均以大团聚体(> 0.25 mm)为主;施用改良剂后2年时各处理土壤水稳性大团聚体含量降低,降幅为1.73% ~ 11.35%,土壤团聚体以 < 0.053 mm粒级的团聚体为主。施用改良剂后腐殖酸处理的土壤有机碳储量、固碳量和固碳速率呈先增加后减少的趋势,泥炭处理随泥炭施用量的增加而增加。施用改良剂后土壤 > 2 mm粒级团聚体质量分数与土壤有机碳储量呈显著正相关。施用改良剂能增加复垦土壤矿物结合态有机碳含量,且施用腐殖酸处理的含量高于泥炭处理。施用改良剂后2年时与1年相比,复垦土壤颗粒态有机碳含量呈增长的趋势,土壤铁铝键结合态有机碳含量则呈降低趋势。施用腐殖酸、泥炭可增加复垦土壤羧酸、醇类等官能团含量,显著增加土壤中多糖物质的含量。  结论  在矿区复垦土壤上施用腐殖酸、泥炭可显著增加土壤大团聚体数量,提高土壤有机碳、矿物结合态有机碳和颗粒态有机碳含量及土壤固碳量;随腐殖酸、泥炭施用量增加,土壤固碳速率增加、固碳效率减小;复垦区土壤改良需逐年施用腐殖酸、泥炭等改良剂,才能获得稳定的改良效果。  相似文献   

9.

Purpose

While the influence of integrated fertility management systems on yield and N cycling in Mollisols is documented, its effect on soil C sequestration remains to be determined. We examined the response of organic C pools and crop yields to 21 years’ organic amendments applied at relatively low rates in a high-C Mollisol to optimize win–win management practices that balance agronomic and environmental interests.

Materials and methods

This study was based on five treatments: CK (unfertilized control), NPK (chemical fertilizer alone), NPKS1 (NPK plus crop residues), NPKS2 (NPK plus double amounts of crop residues), and NPKM (NPK plus pig manure). Crop yield was determined by harvesting a defined area. Organic C was quantified by dry combustion. A two-step acid hydrolysis technique was used to quantify hydrolysable and non-hydrolysable C fractions.

Results and discussion

All organic-treated plots produced significantly higher crop yields than the NPK plots, but only the manure treatment resulted in a significant increase in SOC compared with the NPK treatment after 21 years of experiment. It seems that the effects of organic amendments on SOC depend primarily on the type of organic materials when the application rates were relatively low. This indicated that organic amendments offer relatively short-term soil benefits for plant growth. The pig manure builds SOC over the long term, which provides secondary benefits while also sequestering C.

Conclusions

Overall, manure integrated with mineral fertilizer should be recommended to maintain the SOC content and increase crop yield in the Mollisols.  相似文献   

10.

Purpose

Phosphorus (P) in soil particulate fraction (PF; >53 μm) is suggested to have a significant importance in soil P cycling. However, the effects of continuous fertilization on P-PF and its association with soil organic carbon (SOC) in paddy soils have not been well studied.

Materials and methods

We sampled paddy soils at 0–20 cm from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilization treatments with equivalent P input (135 kg P2O5?ha?1 year?1) except the control treatment (CK). Changes in total P (Pt), inorganic P (Pi), organic P (Po), and SOC under different fertilization managements were evaluated in the whole soil, in the PF, and in the mineral-associated fraction (MAF; <53 μm).

Results and discussion

Continuous fertilization increased the contents of SOC and P in all soil fractions. Both Po and organic carbon in PF were the most sensitive variables to fertilization, indicating that they constitute a useful tool to detect the effects of management practices. Among the fertilization treatments, organic amendments significantly increased Po-PF contents more than chemical fertilizer applied only (p?<?0.05), although they had equivalent P input. The paddy soil without fertilization showed a more significant decrease in Pi compared with Po. The SOC/Po ratios were significantly lower in fertilization treatments (especially those with manure or straw incorporation) than in CK and decreased from PF to MAF. A significant relationship was found between Po-PF contents and rice P uptake during the growing season.

Conclusions

These results demonstrate that Po-PF may also play a significant role in P cycling of paddy soil, and thus, it would be better to consider Po-PF in soil diagnosis to promote P management of paddy soil, especially for that under long-term organic amendments.
  相似文献   

11.

Purpose

Soil organic carbon (SOC) stock is one of the most important carbon reservoirs on the earth and plays a vital role in the global climate change. However, research on the carbon sequestration and storage of coastal wetland soil is very scarce. Therefore, a study in the coastal wetland was conducted to investigate the SOC distribution, storage, and variation under the influence of human activities.

Materials and methods

Surface soil samples in different seasons and profile soil samples were collected in the Changyi coastal wetland. SOC content, soil physicochemical properties, and sedimentation rate were determined. Organic carbon storage and burial flux were calculated. On the basis of correlation analysis and comparative study, factors affecting the distribution and storage of SOC were investigated.

Results and discussion

The average SOC content of the surface soil in June and November was 4.65 and 6.13 g kg?1, respectively. The distribution of surface SOC content was consistent with the distribution of vegetation and was affected by the soil particle size. In plant-covered area, the relationship between SOC content and depth could be expressed by the power function y?=?ax b . The contribution of plants to SOC was only significant in the shallow layer. As for the deep layer, the SOC content was higher in the mudflat. The organic carbon storage in the upper 1 m soil was estimated at 1.795 kg m?2 in average and the total organic carbon storage of Changyi wetland was estimated at 6.373?×?107 kg. The sedimentation rate was very low and the average organic carbon burial flux of the whole wetland was 17.5 g m?2 a?1.

Conclusions

Low sedimentation rate, weak downward migration, and high decomposition rate of organic matter caused by poor hydrological condition were the reasons why the SOC storage in Changyi wetland was low. Under intensive human activities, the Changyi wetland was drying and the organic carbon storage was reducing. Strategies were proposed to be taken urgently to restore the wetland for the long-term benefit.
  相似文献   

12.

Purpose

Biochemical protection is an important mechanism for maintaining the long-term stability of the soil carbon (C) pool. The labile and recalcitrant pools of soil organic matter (SOM) play different roles in regulating C and N dynamics; however, few studies have characterized the capacity of soil C sequestration while considering the biochemical quality of SOM. The aim of the present study was to assess the changes in the soil organic carbon (SOC) and nitrogen (N) pools during a traditional rotation period (25 years) of a Chinese fir (Cunninghamia lanceolata) plantation with an emphasis on SOM biochemical quality.

Materials and methods

Three different forest stand development stages—young (6 years old), middle-aged (16 years old) and mature (25 years old)—were selected for soil sampling to a depth of 100 cm. Total C and total N of the soil was analysed to determine the changes in the SOC and N stocks among the three development stages using an equivalent soil mass (ESM) approach. Bulk soils were fractionated into labile and recalcitrant fractions using the acid hydrolysis method to identify the quality of SOM.

Results and discussion

The mineral soil organic carbon pool at a 1-m depth slightly decreased from the young stand to the middle-aged stand and rapidly increased by 28 % to reach a maximum in the mature stand. SOC accumulation in the surface soil predominated the changes in total SOC stocks in all three stands. The increased N was reflected in the entire depth, and the highest soil N accumulation was in the mature stand. The recalcitrant C concentration and SOC were positively correlated. The non-hydrolysable C proportion was lower in the middle-aged stand versus the young stand (8.69 % loss), while the labile C percentage was higher (13.89 % gain). In the mature stand, the recalcitrant C index increased to 39.84 %. The recalcitrant index of C decreased with an increasing soil depth, whereas the recalcitrant index of N dramatically increased.

Conclusions

These results highlighted the significant effect of the stand age and the soil depth on the storage and biochemical availability of SOM in Chinese fir plantations of southern China. The recalcitrant index of C changed with the change in SOC concentration, indicating that biochemical protection mechanism plays an important role in soil C sequestration. In addition, more attention should be paid to subsoil C protection in the management of Chinese fir plantations because of low biochemical stability.
  相似文献   

13.
Land use changes profoundly affect the equilibrium of soil organic carbon (SOC) sequestration and greenhouse gas emissions. With the current global climatic changes, it is vital to understand the influence of ecological restoration and conservation management on the dynamics of SOC under different land uses, especially in erosion-endangered Loess soils. Therefore, we investigated changes in SOC through a suit of labile fractions, namely: light fraction organic C (LFOC), heavy fraction organic C (HFOC), coarse particulate organic C (CPOC), fine particulate organic C (FPOC), and dissolved organic C (DOC), from two forests i.e., Robinia pseudoacacia (RP) and Platycladus orientalis (PO), with different ages, in comparison with farmland (FL). The SOC and STN contents significantly increased over 42 years in the RP forest where the contents of CPOC and FPOC were significantly higher than in the FL. Moreover, total SOC and its labile fractions, in the studied land use types, significantly correlated with soil CaCO3, pH, and STN contents, indicating their key roles in SOC sequestration. The results reported here from different vegetation with different ages provide a better understanding of SOC and STN alterations at different stages of vegetation restoration. Our findings suggest that long-term natural vegetation restoration could be an effective approach for SOC sequestration and soil conservation on the Loess soil.  相似文献   

14.

Purpose

The objectives of the study were (1) to quantify the long-term effects of nitrogen-phosphorus fertilizer (NP) and a combination of nitrogen-phosphorus with organic manure (NPM) on total soil organic carbon (SOC) and total soil inorganic carbon (SIC), (2) to identify the changes of SOC and SIC in soil particle-size fractions, and (3) to investigate the relationship between SOC and SIC.

Materials and methods

Two long-term field experiments (sites A and B) were performed in 1984 (site A) and 1979 (site B) in the North China Plain. The soil samples were collected in 2006 and separated for clay, silt and sand size particle fractions and then determined for SOC and SIC.

Results and discussion

The long-term fertilization significantly increased SOC in 0–20 cm soil layer by 9–68% but significantly decreased or had no effect on SIC. In total, soil carbon storage was little affected by NP, but significantly increased by NPM application (p < 0.05). Fertilization affected both SOC and SIC in sand- and silt-sized particles but not in clay-size fraction. Both NP and NPM increased SOC in sand- and silt-sized particles by 8.7–123.9% in the 0–20 cm layer but decreased SIC up to 80.4% in the 40–60 cm layer. The SOC concentration in the particle-size fractions was negatively correlated with SIC concentration, which may imply an antagonistic interaction between organic and inorganic carbon levels.

Conclusions

These results illustrate the importance of soil inorganic carbon pool in evaluating soil total carbon pool in semi-arid farmlands. Previous assessments of the effects of fertilizers on the soil carbon pool, using only SOC determinations, require re-evaluation with the inclusion of SIC determinations.
  相似文献   

15.

Purpose

This study aims to explore the dynamics of the factors influencing soil organic carbon (SOC) sequestration and stability at erosion and deposition sites.

Materials and methods

Thermal properties and dissolved aromatic carbon concentration along with Al, Fe concentration and soil specific surface area (SSA) were studied to 1 meter depth at two contrasting sites.

Results and discussion

Fe, Al concentrations and SSA size increased with depth and were negatively correlated with SOC concentration at the erosion site (P?<?0.05), while at the deposition site, these values decreased with increasing depth and were positively correlated with SOC concentration (P?<?0.05). TG mass loss showed that SOC components in the two contrasting sites were similar, but the soils in deposition site contained a larger proportion of labile organic carbon and smaller quantities of stable organic carbon compared to the erosion site. SOC stability increased with soil depth at the erosion site. However, it was slightly variable in the depositional zone. Changes in SUVA254 spectroscopy values indicated that aromatic moieties of DOC at the erosion site were more concentrated in the superficial soil layer (0–20 cm), but at the deposition site they changed little with depth and the SUVA254 values less than those at the erosion site.

Conclusions

Though large amounts of SOC accumulated in the deposition site, SOC may be vulnerable to severe losses if environmental conditions become more favorable for mineralization in the future due to accretion of more labile carbon. Deep soil layers at the erosion site (>30 cm deep) had a large carbon sink potential.
  相似文献   

16.

Background, aim, and scope  

Land-use change can significantly influence carbon (C) storage and fluxes in terrestrial ecosystems. Soil–plant systems can act as sinks or sources of atmospheric CO2 depending on formation and decomposition rates of soil organic matter. Therefore, changes in tropical soil C pools could have significant impacts on the global C cycle. This study aims to evaluate the impacts of long-term sugarcane cultivation on soil aggregation and organic matter, and to quantify temporal dynamics of soil organic matter in cultivated sugarcane plantation soils previously under a tropical natural secondary forest.  相似文献   

17.
土壤有机碳稳定性影响因素的研究进展   总被引:12,自引:0,他引:12  
增加土壤碳汇是应对全球气候变化的有效措施,作为土壤碳汇来源之一的有机碳在其中发挥重要作用。过去几十年,土壤有机碳的分子结构性质被认为是预测有机碳在土壤中循环的主要标准。然而最近的研究结果表明有机碳的分子结构并非绝对地控制着土壤有机碳的稳定,而土壤环境因子与有机碳的相互作用显著降低了土壤有机碳被降解的可能性。土壤微生物不仅参与有机碳的降解,其产物本身也是土壤有机碳的重要组成成分。非生物因子直接或间接地控制着土壤有机碳的稳定,包括土壤中的无机颗粒、无机环境以及养分状况等。其中,有机碳与土壤矿物的吸附作用和土壤团聚体的闭蓄作用被普遍认为高效地保护了有机碳。土壤矿物的吸附作用取决于其自身的矿物学性质和有机碳的化学性质。土壤团聚体在保护有机碳的同时也促进了有机碳与矿物的吸附,而有机-矿物络合物同样可以参与形成团聚体。此外,土壤无机环境也影响着有机碳循环。总之,土壤有机碳的稳定取决于有机碳与周围环境的相互作用。同时,有机碳的结构性质也受控于环境因素。然而,无论有机碳的结构性质,还是其所处的生物与非生物环境,都是生态系统的基本属性,且各属性间相互影响、相互作用。因此,土壤有机碳的稳定是生态系统的一种特有性质。  相似文献   

18.

Purpose  

Climate factors, considered significant factors in regulating soil organic carbon (SOC), are not equally important at all spatial scales. However, the scale which provides the optimal relationship between climate and SOC and how that relationship varies at multiple scales are still unclear. Thus, it is crucial to study the relationship between climate factors and SOC at multiple scales when attempting to accurately predict the SOC pool and evaluate the influence of climate change on global carbon cycling. The objective of this research is to examine the scale effect of climate factors on SOC content in the Uplands of Northeast China.  相似文献   

19.
Soil plays an important role in the global carbon cycle, and carbon sequestration in soil is important for mitigating global climate change. Historically, soil erosion led to great reductions of soil organic carbon (SOC) storage in China. Fortunately, with the economic development and remarkably effective soil erosion control measures in subtropical China over the past 20 years, soil erosion has been greatly decreased. As a result, soil organic carbon sequestration has gradually increased due to the rapid recovery of vegetation in the area. However, little information exists concerning the potential of soil carbon sequestration in the area. This paper introduces a case study in Xingguo County, Jiangxi Province, China, which used to be a typical area with significant soil loss in subtropical China. This work represents a systematic investigation of the interrelations of carbon sequestration potential with soil erosion types, altitudes, soil types and soil parent materials. In this study, 284 soil samples were collected from 151 sampling sites (51 are soil profile sites) to determine soil physicochemical properties including organic carbon content. Soil organic carbon distribution maps of the surface layer (0–20 cm) and whole profile (0–100 cm) were compiled by linking soil types to the polygons of digital soil maps using GIS. Assuming that SOC was lost following the destruction of native vegetation, these lands hold great promise for potentially sequestering carbon again. The potential of soil carbon sequestration in the study area was estimated by subtracting the organic carbon status in eroded soils from that in non-eroded soils under undisturbed forest. Results show that the potential of SOC in the surface layer is 4.47 Tg C while that in the whole profile is 12.3 Tg C for the entire county. The greatest potential for carbon sequestration (3.72 Tg C) is found in severely eroded soil, while non-eroded soil has the smallest potential. Also, soil carbon sequestration potential decreases with increasing altitude. Soils at altitudes of <300 m show the greatest potential (5.01 Tg C), while those of >800 m have the smallest potential (0.25 Tg C). Among various soil types, red earths (Humic Acrisols) have the greatest potential of carbon sequestration (5.32 Tg C), and yellow earths (Ferralic Cambisols) have the smallest (0.15 Tg C). As for soils derived from various parent materials, soils derived from phyllite possess the greatest carbon sequestration potential, and soils from Quaternary red clays have the smallest.  相似文献   

20.

Purpose

Soil dissolved organic matter (DOM) as the labile fraction of soil organic carbon (SOC) is able to facilitate biogeochemical redox reactions effecting soil respiration and carbon sequestration. In this study, we took soil samples from 20 sites differing in land use (forest and agriculture) to investigate the electron transfer capacity of soil DOM and its potential relationship with soil respiration.

Materials and methods

DOM was extracted from 20 soil samples representing different land uses: forest (nos. 1–12) and agriculture (nos. 13–20) in Guangdong Province, China. Chronoamperometry was employed to quantify the electron transfer capacity (ETC) of the DOM, including electron acceptor capacity (EAC) and electron donor capacity (EDC), by applying fixed positive or negative potentials to a working electrode in a conventional three-electrode cell. The reversibility of electron accepting from or donating to DOM was measured by applying switchable potentials to the working electrode in the electrochemical system with the multiple-step potential technique. Carbon dioxide produced by soil respiration was measured with a gas chromatograph.

Results and discussion

Forest soil DOM samples showed higher ETC and electron reversible rate (ERR) than agricultural soil DOM samples, which may be indicative of higher humification rate and microbial activity in forest soils. The average soil respiration of forest soil (nos. 1–12) and agricultural soil (nos. 13–10) was 26.34 and 18.58 mg C g?1 SOC, respectively. Both EDC and EAC of soil DOM had close relationship with soil respiration (p?<?0.01). The results implied that soil respiration might be accelerated by the electroactive moieties contained in soil DOM, which serve as electron shuttles and facilitate electron transfer reactions in soil respiration and SOC mineralization.

Conclusions

DOM of forest soils showed higher ETC and ERR than DOM of agricultural soils. As soil represents one of the largest reservoirs of organic carbon, soil respiration affects C cycle and subsequently CO2 concentration in the atmosphere. As one of the important characteristics of soil DOM related to soil respiration, ETC has a significant impact on greenhouse gas emission and soil carbon sequestration but has not been paid attention to.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号