首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
NMDA receptor losses in putamen from patients with Huntington's disease   总被引:19,自引:0,他引:19  
N-Methyl-D-aspartate (NMDA), phencyclidine (PCP), and quisqualate receptor binding were compared to benzodiazepine, gamma-aminobutyric acid (GABA), and muscarinic cholinergic receptor binding in the putamen and cerebral cortex of individuals with Huntington's disease (HD). NMDA receptor binding was reduced by 93 percent in putamen from HD brains compared to binding in normal brains. Quisqualate and PCP receptor binding were reduced by 67 percent, and the binding to other receptors was reduced by 55 percent or less. Binding to these receptors in the cerebral cortex was unchanged in HD brains. The results support the hypothesis that NMDA receptor-mediated neurotoxicity plays a role in the pathophysiology of Huntington's disease.  相似文献   

2.
Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo   总被引:23,自引:0,他引:23  
Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.  相似文献   

3.
A change in the efficiency of synaptic communication between neurons is thought to underlie learning. Consistent with recent studies of such changes, we find that long-lasting potentiation of synaptic transmission between cultured hippocampal neurons is accompanied by an increase in the number of clusters of postsynaptic glutamate receptors containing the subunit GluR1. In addition, potentiation is accompanied by a rapid and long-lasting increase in the number of clusters of the presynaptic protein synaptophysin and the number of sites at which synaptophysin and GluR1 are colocalized. These results suggest that potentiation involves rapid coordinate changes in the distribution of proteins in the presynaptic neuron as well as the postsynaptic neuron.  相似文献   

4.
The long-term effects of excitotoxic lesions in the nucleus basalis magnocellularis of the rat were found to mimic several neuropathological and chemical changes associated with Alzheimer's disease. Neuritic plaque-like structures, neurofibrillary changes, and neuronal atrophy or loss were observed in the frontoparietal cortex, hippocampus, amygdala, and entorhinal cortex 14 months after the lesions were made. Cholinergic markers in neocortex were reduced, while catecholamine and indoleamine metabolism was largely unaffected at this time. Bilateral lesions of the nucleus basalis magnocellularis increased somatostatin and neuropeptide Y in the cortex of the rat by at least 138 and 284 percent, respectively, suggesting a functional interaction between cholinergic and peptidergic neurons that may differ from that in Alzheimer's disease.  相似文献   

5.
Alle H  Geiger JR 《Science (New York, N.Y.)》2006,311(5765):1290-1293
In the mammalian cortex, it is generally assumed that the output information of neurons is encoded in the number and the timing of action potentials. Here, we show, by using direct patchclamp recordings from presynaptic hippocampal mossy fiber boutons, that axons transmit analog signals in addition to action potentials. Excitatory presynaptic potentials result from subthreshold dendritic synaptic inputs, which propagate several hundreds of micrometers along the axon and modulate action potential-evoked transmitter release at the mossy fiber-CA3 synapse. This combined analog and action potential coding represents an additional mechanism for information transmission in a major hippocampal pathway.  相似文献   

6.
Two identified interneurons in each buccal ganglion of Aplysia can mediate conjoined excitation and inhibition to a single follower cell. A single presynaptic action potential in one of these interneurons produces a diphasic, depolarizing-hyperpolarizing synaptic potential apparently as a result of a single transmitter acting on two types of postsynaptic receptors in the follower cell. These receptors produce synaptic potentials with differing reversal potentials, ionic conductances, time courses, rates of decrement with repetition, pharmacological properties, and functional consequences. The excitatory receptor controls a sodium conductance, the inhibitory receptor controls a chloride conductance. Both components of the synaptic potentials can be produced by iontophoretic application of acetylcholine on the cell body of the follower cell, and each component is differentially sensitive to different cholinergic blocking agents.  相似文献   

7.
Homogenates of rat cerebral cortex contain material corresponding to prostaglandins E(1), E(2), F(1)alpha, and F(2)alpha which are concentrated mainly in the light microsomal and mitochondrial fractions. Only the former fraction exhibits significant ability to synthesize prostaglandins E(1) and F(1)alpha from bis-homo-gamma-linolenic acid. After subfractionation of the crude mitochondrial fraction, prostaglandin E and F material is found mainly in the cholinergic and noncholinergic nerve endings. We conclude that the nerve endings are a storage site, whereas the light microsomes are the site of synthesis.  相似文献   

8.
Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatin-like immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.  相似文献   

9.
Plasticity of hippocampal circuitry in Alzheimer's disease   总被引:19,自引:0,他引:19  
Two markers of neuronal plasticity were used to compare the response of the human central nervous system to neuronal loss resulting from Alzheimer's disease with the response of rats to a similar neuronal loss induced by lesions. In rats that had received lesions of the entorhinal cortex, axon sprouting of commissural and associational fibers into the denervated molecular layer of the dentate gyrus was paralleled by a spread in the distribution of tritiated kainic acid-binding sites. A similar expansion of kainic acid receptor distribution was observed in hippocampal samples obtained postmortem from patients with Alzheimer's disease. An enhancement of acetylcholinesterase activity in the dentate gyrus molecular layer, indicative of septal afferent sprouting, was also observed in those patients with a minimal loss of cholinergic neurons. These results are evidence that the central nervous system is capable of a plastic response in Alzheimer's disease. Adaptive growth responses occur along with the degenerative events.  相似文献   

10.
Inhibition of transmitter release by presynaptic receptors is widespread in the central nervous system and is typically mediated via metabotropic receptors. In contrast, very little is known about facilitatory receptors, and synaptic activation of a facilitatory autoreceptor has not been established. Here we show that activation of presynaptic kainate receptors can facilitate transmitter release from hippocampal mossy fiber synapses. Synaptic activation of these presumed ionotropic kainate receptors is very fast (<10 ms) and lasts for seconds. Thus, these presynaptic kainate receptors contribute to the short-term plasticity characteristics of mossy fiber synapses, which were previously thought to be an intrinsic property of the synapse.  相似文献   

11.
The site of induction of long-term potentiation (LTP) at mossy fiber-CA3 synapses in the hippocampus is unresolved, with data supporting both pre- and postsynaptic mechanisms. Here we report that mossy fiber LTP was reduced by perfusion of postsynaptic neurons with peptides and antibodies that interfere with binding of EphB receptor tyrosine kinases (EphRs) to the PDZ protein GRIP. Mossy fiber LTP was also reduced by extracellular application of soluble forms of B-ephrins, which are normally membrane-anchored presynaptic ligands for the EphB receptors. The application of soluble ligands for presynaptic ephrins increased basal excitatory transmission and occluded both tetanus and forskolin-induced synaptic potentiation. These findings suggest that PDZ interactions in the postsynaptic neuron and trans-synaptic interactions between postsynaptic EphB receptors and presynaptic B-ephrins are necessary for the induction of mossy fiber LTP.  相似文献   

12.
The physiological role of striatal cholinergic interneurons was investigated with immunotoxin-mediated cell targeting (IMCT). Unilateral cholinergic cell ablation caused an acute abnormal turning behavior. These mice showed gradual recovery but displayed abnormal turning by both excess stimulation and inhibition of dopamine actions. In the acute phase, basal ganglia function was shifted to a hyperactive state by stimulation and suppression of striatonigral and striatopallidal neurons, respectively. D1 and D2 dopamine receptors were then down-regulated, relieving dopamine-predominant synaptic perturbation but leaving a defect in controlling dopamine responses. The acetylcholine-dopamine interaction is concertedly and adaptively regulated for basal ganglia synaptic integration.  相似文献   

13.
PSD-95 is a neuronal PDZ protein that associates with receptors and cytoskeletal elements at synapses, but whose function is uncertain. We found that overexpression of PSD-95 in hippocampal neurons can drive maturation of glutamatergic synapses. PSD-95 expression enhanced postsynaptic clustering and activity of glutamate receptors. Postsynaptic expression of PSD-95 also enhanced maturation of the presynaptic terminal. These effects required synaptic clustering of PSD-95 but did not rely on its guanylate kinase domain. PSD-95 expression also increased the number and size of dendritic spines. These results demonstrate that PSD-95 can orchestrate synaptic development and are suggestive of roles for PSD-95 in synapse stabilization and plasticity.  相似文献   

14.
A loss in the number of functional, sodium ion-dependent, high-affinity choline transport sites was observed in the cortex and hippocampus of mice given an intracerebroventricular injection of 65 nanomoles of AF64A (ethylcholine mustard aziridinium ion) 3 days earlier. Such an effect was not observed in the striatum. This effect of AF64A represents a long-term neurochemical deficit at cholinergic nerve terminals in some brain regions which can lead to a persistent deficiency in central cholinergic transmission. The AF64A-treated animal may thus be a model for certain psychiatric or neurological disorders that appear to involve central cholinergic hypofunction.  相似文献   

15.
The gene for the human platelet alpha 2-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the purified receptor. The identity of this gene has been confirmed by the binding of alpha 2-adrenergic ligands to the cloned receptor expressed in Xenopus laevis oocytes. The deduced amino acid sequence is most similar to the recently cloned human beta 2- and beta 1-adrenergic receptors; however, similarities to the muscarinic cholinergic receptors are also evident. Two related genes have been identified by low stringency Southern blot analysis. These genes may represent additional alpha 2-adrenergic receptor subtypes.  相似文献   

16.
The new benzamide derivative [125I]iodosulpride is a highly sensitive and selective ligand for D-2 dopamine receptors and displays a very low nonspecific binding to membrane or autoradiographic sections. On autoradiographic images, D-2 receptors are present not only in well-established dopaminergic areas but also, in a discrete manner, in a number of catecholaminergic regions in which the dopaminergic innervation is still unknown, imprecise, or controversial, as in the sensorimotor cerebral cortex or cerebellum. This widespread distribution suggests larger physiological and pathophysiological roles for cerebral dopamine receptors than was previously thought.  相似文献   

17.
Substance P: a putative sensory transmitter in mammalian autonomic ganglia   总被引:5,自引:0,他引:5  
Repetitive presynaptic stimulation elicited slow membrane depolarization in neurons of inferior mesenteric ganglia from guinea pigs. This response was not blocked by cholinergic antagonists but was specifically and reversibly inhibited by a substance P analog, (D-Pro2, D-Phe7, D-Trp9)-substance P, which also depressed the depolarization induced by exogenously applied substance P. The atropine-sensitive slow excitatory and slow inhibitory postsynaptic potentials evoked in neurons of rabbit superior cervical ganglia were not affected by the substance P analog. These and previous results provide strong support for the hypothesis that substance P or a closely related peptide is the transmitter mediating the slow depolarization. The latter may represent a sensory input from the gastrointestinal tract to neurons of the prevertebral ganglia.  相似文献   

18.
Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases   总被引:12,自引:0,他引:12  
Brain sections from patients who had died with senile dementia of the Alzheimer's type (SDAT), Huntington's disease (HD), or no neurologic disease were studied by autoradiography to measure sodium-independent L-[3H]glutamate binding. In brain sections from SDAT patients, glutamate binding was normal in the caudate, putamen, and claustrum but was lower than normal in the cortex. The decreased cortical binding represented a reduction in numbers of binding sites, not a change in binding affinity, and appeared to be the result of a specific decrease in numbers of the low-affinity quisqualate binding site. No significant changes in cortical binding of other ligands were observed. In brains from Huntington's disease patients, glutamate binding was lower in the caudate and putamen than in the same regions of brains from control and SDAT patients but was normal in the cortex. It is possible that development of positron-emitting probes for glutamate receptors may permit diagnosis of SDAT in vivo by means of positron emission tomographic scanning.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) and other neurotrophins are critically involved in long-term potentiation (LTP). Previous reports point to a presynaptic site of neurotrophin action. By imaging dentate granule cells in mouse hippocampal slices, we identified BDNF-evoked Ca2+ transients in dendrites and spines, but not at presynaptic sites. Pairing a weak burst of synaptic stimulation with a brief dendritic BDNF application caused an immediate and robust induction of LTP. LTP induction required activation of postsynaptic Ca2+ channels and N-methyl-d-aspartate receptors and was prevented by the blockage of postsynaptic Ca2+ transients. Thus, our results suggest that BDNF-mediated LTP is induced postsynaptically. Our finding that dendritic spines are the exclusive synaptic sites for rapid BDNF-evoked Ca2+ signaling supports this conclusion.  相似文献   

20.
The molecular pathways involved in retrograde signal transduction at synapses and the function of retrograde communication are poorly understood. Here, we demonstrate that postsynaptic calcium 2+ ion (Ca2+) influx through glutamate receptors and subsequent postsynaptic vesicle fusion trigger a robust induction of presynaptic miniature release after high-frequency stimulation at Drosophila neuromuscular junctions. An isoform of the synaptotagmin family, synaptotagmin 4 (Syt 4), serves as a postsynaptic Ca2+ sensor to release retrograde signals that stimulate enhanced presynaptic function through activation of the cyclic adenosine monophosphate (cAMP)-cAMP-dependent protein kinase pathway. Postsynaptic Ca2+ influx also stimulates local synaptic differentiation and growth through Syt 4-mediated retrograde signals in a synapse-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号