首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

2.
Ryegrass was grown under conditions of low N, low P, or high N and P nutrient supply in an atmosphere containing 14CO2 and then incubated in soil supplemented with or without N or P fertilizer. Determined in fresh plant tissue, the persistency of residual labelled C after 6 months was in the order low-N plants>low-P plants>high-N and-P plants. The addition of N conserved C, particularly when there was additional P present. Hydrolysable labelled C (12M/0.5M H2SO4) showed similar trends. In analyses of freeze-dried plant tissue, the main effect was also the increased persistency of C from low-N plants compared to high-N plants. The addition of N fertilizer increased the persistence of plant residue C, but only with grass containing low P. The addition of P fertilizer had no effect. In freeze-dried low-P plant tissue, sampled after 1.5, 6, and 12 months, the conserving effect of adding fertilizer N was confirmed. The addition of P, in contrast, enhanced the rate of decomposition. After 6 months, about a third of the C remained, and after 12 months, about one-quarter. It is concluded that P, whether intrinsic or added, can increase the rate of decomposition of organic residues in soil, but there is a strong interaction with N, which has a predominant influence. The effects of N depend on the form it is in. Increased intrinsic tissue N can increase the rate of C loss, whereas added inorganic N can decrease the rate of C loss during decomposition.  相似文献   

3.
 We studied the influence of soil compaction in a loamy sand soil on C and N mineralization and nitrification of soil organic matter and added crop residues. Samples of unamended soil, and soil amended with leek residues, at six bulk densities ranging from 1.2 to 1.6 Mg m–3 and 75% field capacity, were incubated. In the unamended soil, bulk density within the range studied did not influence any measure of microbial activity significantly. A small (but insignificant) decrease in nitrification rate at the highest bulk density was the only evidence for possible effects of compaction on microbial activity. In the amended soil the amounts of mineralized N at the end of the incubation were equal at all bulk densities, but first-order N mineralization rates tended to increase with increasing compaction, although the increase was not significant. Nitrification in the amended soils was more affected by compaction, and NO3 -N contents after 3 weeks of incubation at bulk densities of 1.5 and 1.6 Mg m–3 were significantly lower (by about 8% and 16% of total added N, respectively), than those of the less compacted treatments. The C mineralization rate was strongly depressed at a bulk density of 1.6 Mg m–3, compared with the other treatments. The depression of C mineralization in compacted soils can lead to higher organic matter accumulation. Since N mineralization was not affected by compaction (within the range used here) the accumulated organic matter would have had higher C : N ratios than in the uncompacted soils, and hence would have been of a lower quality. In general, increasing soil compaction in this soil, starting at a bulk density of 1.5 Mg m–3, will affect some microbially driven processes. Received: 10 June 1999  相似文献   

4.
 Net mineralization was measured in free-draining and poorly drained pasture soils using three different field incubation methodologies. Two involved the use of enclosed incubation vessels (jar or box) containing C2H2 as a nitrification inhibitor. The third method confined soil cores in situ in an open tube in the ground, with an anion-exchange resin at the base to retain leached NO3 (resin-core technique, RCT). Measurements were made on three occasions on three free-draining pastures of different ages and contrasting organic matter contents. In general, rates of net mineralization increased with pasture age and organic matter content (range: 0.5–1.5 kg N ha–1 day–1) and similar rates were obtained between the three techniques for a particular pasture. Coefficients of variation (CVs) were generally high (range: 10.4–98.5%), but the enclosed incubation methods were rather less variable than the RCT and were considered overall to be the more reliable. The RCT did not include C2H2 and, therefore, newly formed NO3 may have been lost through denitrification. In a poorly drained pasture soil, there were discrepancies between the two enclosed methods, especially when the soil water content approached field capacity. The interpretation of the incubation measurements in relation to the flux of N through the soil inorganic N pool is discussed and the drawbacks of the various methodologies are evaluated. Received: 18 November 1999  相似文献   

5.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

6.
Summary Information on the mineralization of inorganic phosphate (Pi) from organically bound P (Po) during decomposition of forest floor and soil organic matter is vital for understanding P supply in forest ecosystems. Carbon (C) and phosphorus (P) fluxes were determined for forest floor samples from three Pinus radiata plots which had received no P (Control), 62.5 kg P ha–1 (Low P) and 125 kg P ha–1 (High P) 20 years before sampling. The P concentration of the forest floor samples had increased with fertilizer application, and the C:P ratio ranged between 585 and 1465. During a 9-week laboratory incubation 8.2–19.0% of the forest floor C was evolved as CO2-C. The amount of CO2 evolved from the forest floor of the Control plot was more than twice the amounts from the Low P and High P plots. There was little change in net P mineralization in the Control and Low P treatments throughout the incubation, but it increased slightly for the High P samples, suggesting a critical forest floor C:P ratio of 550 for net P mineralization. Changes in the 32P-specific activities of the Pi and microbial P pools during incubation, and concurrent changes in microbial-32P and 32Pi, indicated internal P cycling between these pools. The rate of internal P cycling varied with forest floor quality, and was highest in the High P forest floor. The High P samples had microbial C:P ratios of 22 : 1 which remained constant during the incubation, suggesting the microorganisms had adequate P levels. Received: 2 July 1997  相似文献   

7.
 A chloroform-fumigation extraction method with fumigation at atmospheric pressure (CFAP, without vacuum) was developed for measuring microbial biomass C (CBIO) and N (NBIO) in water-saturated rice soils. The method was tested in a series of laboratory experiments and compared with the standard chloroform-fumigation extraction (CFE, with vacuum). For both methods, there was little interference from living rice roots or changing soil water content (0.44–0.55 kg kg–1 wet soil). A comparison of the two techniques showed a highly significant correlation for both CBIO and NBIO (P<0.001) suggesting that the simple and rapid CFAP is a reliable alternative to the CFE. It appeared, however, that a small and relatively constant fraction of well-protected microbial biomass may only be lysed during fumigation under vacuum. Determinations of microbial C and N were highly reproducible for both methods, but neither fumigation technique generated NBIO values which were positively correlated with CBIO. The range of observed microbial C:N ratios of 4–15 was unexpectedly wide for anaerobic soil conditions. Evidence that this was related to inconsistencies in the release, degradation, and extractability of NBIO rather than CBIO came from the observation that increasing the fumigation time from 4 h to 48 h significantly increased NBIO but not CBIO. The release pattern of CBIO indicated that the standard fumigation time of 24 h is applicable to water-saturated rice soils. To correct for the incomplete recovery of CBIO, we suggest applying the k C factor of 2.64, commonly used for aerobic soils (Vance et al. 1987), but caution is required when correcting NBIO data. Until differences in fumigation efficiencies among CFE and CFAP are confirmed for a wider range of rice soils, we suggest applying the same correction factor for both methods. Received: 1 June 1999  相似文献   

8.
The response of the soil microbial biomass to seasonal changes was investigated in the field under pastures. These studies showed that over a 9-month period, microbial biomass carbon, phosphorus and sulphur (biomass C, P, S), and their ratios (C:P, C:S, and P:S) responded differently to changes in soil moisture and to the input of fresh organic materials. From October to December (1993), when plant residues were largely incorporated into the soils, biomass C and S increased by 150–210%. Biomass P did not increase over this time, having decreased by 22–64% over the dry summer (July to September). There was no obvious correlation between biomass C, P, and S and air temperature. The largest amounts of biomass C and P (2100–2300μg and 150–190μgg–1 soil, respectively) were found in those soils receiving farmyard manure (FYM or FYM+NPK) and P fertilizer, whereas the use of ammonium sulphate decreased biomass C and P. The C:P, C:S, and P:S ratios of the biomass varied considerably (9–276:1; 50–149:1; and 0.3–14:1, respectively) with season and fertilizer regime. This reflected the potential for the biomass to release (when ratios were narrow) or to immobilize (wide ratios) P and S at different times of the year. Thus, seasonal responses in biomass C, P, and S are important in controlling the cycling of C, P, and S in pasture and ultimately in regulating plant availability of P and S. The uptake of P in the pasture was well correlated with the sum of P in the biomass and soil available pools. Thus, the simultaneous measurement of microbial biomass P and available P provide useful information on the potential plant availability of P. Received: 25 May 1996  相似文献   

9.
Limitations to the respiratory activity of heterotrophic soil microorganisms exert important controls of CO2 efflux from soils. In the northeastern US, ecosystem nutrient status varies across the landscape and changes with forest succession following disturbance, likely impacting soil microbial processes regulating the transformation and emission of carbon (C). We tested whether nitrogen (N) or phosphorus (P) limit the mineralization of soil organic C (SOC) or that of added C sources in the Oe horizon of successional and mature northern hardwood forests in three locations in central New Hampshire, USA. Added N reduced mineralization of C from SOC and from added leaf litter and cellulose. Added P did not affect mineralization from SOC; however, it did enhance mineralization of litter- and cellulose- C in organic horizons from all forest locations. Added N increased microbial biomass N and K2SO4-extractable DON pools, but added P had no effect. Microbial biomass C increased with litter addition but did not respond to either nutrient. The direction of responses to added nutrients was consistent among sites and between forest ages. We conclude that in these organic horizons limitation by N promotes mineralization of C from SOC, whereas limitation by P constrains mineralization of C from new organic inputs. We also suggest that N suppresses respiration in these organic horizons either by relieving the N limitation of microbial biomass synthesis, or by slowing turnover of C through the microbial pool; concurrent measures of microbial growth and turnover are needed to resolve this question.  相似文献   

10.
We manipulated Collembola Folsomia candida Willem density and observed the density effect on carbon and nitrogen mineralization and on nematodes in microcosms filled with mineral soil. Collembolan densities were 0 (control), 25 (low), 100 (medium), and 400 (high) individuals per microcosm. The Collembola enhanced soil respiration and nitrogen mineralization rate in a density-dependent manner (P < 0.05). The correlation between collembolan density and the metabolic quotient of microbes, qCO2, was weakly positive (r = 0.44, P < 0.05). Collembola did not affect microbial biomass. These results suggested that enhanced carbon and nitrogen mineralization was an indirect effect of Collembola mediated by increased microbial activity. Collembola changed the Cnema/Cmic ratio, but only when present at the low density. Thus, Collembola had both positive and negative effects on the nematode population. The positive impact probably depends on the enhancement of microbial activity due to Collembola grazing behavior, while the negative effect appears to result from predation of nematodes.  相似文献   

11.
 In a cropping systems experiment in southeastern Norway, ecological (ECO), integrated (INT) and conventional (CON) forage (FORAGE) and arable (ARABLE) model farms were compared. After 5 experimental years, topsoil was sampled in spring from spring grain plots and incubated for 449 days at controlled temperature (15  °C) and moisture content (50% water-holding capacity). There were no detectable differences between model farms in terms of total soil C or N. For INT and CON, however, values of microbial biomass C and N, microbial quotient (Cmic/Corg), and C and N mineralization were, or tended to be, higher for FORAGE than for ARABLE. For the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. For INT and CON, the metabolic quotient (qCO2) was lower for FORAGE than for ARABLE. Again, for the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. We estimated the sizes of conceptual soil organic matter pools by fitting a decomposition model to biomass and mineralization data. This resulted in a 48% larger estimate for CON-FORAGE than for CON-ARABLE of physically protected biomass C. For physically protected organic C the difference was 42%. Moreover, the stability of soil aggregates against artificial rainfall was substantially greater for CON-FORAGE than for CON-ARABLE. On this basis, we hypothesized that the lower qCO2 values in the FORAGE soils were mainly caused by a smaller proportion of active biomass due to enclosure of microorganisms within aggregates. Altogether, our results indicated a poorer inherent soil fertility in ARABLE than in FORAGE rotations, but the difference was small or absent in the ECO system, probably owing to the use of animal and green manures and reduced tillage intensity in the ECO-ARABLE rotation. Received: 28 October 1998  相似文献   

12.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

13.
High nitrogen (N) input often induces soil carbon (C) limitation, eutrophication of macronutrients, deficiency of base cations, and accumulation of toxic micronutrients. These changes are perceived to be critical factors in regulating soil C mineralization. Previous studies primarily focused on the individual effects of C, macronutrients, exchangeable base cations, and micronutrients on soil C mineralization. However, the relative importance of those factors in regulating soil C mineralization, especially in N-enriched ecosystems, remains unclear. To disentangle the relative contributions of aforementioned factors, lime and/or glucose were added to soils that were collected from a field experiment with historical N addition (6 years) at seven rates (0–50 g N m−2 year−1) in a grassland ecosystem. Lime and glucose were added to improve the soil C and key nutrient conditions. The responses of soil C mineralization rate to changes in soil C and macronutrients (N and P), exchangeable base cations (K+, Na+ and Mg2+), and micronutrients (Fe2+, Mn2+, Cu2+ and Zn2+) were examined. We found that lime addition decreased soil micronutrients, while glucose addition improved the soil available P and exchangeable base cations, especially at high historical N addition rates. The soil C mineralization was weakly associated with changes in soil nutrients, including the availability of N, P, exchangeable base cations, and micronutrients, which were conventionally and previously considered as the vital drivers of soil C mineralization. However, soil C mineralization strongly increased with glucose-induced enhancement of C availability and the subsequent enhancement of microbial biomass under increasing N addition rates. Based on the Structural Equation Model, the standardized total effects of C, macronutrients (N and P), base cations and micronutrients on soil C mineralization were 0.86, − 0.29, 0.15 and − 0.08, respectively. Findings from this study demonstrated that the N-induced significant changes in soil nutrients (e.g., eutrophication of N and P, base cations deficiency and accumulation of toxic macronutrients) mediated soil C mineralization, with C availability being the most critical driver for C mineralization in N-enriched soil. This study provides insight into the mechanistic understanding of the relationship between N input and terrestrial C cycling.  相似文献   

14.
Carbon, nitrogen and phosphorus mineralization of tree leaves and manure   总被引:9,自引:0,他引:9  
 Farmers in developing countries cannot afford inorganic fertilizers. Multipurpose tree leaves or livestock manure are major sources of nutrients for soil fertility replenishment. Nutrient release from these organic inputs depends on their chemical composition and on soil properties. This study determined the chemical composition of leaves of four African browse species and manure from goats fed leaves as protein supplements, and their mineralization of C, N and P. Cumulative evolved CO2 was significantly correlated with the initial N content of the organic inputs (r 0.83, P<0.05) and the C : N ratio (r 0.80, P<0.05), and was negatively correlated with the lignin : N ratio (r–0.71, P<0.05). Cumulative P released was negatively correlated with the C : P ratio (r 0.76, P<0.05) and positively correlated with initial P content of the organic amendments (r 0.76, P<0.05). Cumulative N mineralized was not significantly correlated with initial N, lignin or P concentrations of the organic inputs. Leaves from Acacia karro and Acacia nilotica had high concentrations of polyphenols, which may have caused immobilization of N in both leaves and manure. Gliricidia sepium leaves had low amounts of soluble polyphenols, a high N content and a high rate of N mineralization, but the manure from goats fed Gliricidia leaves immobilized N. The leaves of all browse species immobilized P, but the manure released P. The results suggested that some browse leaves cannot meet the N and P requirements of crops due to their low P content and prolonged N and P immobilization. However, the manures had higher P contents and rates of P mineralization, which suggested that manure is a good source of P for crops. The implications of these results for nutrient cycling in mixed farming systems is discussed. Received: 28 October 1998  相似文献   

15.
 Oregon soils from various management and genetic histories were used in a greenhouse study to determine the relationships between soil chemical and biological parameters and the uptake of soil mineralized nitrogen (N) by ryegrass (Lolium perenne L.). The soils were tested for asparaginase, amidase, urease, β-glucosidase, and dipeptidase activities and fluorescein diacetate hydrolysis. Microbial biomass carbon (C) and N as well as metabolic diversity using Biolog GN plates were measured, as were total soil N and C, pH, and absorbance of soil extracts at 270 nm and 210 nm. Potentially mineralizable N (N0) and the mineralization rate constant (k) were calculated using a first order nonlinear regression model and these coefficients were used to calculate the initial potential rate of N mineralization (N0 k). Except for Biolog GN plates, the other parameters were highly correlated to mineralized N uptake and each other. A model using total soil N and β-glucosidase as parameters provided the best predictor of mineralized N uptake by ryegrass (R 2 =0.83). Chemical and biological parameters of soils with the same history of formation but under different management systems differed significantly from each other in most cases. The calculated values of the initial potential rate of mineralization in some cases revealed management differences within the same soil types. The results showed that management of soils is readily reflected in certain soil chemical and biological indicators and that some biological tests may be useful in predicting N mineralization in soils. Received: 31 January 1997  相似文献   

16.
 Nitrogen (N) mineralization and availability from neem seed residue after oil extraction was studied in a laboratory incubation and greenhouse cropping. Several decomposition models were tested for estimating potentially mineralizable N and mineralization rates from the residue. Net N mineralization was best described by a Gompertz function and a mixed-order rate model with R 2=0.996 for each and residual mean square error (RMSE)=8.3 for the Gompertz function and 8.8 for the mixed-order rate model. A consecutive reaction model also fitted the data closely (R 2=0.983; RMSE=16.6) and is preferable to a Gompertz function or a mixed-order rate model because of its mechanistic basis. Potentially mineralizable N estimated by the decomposition models ranged from 335 to 489 mg N kg–1 representing between 32% and 43% of total N applied. Actual cumulative N mineralized in a 98-day incubation period was 339 mg N kg–1 soil. Bio-available N from neem residue and inorganic N (urea) with maize as a test crop in a greenhouse cropping gave similar biomass yield and N uptake, suggesting rapid N mineralization from neem residue to meet plant nutrition. Received: 15 July 1998  相似文献   

17.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

18.
Changes in 15N abundance and amounts of biologically active soil nitrogen   总被引:1,自引:0,他引:1  
 Estimation of the capacity of soils to supply N for crop growth requires estimates of the complex interactions among organic and inorganic N components as a function of soil properties. Identification and measurement of active soil N forms could help to quantify estimates of N supply to crops. Isotopic dilution during incubation of soils with added 15NH4 + compounds could identify active N components. Dilution of 15N in KCl extracts of mineral and total N, non-exchangeable NH44 +, and N in K2SO4 extracts of fumigated and non-fumigated soil was measured during 7-week incubation. Samples from four soils varying in clay content from 60 to 710 g kg–1 were used. A constant level of 15N enrichment within KCl and K2SO4 extracted components was found at the end of the incubation period. Total N, microbial biomass C and non-exchangeable NH4 + contents of the soils were positively related to the clay contents. The mineralized N was positively related to the silt plus clay contents. The active soil N (ASN) contained 28–36% mineral N, 29–44% microbial biomass N, 0.3–5% non-exchangeable NH4 + with approximately one third of the ASN unidentified. Assuming that absolute amounts of active N are related to N availability, increasing clay content was related to increased N reserve for crop production but a slower turnover. Received: 7 July 1998  相似文献   

19.
Selection of plant species for agro-silvo-pastoral or ecological reclamation programs must be based on a deeper knowledge of the existing relationships between plant species and soil nutrient dynamics in each ecosystem. We evaluated the seasonal pattern of soil microbial carbon (C) and nitrogen (N) under two remnant tree species (Caesalpinia eriostachys and Cordia elaeagnoides) in a tropical seasonal pasture dominated by Panicum maximum in western Mexico. Soil samples were taken from under two arboreal species and P. maximum in rainy and dry seasons. The soil C:N ratio was higher under P. maximum [17] than under both tree species [15]. The soil microbial C (Cm) was higher under C. elaeagnoides than under C. eriostachys and P. maximum. Magnitude and direction of effect of the two remnant tree species on soil biogeochemistry changed with seasonal rainfall. The interaction of plant species and seasonal rainfall did have an effect on soil microbial N (Nm). Soil samples from April and July had the lowest microbial N concentrations under the three plant species, increasing four fold in September under C. elaeagnoides and P. maximum. At the end of the wet season, C. elaeagnoides clearly had the highest Nm values (130 μg N g−1), suggesting that this tree species has a higher capacity to protect soil N within microbial biomass than C. eriostachys, because under C. elaeagnoides the soil had more organic matter due a higher input of litter and root chemical quality. Therefore, C. elaeagnoides would be the best plant species to implement in agro-silvo-pastoral programs or ecological reclamation of TDF pastures.  相似文献   

20.
Effect of freeze-thaw events on mineralization of soil nitrogen   总被引:15,自引:0,他引:15  
Summary In humid regions of the United States there is considerable interest in the use of late spring (April–June) soil NO 3 concentrations to estimate fertilizer N requirements. However, little information is available on the environmental factors that influence soil NO 3 concentrations in late winter/early spring. The influence of freeze-thaw treatments on N mineralization was studied on several central Iowa soils. The soils were subjected to temperatures of-20°C or 5°C for 1 week followed by 0–20 days of incubation at various temperatures. The release of soluble ninhydrin-reactive N, the N mineralization rate, and net N mineralization (mineral N flush) were observed. The freeze-thaw treatment resulted in a significant increase in the N mineralization rate and mineral N flush. The N mineralization rate in the freeze-thaw treated soils remained higher than in non-frozen soils for 3–6 days when thawed soils were incubated at 25°C and for up to 20 days in thawed soils incubated at 5°C. The freeze-thaw treatments resulted in a significant release of ninhydrin-reactive N. These values were closely correlated with the mineral N flush (r 2=0.84). The release of ninhydrin-reactive N was more closely correlated with biomass N (r 2=0.80) than total N (r 2=0.65). Our results suggest that freeze-thaw events in soil disrupt microbial tissues in a similar way to drying and re-wetting or chloroform fumigation. Thus the level of mineral N released was directly related to the soil microbial biomass. We conclude that net N mineralization following a spring thaw may provide a significant portion of the total NO 3 present in the soil profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号