首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylonitrile (PAN) nanoparticles were successfully prepared by dispersion polymerization of acrylonitrile (AN) in water using 10 and 20 wt% of the poly(ethylene oxide)-b-PAN macromolecular RAFT (PEO-b-PAN macro-RAFT) agent (M n=5,600 g/mol, PDI=1.15). The degrees of polymerization of the PEO and PAN blocks were 113 and 16, respectively. The PAN nanoparticles had a crumpled spherical appearance and their sizes ranged from 50–80 nm. The degree of crystallinity of the PAN particles was 23 %. The M n values of the PAN nanoparticles prepared with 10 and 20 wt% of the PEO-b-PAN macro-RAFT agent were 33,900 and 25,800 g/mol, respectively. The existence of the PEO block on the surface of the PAN nanoparticles was confirmed by 1H NMR spectroscopy and XPS.  相似文献   

2.
Poly(n-butyl methacrylate)/poly(methyl methacrylate) polymer networks were synthesized by two-step emulsion polymerization with sodium dodecylsulfonate and polyoxyethylene nonylphenolether as the emulsifier, distilled water as the continuous medium, and potassium persulfate as the initiator. The kinetics of two-step emulsion polymerization was studied. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on monomer conversion and polymerization rate were investigated in detail. Experimental data indicate that both the steady state polymerization rate and monomer conversion increase with the augment of emulsifier concentration, initiator concentration, or reaction temperature.  相似文献   

3.
The purpose of this study is to synthesize grafted Bacterial Cellulose (BC) nanofibers using Atom Transfer Radical Polymerization (ATRP) reinforced into poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel matrix. Nanofibers grafting polymerizations were conducted in the presence of the catalyst CuCl/CuBr and the initiator 2-bromoisobutyrylbromide (2-BiBr). Degrees of substitution (DS) of BC-macroinitiators were quantified using both elemental analysis and gravimetric method. FTIR results confirmed BC nanofibers’ surface modifications of both initiator and hydroxyethyl methacrylate (HEMA) grafts. X-ray spectroscopy further confirmed the increase in carbonyl content after PHEMA-grafting polymerization. Results of the gravimetric analysis showed an increase in the weight of the grafted BC upon increasing reaction time. Furthermore, the change in the swelling ratio percentages of the reinforced composites product (BC-MI-3-g-PHEMA-1.5) was considerably higher based on reaction time. Slight increase in the swelling ratio of BC-MI-3 nanofibers was observed after 48 hours to reach 31 %. Moreover, results of thermal gravimetric analysis (TGA) demonstrated that decomposition temperature at 50 % weight loss (T50) decreased to 350 °C for BC-MI-3-g-PHEMA-1.5. These characteristics demonstrate potentials for applications in the biomedical fields including drug delivery and wound care.  相似文献   

4.
Hydrophobic poly(lactic acid), PLA, was modified to give hydrophilicity and dyeability to cationic dyes via UV/O3 irradiation. The UV irradiation treatment caused ester linkage of PLA surface to break down resulting in reduced molecular weight and generation of new photooxidized products as indicated in subtracted ATR spectra and ESCA analysis. It was found that water contact angle decreased from 61 ° to 39 ° and surface energy slightly increased with increasing UV energy, which was attributed to significant contribution of polar component rather than nonpolar component resulting from the surface photooxidation of PLA. Also the surface treatment increased dyeability of PLA to C.I. Basic Blue 41 in terms of both K/S and %E. The increased dyeability may be due to photochemically introduced anionic and dipolar dyeing sites which electrostatically interact with the cationic dye as ascertained by the decreased zeta potential and its pH dependence of the modified PLA.  相似文献   

5.
Monodisperse poly(vinyl alcohol) (PVA)/poly(vinyl acetate) (PVAc) nanoparticles with a skin-core structure were prepared through heterogeneous surface saponification of PVAc nanoparticles. For the preparation of PVAc nanoparticles with a uniform particle size distribution, vinyl acetate (VAc) was dispersion polymerized in a mixed solvent of ethanol and water using PVA with a low degree of saponification as a stabilizer. Increase of the amount of ethanol in media, the resulting PVAc nanoparticle size increases due to increasing solubility of VAc and oligomer PVAc. To preserve the sphericity and size uniformity of PVAc nanoparticles, we restricted saponification to the surface of the nanoparticles by using a small amount of aqueous sodium hydroxide solution. To determine the proper concentration of alkali solution for heterogeneous saponification, monodisperse PVAc nanoparticles were saponified with different concentrations of alkali solution at 25 °C for 0.5–3.0 h. The PVA/PVAc nanoparticles obtained by the heterogeneous saponification with 4 % (relative to the amount of the VAc) alkali solution for 2.0 h were uniformly shaped and monodispersed with diameter ranging from 428 to 615 nm. Transmission electron microscopy (TEM) confirmed the spherical nature and regular skin-core structure of the PVA/PVAc nanoparticles.  相似文献   

6.
Solid-state polymerization of poly(trimethylene terephthalate)(PTT) was carried out to obtain high molecular weight polymers. Two kinds of commercial PTT chips were polymerized in the solid state by the heat treatment at 190∼220°C for various times and they were characterized by end group content, molecular weight, thermal analysis, and X-ray diffraction. In the solid-state polymerization of PTT, the overall reaction rate was governed by the solid-state polymerization temperature and time, and pellet size. The content of carboxyl end groups decreased during the solid-state polymerization with increasing solid-state polymerization temperature and time. The melting temperature and crystallinity of the PTT were higher for the ones treated at higher temperature and longer time. The activation energy for the solid-state polymerization of PTT was in the range of 24∼25 kcal/mol for both chips. Through the solid-state polymerization of commercial PTT chips, high molecular weight polymers up to an intrinsic viscosity of 1.63 dl/g was obtained, which corresponded to about a 117,000 weight-average molecular weight.  相似文献   

7.
Poly(3-methyltetrahydrofuran)(3-MTHF) and poly(tetrahydrofuran-co-3-MTHF), having very narrow molecular weight distribution were successfully synthesized via photo-induced living cationic polymerization in the presence of diphenyliodonium hexafluorophosphate. Linear relationship between % conversion and number average molecular weight of resulting poly(3-MTHF) in the polymerization of 3-MTHF, carried out at −22°C, indicates that the 5-membered cyclic oxonium ion, being responsible for the cationic propagation is stabilized by ion pair formation with hexafluorophosphate anion, supplied from the salt. The linear relationship between two parameters, mentioned above was also observed in the copolymerization of 3-MTHF with THF, carried out at 0 and −22°C. The molecular structures including the copolymer composition and average molecular weight and its distribution is determined by reaction parameters such as monomer feed ratio and reaction temperature.  相似文献   

8.
A series of waterborne poly(urethane-urea) anionomers were prepared from isophorone diisocyanate (IPDI), polycaprolactone diol (PCL), dimethylol propionic acid (DMPA), ethylene diamine (EDA), and triethylamine (TEA), NaOH, or Cu(COOCH3)2 as neutralizing agent. This study was performed to decide the effect of neutralizing agent type on the particle size, viscosity, hydrogen bonding index, adhesive strength, antistaticity, antibacterial and mechanical properties. The particle size of the dispersions decreased in the following order: TEA based samples (T-sample), NaOH based samples(N-sample), and Cu(COOCH3)2 based sample (C-sample). The viscosity of the dispersions increased in the order of C-sample, N-sample, and T-sample. Metal salt based film samples (N and C-sample) had much higher antistaticity than TEA based sample. By infrared spectroscopy, it was found that the hydrogen bonding index (or fraction) of samples decreased in the order of T-sample, N-sample, and C-sample. The adhesive strength and tensile modulus/strength decreased in the order of T-sample, N-sample, and C-sample. The C-sample had strong antibacterial halo, however, T- and N-samples did not.  相似文献   

9.
Vinyl acetate was polymerized in ultraviolet-ray initiated bulk system at low temperatures using 2,2′-azobis(2,4-dimethylvaleronitrile) (ADMVN) or 2,2′-azobis(isobutyronitrile) (AIBN) as the photoinitiator, respectively. High molecular weight (HMW) poly(vinyl alcohol) (PVA) having number-average degree of polymerization (P n ) of 3,900–7,800 and syndiotactic diad (S-diad) content of 52.5–54.0% could be prepared by complete saponification of synthesized linear poly(vinyl acetate) (PVAc) havingP n of 5,900–9,400 obtained at conversion of below 30%.P n of PVA using ADMVN was larger than that of PVA using AIBN. On the other hand, conversion of the former was smaller than that of the latter, and it was found that the initiation rate of the ADMVN was lower than that of AIBN. This could be explained by a fact that the rate of photolysis of AIBN is faster than that of ADMVN due to the higher quantum yield or dissociation rate constant of AIBN than that of ADMVN. TheP n , syndiotacticity, and whiteness of PVA from PVAc polymerized at lower temperatures were superior to those of PVA from PVAc polymerized at higher temperatures.  相似文献   

10.
Intrinsic UV reflection and fluorescence behaviors of polycarbonate, polyurethane and poly(ethylene terephthalate) films were investigated in order to characterize the interaction of water in these films. During water sorption process, UV reflection spectra of polycarbonate and polyurethane films showed little peak position changes. Fluorescence emission spectra of polycarbonate films showed red spectral shifts from 332 nm with water immersion time. This red-shifted peak could be due to phenyl-2-phenoxybenzoate, which is one of the major thermal degradation products in polycarbonate. Fluorescence peaks of polyurethane films appeared at two different positions and the ratio of these peak intensities increased with increasing immersion time. In the case of PET films, the UV reflection spectrum showed the peak intensity around 340 nm to change in response to water sorption. The fluorescence near 388 nm probably due to ground state dimer exhibited sensitivity with water sorption, when excited at 340 nm.  相似文献   

11.
To obtain high molecular weight (HMW) poly(methyl methacrylate) (PMMA) with high conversion, methyl methacrylate (MMA) was polymerized in suspension using a room temperature initiator, 2,2′-azobis(2,4-dimethylvaleronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior of MMA and the molecular parameters of PMMA were investigated. On the whole, the experimental results well corresponded to the theoretically predicted tendencies. These effects could be explained by a kinetic order of ADMVN concentration calculated by an initial rate method and an activation energy difference of polymerization obtained from the Arrhenius plot. Suspension polymerization at 25 °C by adopting ADMVN proved to be successful in obtaining PMMA of HMW (number-average degree of polymerization (Pn): 30,900–36,100) and of high yield (ultimate conversion of MMA into PMMA: 83–93 %) with diminishing heat generated during polymerization. The Pn and lightness were higher and polydispersity index was lower with PMMA polymerized at lower temperatures.  相似文献   

12.
Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers were investigated. The thermal gravimetric analysis (TGA) demonstrated that POD exhibited higher onset thermal degradation temperature (Tonset) than PMIA, exceeding nearly 80 °C. The thermal degradation kinetics, evaluated by the modified Coats-Redfern method, displayed that the apparent activation energy (Ea) of POD and PMIA fibers was similar when the conversion rate (α) ranges from 0.2 to 0.5, while with the α from 0.6 to 0.8, the Ea of POD was significantly lower than that of PMIA. The fire retardant performance of POD and PMIA fibers were evaluated by cone calorimeter under heat fluxes of 35, 50 and 75 kW/m2, during which the temperature of the fibers were monitored by a thermocouple. Surprisingly, POD fibers showed inferior fire retardant performance in comparison with PMIA, with lower time to ignition (TTI) and higher peak heat release rate (PHRR). The origin of the different fire retardant properties of both fibers was revealed by analyzing the residual chars and gaseous products during thermal pyrolysis. The morphology confirmed that stable and compact chars can be formed in PMIA. In addition, the Fourier Transform Infrared Spectroscopy (FTIR) characterization of the residual char revealed that POD can form carbonaceous chars at the heat flux of 50 kW/m2, while the heat flux of PMIA was 75 kW/m2. The pyrolysis products characterized by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that POD can be pyrolyzed completely at 600 °C, while the temperature of PMIA was 700 °C.  相似文献   

13.
Cold-chipping cultivars could reduce microbial spoilage and chemical use due to cold storage of chipping potatoes. Sexual polyploidization breeding schemes that introgress cold chipping from diploid potato species may develop improved cultivars at an accelerated rate. The research objectives were (1) to determine the breeding behavior of cold chipping introgressed from 2× 2 Endosperm Balance Number (EBN) potato species into 4×(4EBN) progeny using sexual polyploidization, and (2) to determine if differences exist between 2n gametes and n tetrasomic gametes for transmission of cold chipping. Experimental families of 4×(4EBN) progeny were synthesized using sexual polyploidization (2× × 4× and 4× × 2×) and 4× × 4× matings using cold-chippingS. phureja and cultivated potato -wild species (C -W) hybrid parents. Control families from 4× × 4× matings using as parents current industry leading germplasm were also made. Progeny were field grown and evaluated for chip color (1 light-10 dark, ≤4.0 is industry acceptable) after 3 and 6 months storage at 4 C. A larger percentage of progeny from experimental families had acceptable chip color compared to control families, likely due to introgression of cold-chipping alleles from diploid potato species. Out of experimental families, the best chip color means, highest phenotypic variance, and greatest percentage of acceptable chipping progeny resulted in 2× × 4× and 4× × 2× matings. The ability of 2n gametes to transmit dominant alleles to high frequencies of 4× progeny may contribute to the superiority of 4× -2× crosses. Breeding schemes that use sexual polyploidization in conjunction with early generation selection should rapidly develop 4× cold-chipping germplasm.  相似文献   

14.
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.  相似文献   

15.
Poly(trimethylene terephthalate) (PTT)/poly(ethylene naphthalate) (PEN) blends of various compositions were prepared by the solution-blending and melt-blending methods. The changes in miscibility and crystallization behaviors of the blends upon thermal treatment above the melting temperature of the blends at 280°C were investigated by using DSC, DMA,1H NMR, and SAXS analyses. Without any thermal treatment, the blend systems were not miscible, and the thermal transitions, such as glass transition, cold crystallization, and crystal melting of the individual components were observed in the DSC and DMA analyses. With thermal treatment, though, they became miscible as the thermal transitions of each component disappeared and single glass transition peaks were observed in the thermal analysis. The chain randomness determined using1H NMR spectroscopy revealed that thermal treatment at 280°C for more than 30 min brought about transesterification reactions between the PTT and PEN segments resulting in an increase in their miscibility. These results were confirmed by the small angle X-ray analysis conducted to determine the long period (L), the thickness of the crystalline lamella stack (l c ), and the thickness of the amorphous region (l a ). After short thermal treatment, the melt-blended sample followed the values for the individual components. However, with extended thermal treatment, the blend became homogeneous, possessing different crystalline morphologies which resulted in different values ofL, l c , andl a .  相似文献   

16.
Poly(trimethylene 2,6-naphthalate) (PTN)/poly(ethylene glycol) (PEG) copolymers were synthesized by the two-step melt copolymerization process of dimethyl-2,6-naphthalenedicarboxylate (2,6-NDC) with 1,3-propanediol (PD) and PEG. The copolymers produced had different PEG molecular weights and contents. The structure, thermal property, and hydrophilicity of these copolymers were studied by proton nuclear magnetic resonance (1H-NMR) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and by contact angle, moisture content, and instantaneous elastic recovery measurements. The intrinsic viscosity and the instantaneous elastic recovery of the PTN/PEG copolymers increased with increasing PEG molecular weight and content, whereas the glass transition, melting, and cold crystallization temperatures, and the heat of fusion of the PTN/PEG copolymers all decreased with increasing PEG molecular weight or content. The thermal stability of the copolymers was not affected by PEG molecular weight or content. The hydrophilicity, as determined by contact angle and moisture content measurements of the copolymer films, was significantly improved with increasing PEG molecular weight and content.  相似文献   

17.
A melt-process was used to prepare high molecular weight Poly(vinyl chloride) (PVC) films without the use of a conventional plasticizer and heat stabilizer. Rigid PVC powder was swollen with dimethylformamide containing 4∼10 vol% water to reduce its melting temperature. The swollen powder was pressed at a relatively low temperature of 75∼125 °C to form a film shape, and then washed and dried. The visible light transmittance, X-ray diffraction, density and the tensile properties of the resulting films were examined to estimate the success or failure of film formation. The films could be produced by not only the melt-process but also a compression-process using the rigid, highly swollen PVC powder. The resulting films had no voids, which are generally observed in PVC products formed by a solution process. The minimum temperature for these processes decreased with decreasing water content in the mixture: The minimum temperatures according to the water content in the mixture to produce faultless films through the melt-process were 4 %–105 °C, 6 %–115 °C, 8 and 10 %–125 °C, while those through the compression process were 4 %–95 °C, 6 and 8 %–105 °C, 10 %–115 °C.  相似文献   

18.
The dyeability of poly(lactic acid) (PLA) fiber strongly depends on disperse dye structure due to the low dyeing temperature and the short dyeing time. Thus, the dye uptake value of PLA fiber is low for some disperse dyes and is needed to be improved. In the current study, the dyeability of PLA fiber is improved with the addition of N-Phenylaminopropyl polyhedral oligomeric silsesquioxane (AP-POSS) during melt spinning process. The effects of dyeing conditions including dyeing temperature and time, disperse dye type and AP-POSS concentrations are investigated on the dyeability properties of PLA fiber samples. The tensile, thermal and morphological properties of fiber samples are also characterized by tensile testing, differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As the added amount of AP-POSS increases, the percent crystallinity increases and the tensile strength reduces. According to the dyeing results, AP-POSS is very effective for increasing the dyeability of PLA fiber especially for disperse dyes with low dye uptake values.  相似文献   

19.
Photolithographic techniques have been used to fabricate polymer brush micro- and nanostructures. On exposure to UV light with a wavelength of 244 nm, halogens were selectively removed from films of chloromethylphenyltrichlorosilane and 3-(2-bromoisobutyramido)propyl-triethoxysilane on silicon dioxide. Patterning was achieved at the micrometer scale, by using a mask in conjunction with the incident laser beam, and at the nanometer scale, by utilizing interferometric lithography (IL). Friction force microscopy images of patterned surfaces exhibited frictional contrast due to removal of the halogen but no topographical contrast. In both cases the halogenated surface was used as an initiator for surface atom-transfer radical polymerization. Patterning of the surface by UV lithography enabled the definition of patterns of initiator from which micro- and nanostructured poly[oligo(ethylene glycol)methacrylate] bottle brushes were grown. Micropatterned brushes formed on both surfaces exhibited excellent resistance to protein adsorption, enabling the formation of protein patterns. Using IL, brush structures were formed that covered macroscopic areas (approximately 0.5 cm2) but exhibited a full width at half maximum height as small as 78 nm, with a period of 225 nm. Spatially selective photolytic removal of halogens that are immobilized on a surface thus appears to be a simple, rapid, and versatile method for the formation of micro- and nanostructured polymer brushes and for the control of protein adsorption.  相似文献   

20.
In this study, amide and amine groups bound to poly(ethylene terephthalate) fibers are used to remove the colored toxic Congo red dye from aqueous solution. The effects of process variables like pH, contact time, graft yield, and initial dye concentration on the adsorption were investigated. The maximum adsorption of Congo red to amide and amine groups was observed at pH 3 and 5 respectively. Equilibrium was attained at approximately 60 min for the amine group. The adsorption capacity of amine group on the poly(ethylene terephthalate) fiber was 46.5 mg g−1 at 25 °C, which was higher than that of the amide group on the poly(ethylene terephthalate) fiber. Desorption was done using 0.1 M NH3, and recovery was measured at 58.2 %. The used adsorbent was regenerated and recycled six times. The results showed that the amine-functionalized fiber could be considered as potential adsorbents for removal of Congo red from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号