首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antiferromagnetic domains in an epitaxial thin film, LaFeO(3) on SrTiO(3)(100), were observed using a high-spatial-resolution photoelectron emission microscope with contrast generated by the large x-ray magnetic linear dichroism effect at the multiplet-split L edge of Fe. The antiferromagnetic domains are linked to 90 degrees twinned crystallographic regions in the film. The Neel temperature of the thin film is reduced by 70 kelvin relative to the bulk material, and this reduction is attributed to epitaxial strain. These studies open the door for a microscopic understanding of the magnetic coupling across antiferromagnetic-ferromagnetic interfaces.  相似文献   

2.
X-ray holography offers the possibility of three-dimensional microscopy with resolution higher than that of the light microscope and with contrast based on x-ray edges. In principle, the method is especially advantageous for biological samples if x-rays in the wavelength region between the carbon and oxygen K edges are used. However, until now the achieved resolution has not exceeded that of the light microscope because of the poor coherence properties of the x-ray sources and the low resolution of the detectors that were available. With a recently developed x-ray source based on an undulator on an electron storage ring, and high resolution x-ray resist, a hologram has been recorded at about 400-angstrom resolution. The experiment utilized x-rays with wavelengths of 24.7 angstroms and required a 1-hour exposure of the pancreatic zymogen granules under study.  相似文献   

3.
The structure of the first coordination shell in liquid water   总被引:1,自引:0,他引:1  
X-ray absorption spectroscopy and x-ray Raman scattering were used to probe the molecular arrangement in the first coordination shell of liquid water. The local structure is characterized by comparison with bulk and surface of ordinary hexagonal ice Ih and with calculated spectra. Most molecules in liquid water are in two hydrogen-bonded configurations with one strong donor and one strong acceptor hydrogen bond in contrast to the four hydrogen-bonded tetrahedral structure in ice. Upon heating from 25 degrees C to 90 degrees C, 5 to 10% of the molecules change from tetrahedral environments to two hydrogen-bonded configurations. Our findings are consistent with neutron and x-ray diffraction data, and combining the results sets a strong limit for possible local structure distributions in liquid water. Serious discrepancies with structures based on current molecular dynamics simulations are observed.  相似文献   

4.
A novel application of x-ray absorption spectroscopy has provided structural information for ions sorbed at oxide-water interfaces. As an example, in situ extended x-ray absorption fine structure (EXAFS) measurements of adsorbed selenate and selenite ions at ah alpha-FeOOH(goethite)-water interface have been performed; these measurements show that selenate forms a weakly bonded, outer-sphere complex and that selenite forms a strongly bonded, inner-sphere complex. The selenite ion is bonded directly to the goethite surface in a bidentate fashion with two iron atoms 3.38 angstroms from the selenium atom. Adsorbed selenate has no iron atom in the second coordination shell of selenium, which indicates retention of its hydration sphere upon sorption. This method provides direct structural information for adsorbed species at solid-liquid interfaces.  相似文献   

5.
We demonstrated that platinum (Pt) oxygen-reduction fuel-cell electrocatalysts can be stabilized against dissolution under potential cycling regimes (a continuing problem in vehicle applications) by modifying Pt nanoparticles with gold (Au) clusters. This behavior was observed under the oxidizing conditions of the O2 reduction reaction and potential cycling between 0.6 and 1.1 volts in over 30,000 cycles. There were insignificant changes in the activity and surface area of Au-modified Pt over the course of cycling, in contrast to sizable losses observed with the pure Pt catalyst under the same conditions. In situ x-ray absorption near-edge spectroscopy and voltammetry data suggest that the Au clusters confer stability by raising the Pt oxidation potential.  相似文献   

6.
X-ray absorption near-edge structure spectra of the manganese (Mn) cluster in physiologically native intermediate states of photosynthetic water oxidation induced by short laser flash were measured with a compact heat-insulated chamber equipped with an x-ray detector near the sample surface. The half-height energy of the Mn Kedge showed a period-four oscillation dependent on cycling of the Joliot-Kok's oxygen clock. The flash number-dependent shift in the Mn K-edge suggests that the Mn cluster is oxidized by one electron upon the S(0)-to-S(1), S(1)-to-S(2), and S(2)-to-S(3) transitions and then reduced upon the S(3)-to-S(0) transition that releases molecular oxygen.  相似文献   

7.
Hot massive stars represent only a small fraction of the stellar population of the galaxy, but their enormous luminosities make them visible over large distances. Therefore, they are ideal standard candles, used to determine distances of near galaxies. Their mass loss due to supersonic winds driven by radiation pressure contributes significantly to the interstellar medium and thus to the chemical evolution of galaxies. All hot stars are soft x-ray sources; in contrast to the sun with its highly variable x-ray flux, long time scale x-ray variability is not common among hot stars. An analysis is presented here of an unusual increase in x-ray flux observed with the roentgen observatory satellite during a period of 2 days for the hot supergiant zeta Orionis, the only episode of x-ray variability that has been found in a hot star. These observations provide the most direct evidence so far for the scenario of shock-heated gas in the winds of hot stars.  相似文献   

8.
So far, single-molecule imaging has predominantly relied on fluorescence detection. We imaged single nonfluorescent azo dye molecules in room-temperature glycerol by the refractive effect of the heat that they release in their environment upon intense illumination. This photothermal technique provides contrast for the absorbing objects only, irrespective of scattering by defects or roughness, with a signal-to-noise ratio of ~10 for a single molecule in an integration time of 300 milliseconds. In the absence of oxygen, virtually no bleaching event was observed, even after more than 10 minutes of illumination. In a solution saturated with oxygen, the average bleaching time was of the order of 1 minute. No blinking was observed in the absorption signal. On the basis of bleaching steps, we obtained an average absorption cross section of 4 angstroms(2) for a single chromophore.  相似文献   

9.
The hexavalent state, considered to be the highest oxidation level accessible for iron, has previously been found only in the tetrahedral ferrate dianion, FeO4(2-). We report the photochemical synthesis of another Fe(VI) compound, an octahedrally coordinated dication bearing a terminal nitrido ligand. M?ssbauer and x-ray absorption spectra, supported by density functional theory, are consistent with the octahedral structure having an FeN triple bond of 1.57 angstroms and a singlet d2(xy) ground electronic configuration. The compound is stable at 77 kelvin and yields a high-spin Fe(III) species upon warming.  相似文献   

10.
The successful development of digital radiography depends, to a large extent, on the availability of suitable x-ray photoconductors. The x-ray photoconductive nanocomposites reported here combine the advantages of both inorganic and organic compounds. An inorganic compound was finely dispersed in an organic polymer. The inorganic compound, with its large x-ray absorption efficiency, functioned as the x-ray absorber, and the polymer provided good dielectric properties and ease of thin-film preparation. The preparation procedures and the x-ray photoconductive properties of a specific example, a 50 percent by weight nanocomposite of bismuth triiodide and nylon-11, are discussed in detail.  相似文献   

11.
We determined the structure of the hydrated Cu(II) complex by both neutron diffraction and first-principles molecular dynamics. In contrast with the generally accepted picture, which assumes an octahedrally solvated Cu(II) ion, our experimental and theoretical results favor fivefold coordination. The simulation reveals that the solvated complex undergoes frequent transformations between square pyramidal and trigonal bipyramidal configurations. We argue that this picture is also consistent with experimental data obtained previously by visible near-infrared absorption, x-ray absorption near-edge structure, and nuclear magnetic resonance methods. The preference of the Cu(II) ion for fivefold instead of sixfold coordination, which occurs for other cations of comparable charge and size, results from a Jahn-Teller destabilization of the octahedral complex.  相似文献   

12.
Circular dichroism of biological macromolecules   总被引:11,自引:0,他引:11  
S Beychok 《Science (New York, N.Y.)》1966,154(754):1288-1299
Circular dichroism, the unequal absorption of right and left circularly polarized light, is a manifestation of optical activity in the vicinity of absorption bands. To the experimental scientist interested in the conformation of macromolecules and in the sensitive response of optical activity to conformational alteration, it offers a relatively new and powerful means of understanding the environment of chromophoric residues. As a tool in the elucidation of electronic spectra, it should be useful to the theoretical scientist in identifying weakly allowed absorption bands as well as in providing rotational parameters which can be compared with the developing theory of optical activity. I have stressed application of circular dichroism, to experimental aspects of protein and nucleic acid conformation in solution. Much is still uncertain in particular quantitative details. However, even these early results shed new light and yield new information on the conformation of these molecules.  相似文献   

13.
Focused synchrotron radiation collimated by means of a pinhole has been used to construct a scanning x-ray microscope capable of making stereoscopic element-discriminating pictures of relatively thick specimens in an atmospheric environment.  相似文献   

14.
Scanning tunneling microscopy of freeze-fracture replicas of biomembranes   总被引:4,自引:0,他引:4  
The high resolution of the scanning tunneling microscope (STM) makes it a potentially important tool for the study of biomaterials. Biological materials can be imaged with the STM by a procedure in which fluid, nonconductive biomaterials are replaced by rigid and highly conductive freeze-fracture replicas. The three-dimensional contours of the ripple phase of dimyristoylphosphatidylcholine bilayers were imaged with unprecedented resolution with commercial STMs and standard freeze-fracture techniques. Details of the ripple amplitude, asymmetry, and configuration unobtainable by electron microscopy or x-ray diffraction can be observed relatively easily with the STM.  相似文献   

15.
Three-Dimensional X-ray Microtomography   总被引:2,自引:0,他引:2  
The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate its performance with both synchrotron and laboratory x-ray sources are presented.  相似文献   

16.
We observed the in situ growth of a grain during recrystallization in the bulk of a deformed sample. We used the three-dimensional x-ray diffraction microscope located at the European Synchrotron Radiation Facility in Grenoble, France. The results showed a very heterogeneous growth pattern, contradicting the classical assumption of smooth and spherical growth of new grains during recrystallization. This type of in situ bulk measurement opens up the possibility of obtaining experimental data on scientific topics that before could only be analyzed theoretically on the basis of the statistical characterization of microstructures. For recrystallization, the in situ method includes direct measurements of nucleation and boundary migration through a deformed matrix.  相似文献   

17.
A persistent puzzle in the field of biological electron transfer is the conserved iron-sulfur cluster motif in both high potential iron-sulfur protein (HiPIP) and ferredoxin (Fd) active sites. Despite this structural similarity, HiPIPs react oxidatively at physiological potentials, whereas Fds are reduced. Sulfur K-edge x-ray absorption spectroscopy uncovers the substantial influence of hydration on this variation in reactivity. Fe-S covalency is much lower in natively hydrated Fd active sites than in HiPIPs but increases upon water removal; similarly, HiPIP covalency decreases when unfolding exposes an otherwise hydrophobically shielded active site to water. Studies on model compounds and accompanying density functional theory calculations support a correlation of Fe-S covalency with ease of oxidation and therefore suggest that hydration accounts for most of the difference between Fd and HiPIP reduction potentials.  相似文献   

18.
A scanning field-emission electron microscope combined with an x-ray analyzer is used to locate the ice nucleus within a three-dimensional image of a snow crystal and determine the chemical composition of the nucleus. This makes it possible to better understand the effect of nuclei in cloud seeding.  相似文献   

19.
Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states laterally separated by 0.26 nanometers. One was identified as a rotating state and the other as an immobilized state. Calculations of the energy barrier for rotation of these two states show that it is below the thermal energy at room temperature for the rotating state and above it for the immobilized state.  相似文献   

20.
Over the past decade, efforts have been made to develop nondestructive techniques for three-dimensional (3D) grain-orientation mapping in crystalline materials. 3D x-ray diffraction microscopy and differential-aperture x-ray microscopy can now be used to generate 3D orientation maps with a spatial resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D orientation mapping in the transmission electron microscope of mono- and multiphase nanocrystalline materials with a spatial resolution reaching 1 nm. We demonstrate the technique by an experimental study of a nanocrystalline aluminum sample and use simulations to validate the principles involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号