首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In late December 1990, a new radio source appeared near the center of our galaxy rivaling the intensity of Sgr A(*) (the compact radio source at the galactic center). Following its first detection, the flux density of the galactic center transient (GCT) increased rapidly to a maximum 1 month later, and then declined gradually with a time scale of about 3 months. Surprisingly, the GCT maintained a steep radio spectrum during both its rising and decay phases. The neutral hydrogen (HI) absorption shows similar absorption to that in front of Sgr A(*); this indicates that the GCT lies near the galactic center. Furthermore, both HI and OH observations show an additional deep absorption at +20 kilometers per second with respect to the local standard of rest. Thus, the GCT is either embedded in or located behind a molecular cloud moving with that velocity. The cloud can be seen on infrared images. Its opacity is shown to be inadequate to conceal a supernova near the galactic center. It is argued that the GCT was probably transient radio emission from synchrotron-radiating plasma associated with an x-ray binary system.  相似文献   

2.
We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 +/- 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of 60(-17)(+25)%. These observations place a lower limit to the mass density of Sagittarius A* of 1.4 x 10(4) solar masses per cubic astronomical unit.  相似文献   

3.
The region bounded by the inner tens of light-years at the center of the Milky Way Galaxy contains five principal components that coexist within the central deep well of gravitational potential. These constituents are a black hole candidate (Sgr A*) with a mass equivalent to 2.6 +/- 0.2 x 10(6) solar masses, a surrounding cluster of evolved stars, a complex of young stars, molecular and ionized gas clouds, and a powerful supernova-like remnant. The interaction of these components is responsible for many of the phenomena occurring in this complex and unique portion of the Galaxy. Developing a consistent picture of the primary interactions between the components at the Galactic center will improve our understanding of the nature of galactic nuclei in general, and will provide us with a better-defined set of characteristics of black holes. For example, the accretion of stellar winds by Sgr A* appears to produce far less radiation than indicated by estimates based on models of galactic nuclei.  相似文献   

4.
The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.  相似文献   

5.
Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature.  相似文献   

6.
We have detected, at x-ray and radio wavelengths, large-scale moving jets from the microquasar XTE J1550-564. Plasma ejected from near the black hole traveled at relativistic velocities for at least 4 years. We present direct evidence for gradual deceleration in a relativistic jet. The broadband spectrum of the jets is consistent with synchrotron emission from high-energy (up to 10 tera-electron volts) particles that were accelerated in the shock waves formed within the relativistic ejecta or by the interaction of the jets with the interstellar medium. XTE J1550-564 offers a rare opportunity to study the dynamical evolution of relativistic jets on time scales inaccessible for active galactic nuclei jets, with implications for our understanding of relativistic jets from Galactic x-ray binaries and active galactic nuclei.  相似文献   

7.
Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (~3 to 20 solar masses, M(⊙)) as well as supermassive black holes (~10(6) to 10(9) M(⊙)) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (~10(2) to 10(5) M(⊙)), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between ~9 × 10(3) M(⊙) and ~9 × 10(4) M(⊙).  相似文献   

8.
Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ~100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.  相似文献   

9.
It has been found that the sulfonamide bond is relatively susceptible to photolytic cleavage. The breakdown was effected either by irradiation with a source having a continuous emission above the wavelengths of 1800 angstroms or by another source emitting principally at 2537 angstroms. Less destruction of the amino acids was seen with the latter relative to the sulfonamide bond cleavage. The cleavage was not effected by irradiation at wavelengths greater than about 3000 angstroms. Side reactions were noted involving decarboxylation, demination, and destruction of certain susceptible amino acids such as tryptophan. In only one case was a product found that arose from cleavage of a carboxamide bond; glycyltyrosine gave glycine and tyrosine upon irradiation. A yield of 75 percent of the corresponding amino acid has been obtained by irradiation of tosylhistidine; yields of 75 to 100 percent have been obtained from sulfamic acid (NH(2)SO(3)H). A qualitative method for identifying sulfonylated amino acids is described.  相似文献   

10.
The coalescence of a neutron star and a black hole in a binary system is believed to form a torus around a Kerr black hole. A similarly shaped magnetosphere then results from the remnant magnetic field of the neutron star. In the strong-field case, it contains a cavity for plasma waves located between the barrier of the gravitational potential and the surrounding torus. This cavity may be unstable to superradiance of electromagnetic waves. Superradiant amplification of such waves, initially excited by turbulence in the torus, should inflate into a bubble in a time as short as approximately 0.75 (1 percent/&cjs3539;epsilon&cjs3539;2)(M/7M middle dot in circle) seconds approximately 0.15 to 1.5 seconds, assuming an efficiency &cjs3539;epsilon&cjs3539;2 = 0.5 to 5 percent and a mass M = 7M middle dot in circle. These bubbles may burst and repeat, of possible relevance to intermittency in cosmological gamma-ray bursts. The model predicts gamma-ray bursts to be anticorrelated with their gravitational wave emissions.  相似文献   

11.
Because of their inherently high flux allowing the detection of clear signals, black hole x-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the International Gamma-Ray Astrophysics Laboratory Imager on Board the Integral Satellite (INTEGRAL/IBIS) telescope. Spectral modeling of the data reveals two emission mechanisms: The 250- to 400-keV (kilo-electron volt) data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400-keV to 2-MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.  相似文献   

12.
We show that the black hole in the x-ray binary Cygnus X-1 was formed in situ and did not receive an energetic trigger from a nearby supernova. The progenitor of the black hole had an initial mass greater than 40 solar masses, and during the collapse to form the approximately 10-solar mass black hole of Cygnus X-1, the upper limit for the mass that could have been suddenly ejected is approximately 1 solar mass, much less than the mass ejected in a supernova. The observations suggest that high-mass stellar black holes may form promptly, when massive stars disappear silently.  相似文献   

13.
Relativistic outflows or "jets" are collimated streams of high-energy electrons that emit synchrotron radiation at radio wavelengths and have bulk velocities that are a substantial fraction of the speed of light. They trace the outflow of enormous amounts of energy and matter from a central supermassive black hole in distant radio galaxies. As Fender explains in this Perspective, much smaller, more local sources may also produce such jets. Data presented by Paredes et al. point toward association of one such source, a relatively faint x-ray binary, with a gamma-ray source. This and similar pairs may contribute substantially to the production of high-energy particles and photons within our galaxy.  相似文献   

14.
An astronomical photograph was obtained with a multilayer x-ray telescope. A 4-centimeter tungsten-carbon multilayer mirror was flown as part of an experimental solar rocket payload, and successful images were taken of the sun at normal incidence at a wavelength of 44 angstroms. Coronal Si-XII emission from an active region was recorded on film; as expected, the structure is very similar to that observed at O-VIII wavelengths by the Solar Maximum Mission flat crystal spectrometer at the same time. The small, simple optical system used in this experiment appears to have achieved a resolution of 5 to 10 arc seconds.  相似文献   

15.
Ground-based observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at far-infrared wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of our galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dustenshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected. The derived mass of interstellar molecular hydrogen is 6 x 10(10) solar masses. This value is approximately 20 times that of the molecular gas content of the Milky Way and is similar to the largest masses of atomic hydrogen found in galaxies. A large mass of molecular gas may be a prerequisite for the formation of quasars during strong galactic collisions.  相似文献   

16.
Metz WD 《Science (New York, N.Y.)》1978,201(4357):700-702
The energy source in these galaxies will be shown to be a black hole, I think, even though it may take 100 years before we have proven it.-MARTIN REES, at the Institute of Astronomy in Cambridge, England I think it will take 1000 years and we may very well be on the wrong track. These [black hole] models are getting into the textbooks now, but there is never anything testable and people are working on smaller and smaller pieces of the problem.- GEOFFREY BURBIDGE, at the Univeristy of California, San Diego, and soon to assume the post of head of the Kitt Peak National Observatory in Tucson, Arizona REES: I agree, but I would argue that the way we are going about it is the most productive approach, even though the modelers may be getting the illusory satisfaction of a Ptolomean theorist who adds another epicycle. BURBRIDGE: I'm glad to hear you say that, Martin. The trouble is that so many people take these things more seriously than you do.  相似文献   

17.
The formation and evolution of young low-mass stars are characterized by important processes of mass loss and accretion occurring in the innermost regions of their placentary circumstellar disks. Because of the large obscuration of these disks at optical and infrared wavelengths in the early protostellar stages (class 0 sources), they were previously detected only at radio wavelengths using interferometric techniques. We have detected with the Infrared Space Observatory the mid-infrared (mid-IR) emission associated with the class 0 protostar VLA1 in the HH1-HH2 region located in the Orion nebula. The emission arises in three wavelength windows (at 5. 3, 6.6, and 7.5 micrometers) where the absorption due to ices and silicates has a local minimum that exposes the central part of the young protostellar system to mid-IR investigations. The mid-IR emission arises from a central source with a diameter of 4 astronomical units at an averaged temperature of approximately 700 K, deeply embedded in a dense region with a visual extinction of 80 to 100 magnitudes.  相似文献   

18.
Quasars at 25     
In the quarter century since the first optical identification of a "radio star" (3C 48), astronomers have come to general agreement that the underlying quasar energy source is accretion onto a massive black hole. There is much less agreement on the detailed physics of the processes by which this energy is converted to the forms observed, but this has not prevented the objects from serving as valuable probes of the universe at distant times and places.  相似文献   

19.
Very-long-baseline interferometry observations have revealed a bright, compact radio component near the center of the expanding shell of supernova 1986J. The component, not present in earlier images, has an inverted radio spectrum different from that of the shell. Such an inversion has not been seen in the spectrum of any other supernova. The new component is likely radio emission associated either with accretion onto a black hole or with the nebula formed around an energetic young neutron star in the center of SN 1986J, which would directly link either a black hole or a neutron star to a modern supernova.  相似文献   

20.
After a hot white dwarf ceases its nuclear burning, its helium may briefly and explosively reignite. This causes the star to evolve back into a cool giant, whereupon it experiences renewed mass ejection before reheating. A reignition event of this kind was observed in 1996 in V4334 Sgr (Sakurai's object). Its temperature decrease was 100 times the predicted rate. To understand its unexpectedly fast evolution, we have developed a model in which convective mixing is strongly suppressed under the influence of flash burning. The model predicts equally rapid reheating of the star. Radio emission from freshly ionized matter now shows that this reheating has begun. Such events may be an important source of carbon and carbonaceous dust in the Galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号