共查询到18条相似文献,搜索用时 120 毫秒
1.
面对苹果园大量施肥带来的潜在环境问题,在黄土高原沟壑区典型流域,分别选取不同树龄和地貌类型的苹果园,分析土壤水分含量和土壤矿质氮在土体剖面中的变化,为促进该流域农业发展提供相关数据支持。在陕西长武县王东沟流域,分别选取不同树龄(14,18,23,28,32树龄)和地貌类型(塬、梁、坡地)的果园,用直径为4 cm的土钻,在每株果树周围距离树干1 m处,采集15个不同样地0—400 cm土层样品,12个果园样地0—600 cm土层样品,分别测定土壤水分、硝态氮、铵态氮含量。结果表明:随着树龄的增加,0—600 cm土壤含水量和贮水量出现明显下降,尤其在300—600 cm处,不同树龄果园贮水量差异显著(P<0.05),贮水量大小表现为18树龄>23树龄>32树龄。流域内各树龄果园各土层铵态氮含量均较低,对矿质氮在土体中的分布基本不构成影响;硝态氮含量较高,矿质氮在土壤中的分布主要受其影响。各果园不同树龄600 cm以上土层硝态氮含量变化幅度较大,且硝态氮主要分布在土层深处。坡地果园18,23,32树龄0—200 cm土层硝态氮累积总量分别占0—400 cm土层累积总量的50%,41%和38%,表现出土壤硝态氮随树龄的增长而向深层累积的趋势。3种地貌类型下硝态氮累积量都表现出随果园树龄增长而增加的特点。黄土高原沟壑区果园土壤深层干燥化和硝态氮累积现象明显,而且随着果园树龄的增加趋于严重。 相似文献
2.
以黄土高原沟壑区的苹果园为研究对象,对6~36 a苹果园土壤重金属含量状况进行研究,结果发现,该区苹果园的高投入种植管理模式,能够影响重金属在土壤中的迁移与富集,使土壤重金属含量发生明显变化。土壤Cu含量随树龄增加而增加,20 a以上的土壤-果树系统对土壤Cu的输入与输出趋于平衡,Cu含量变化不大,且耕层土壤Cu含量较高。Cr含量随树龄线性递增,36 a果园0~20 cm,20~40 cm和40~60 cm土层Cr含量分别比6 a果园增加27.14%,17.09%和19.17%。Cd含量随树龄增加先增加后减少,长期大量施用磷肥是土壤Cd的主要来源,果园生态系统深层土壤Cd含量的峰值比耕层提前出现。Pb含量以15~26 a果园含量最高,树龄〈15 a和〉26 a时Pb含量较低。Hg含量则以15 a为转折点,在不同土层上呈现出不同的变化趋势。As含量在树龄〈15 a时逐渐降低,15~20 a时逐渐增加,20 a以后果园土壤As含量趋于不变,且各土层之间差异不显著。 相似文献
3.
黄土高原沟壑区农田土壤水分动态变化分析 总被引:8,自引:1,他引:8
以黄土高原沟壑区径流小区为研究对象,分析了雨季,旱季缓坡农田土壤水分动态变化以及坡位对农田土壤水分动态变化的影响,结果表明:雨季,旱季农田土壤水分动态变化趋势相同,但浅层(10-30cm)土壤水分变化幅度较大,尤其是降雨产流时;土壤水分的补偿和恢复主要取决于雨强适中,历时长且雨量大的降雨过程,与土壤前期水分剖面特征,作物覆盖度以及作物耗水特性密切相关,而坡度几乎没有影响,坡位对农田土壤水分动态变化也有一定的影响,观测期末雨季,旱季土壤蓄水增量为坡上<坡中<坡下,坡的中下部土壤储水量也较坡上部大。 相似文献
4.
黄土高原沟壑区苹果园土壤重金属含量特征研究 总被引:5,自引:0,他引:5
以黄土高原沟壑区的苹果园为研究对象,对6~36 a苹果园土壤重金属含量状况进行研究,结果发现,该区苹果园的高投入种植管理模式,能够影响重金属在土壤中的迁移与富集,使土壤重金属含量发生明显变化.土壤Cu含量随树龄增加而增加,20 a以上的土壤-果树系统对土壤Cu的输入与输出趋于平衡,Cu含量变化不大,且耕层土壤Cu含量较高.Cr含量随树龄线性递增,36 a果园0~20 cm,20~40 cm和40~60 cm 土层Cr含量分别比6 a果园增加27.14%,17.09%和19.17%.Cd含量随树龄增加先增加后减少,长期大量施用磷肥是土壤Cd的主要来源,果园生态系统深层土壤Cd含量的峰值比耕层提前出现.Pb含量以15~26 a果园含量最高,树龄<15 a和>26 a时Pb含量较低.Hg含量则以15 a为转折点,在不同土层上呈现出不同的变化趋势.As含量在树龄<15 a时逐渐降低,15~20 a时逐渐增加,20 a以后果园土壤As含量趋于不变,且各土层之间差异不显著. 相似文献
5.
黄土高原沟壑区苜蓿地土壤水分剖面特征研究 总被引:16,自引:1,他引:16
对黄土高原沟壑区不同种植年限苜蓿地土壤深层水分特征的分析表明,受降水影响0~2m土层水分变化较大,2m以下由于没有水分的补给,出现了干燥化现象。苜蓿在生长前期主要利用上层土壤水分,土壤水分恢复也是从上层开始,下层的干层则难予恢复。10、15、23年生苜蓿分别在9、10.8和11m处水分含量趋于稳定,达到土壤干层的下限。土壤水分的变异系数随土层深度的增加而减小,水分含量趋于稳定。在0~9m土层土壤水分亏缺较大,亏缺量大于年均降水量。 相似文献
6.
为揭示黄土高原农田转变为苹果园后土壤水分及硝态氮剖面变化特征,以洛川县为研究区,采集农田(对照)和8,17,25年苹果园共40个0-600 cm剖面土样,分析土壤水分、NO3--N浓度及其储量。结果表明:与农田相比,8年苹果园0-600 cm土壤水分含量及贮水量偏高(旧县镇)或相当(槐柏镇),而NO3--N浓度及其累积量则没有显著差异;17,25年苹果园0-600 cm土层贮水量则显著降低(P<0.05),分别下降150,230 mm,且该差异主要与300 cm以下土层水分变化有关;0-500 cm土层NO3--N浓度随苹果种植年限显著增加,17,25年苹果园0-600 cm土层NO3--N累积量分别为6 830,8 370 kg/hm2,二者显著高于农田(695 kg/hm2)和8年果园(440 kg/hm2)。综合可知,农田转变为苹果园这一土地利用方式变化可导致深层土壤水分亏缺(>300 cm)和硝态氮累积,黄土高原大力发展苹果种植过程中应重视蓄水保墒及氮肥减施等措施。 相似文献
7.
宝鸡不同密度旱作苹果园产量和深层土壤水分动态响应模拟 总被引:1,自引:0,他引:1
为揭示半湿润黄土台塬沟壑区不同密度旱作苹果园产量长周期演变趋势与深层土壤水分变化动态, 应用WinEPIC模型定量模拟分析了1965-2009年期间宝鸡6种种植密度(D1: 2 m×3 m; D2: 2 m×4 m; D3: 2.5 m× 4 m; D4: 3 m×4 m; D5: 4 m×4 m; D6: 4 m×5 m)苹果园果品产量和0~15 m土层土壤水分变化动态, 并据此确定了当地旱作苹果园最佳种植密度和适宜种植年限。结果表明: (1)在1968-2009年42年苹果产果期间, 各密度苹果园果品产量呈现逐渐增高后又强烈波动性降低趋势, 前21年平均产量明显高于后21年。(2)随着种植密度增大, 苹果园果品产量逐渐增加, 当种植密度达到D3(2.5 m×4 m)~D4(3 m×4 m), 即833~1 000 株·hm-2后, 增产幅度趋缓。(3)随着种植密度增加, 果园0~15 m土层土壤有效含水量逐渐降低, 深层土壤干层形成时间逐渐缩短。(4)从产量、干旱胁迫日数、土壤有效含水量和土壤剖面湿度分布演变趋势和变幅分析, 宝鸡旱作苹果园地最佳种植密度为D3(2.5 m×4 m)或D4(3 m×4 m), 即833株·hm-2或1 000株·hm-2, 种植年限为30年左右为宜。 相似文献
8.
黄土高原丘陵沟壑区土壤水分变化规律的研究 总被引:13,自引:0,他引:13
对黄土高原丘陵沟壑区土壤水分变化规律研究结果表明 ,该区土壤水分随时间变化主要受控于降水量 ,表现为与降水量变化同步。土壤水分垂直分布变化 0~ 30cm土层土壤含水量随深度增加而减少 ,30~ 1 2 0cm土层土壤含水量随深度增加而增加 ,总体变化趋势平缓。裸地和农田土壤水分空间变异范围分别为 3.1 7m和 7.2 5m。 相似文献
9.
10.
陇中黄土高原丘陵沟壑区土壤水分动态变化分析 总被引:3,自引:0,他引:3
土壤水分是土地评价及节水农业技术研究的基础,土壤水分的动态变化已经成为前沿研究领域的热点之一。论文以陇中黄土高原丘陵沟壑区3个国家级农气站点资料为数据基础,以Sufer7.0为技术手段,分析了各站点多年平均和代表站点不同降水年型的土壤水分动态变化规律,以期为区域节水高效农业的建设提供科学依据。 相似文献
11.
宇宙射线土壤水分观测系统(COSMOS)是一种测量直径达600 m以上表层土壤平均含水量的新型土壤水分测量仪器。在黄土高原一片草地植被上测试COSMOS仪器测量土壤水分的效果,并与烘干法及Hydra ProbeⅡ土壤湿度传感器测量结果进行比较。结果表明,COSMOS测量结果与烘干法结果一致性好;与Hydra ProbeⅡ点尺度测量结果存在不同时间段的差别,暗示了黄土高原土壤水分空间变异性及其时间变化。COSMOS仪器能够很好地测量黄土高原破碎表面观测范围内表层平均土壤含水量,并为研究土壤含水量的空间变异性提供了潜在工具。 相似文献
12.
陕北黄土丘陵区山地苹果园的土壤水分动态研究 总被引:2,自引:1,他引:2
掌握土壤水分特征是实现果园科学管理、有限雨水资源合理高效利用、保证果树高产优质的关键。以陕北米脂山地6年生红富士苹果园为研究对象,于2015年4月—2016年6月采用FDR、中子水分仪和烘干法相结合的土壤水分监测方法,分析了山地苹果园的土壤水分总体特征、单株不同位点的水分动态以及不同旱作措施(秸秆覆盖、起垄覆膜垄沟集雨、有机肥覆盖)的土壤水分环境效应。结果表明:陕北山地果园时段干旱严重,最严重的为苹果树新梢生长和幼果发育期;春季土壤干旱程度取决于上年入冬前土壤储水量高低。果园0~60 cm土层(根系分布集中层)水分随降雨量而变化,表现为较一致的季节变化特征;土壤水分的变化滞后于降雨变化,且降雨对土壤水分的影响随土层加深而减弱,100 cm深土层受降雨影响减弱,土壤剖面200 cm以下土层土壤含水量保持相对稳定。6年生山地苹果园土壤已经出现干化现象,且在90~300 cm存在明显的低湿层,土壤体积含水量常年处在12%以下。苹果树单株尺度范围内,土壤含水量随距树干距离增加单调递增;土壤水分的平均值处在距树干105 cm处;沿行向距树干不同距离位点的土壤含水量显著高于沿株向距树干等距离位点的含水量(P0.05)。秸秆覆盖、起垄覆膜垄沟集雨和有机肥覆盖措施相较于空白对照(不覆盖、不灌溉)均能有效改善土壤水分环境,缓解果树生育期内水分供需矛盾,其中起垄覆膜垄沟集雨措施的保墒效果最佳,建议陕北黄土丘陵区山地雨养苹果园采用起垄覆膜垄沟集雨的保墒措施。 相似文献
13.
通过对西安市附近曲江池村丰水年春季和秋季15龄苹果林地土壤含水量的测定,以及不同季度该地土壤含水量的对比,研究了苹果林地0~6m土层间土壤含水量的变化与土壤干层的恢复问题。研究结果显示,春季西安市南郊苹果林地2~4m土层含水量为8%~10%,表明该地有弱的干层发育;丰水年秋季西安南郊苹果林地2~4m土层含水量在23%以上,远高于春季该层位的土壤含水量,说明该地区的土壤干层己经消失。分析得出,在降水丰富的年份,发育较弱的土壤干层水分不仅可以得到恢复,且恢复的深度可达5m,恢复速度也很快。 相似文献
14.
黄土高原沟壑区不同年限苹果园土壤碳氮磷变化特征 总被引:8,自引:2,他引:8
管理措施是影响土壤质量演变的重要因素.分析和讨论了5、10、15年苹果园耕层(0―20 cm)和0―200 cm土壤有机碳、全氮、全磷、有效磷和硝态氮含量及其影响因素。结果表明,5年、10年和15年的塬面苹果园表层土壤有机碳依次为7.5、6.7和6.7 g/kg;全氮依次为0.94、0.85和0.83 g/kg;但土壤全磷和速效磷含量随着种植年限而增加,与5年苹果园相比,塬面10年苹果园土壤全磷、速效磷含量分别提高了11%、60%,并且磷素的变异性随年限而增加。坡地10年、15年和20年苹果园土壤有机碳依次为6.3、6.2 和6.5 g/kg,全氮依次为0.76、0.76 和0.81 g/kg;与10年苹果园相比,15年苹果园土壤全磷、速效磷含量分别提高了20%、28%。土壤剖面0―80 cm内不同土地利用方式土壤碳、氮、磷含量随土层加深而降低,80 cm以下不同利用条件苹果园土壤碳、磷含量差异不大,氮素含量在土壤100 cm下随苹果园种植年限增加而增加。 相似文献
15.
黄土旱塬集雨保墒措施对苹果发育和土壤水分变化的影响 总被引:1,自引:2,他引:1
为了有效缓解黄土旱塬区苹果园深层干燥化,保证苹果产业的可持续发展,该文选取甘肃镇原盛果期苹果园,连续6 a定位测定了黑色地膜覆盖和黑色地膜覆盖+立体化入渗对苹果产量、新梢生长量和土壤含水量等指标。分析了6 a不同处理苹果产量、形态指标和不同生育期果园0~500 cm土壤相对水分亏缺指数的变化,研究结果表明:黑色地膜覆盖+立体化入渗较对照平均增产16.49%,优果率增加8.91%;300~500 cm土壤含水量较对照增加0.50~2.63百分点,降水入渗深度达到了480 cm,在60~500 cm水分相对亏缺指数为-0.05~-0.12,最大补偿区域为200~300 cm,水分补偿为春季花期和收获期。因此,黑色地膜覆盖+立体化入渗技术提高了果树产量与优果率,改善了果园深层水分状况,缓解土壤深层干燥化。 相似文献
16.
Copper-based fungicides have been applied in apple orchards for a long time, which has resulted in increasing soil Cu concentration. However, the microbial and enzyme properties of the orchard soils remain poorly understood. This study aimed to evaluate the effect of long-term application of Cu-based fungicides on soil microbial (microbial biomass carbon (Cmic), C mineralization, and specific respiration rate) and enzyme (urease, acid phosphatase, and invertase activities) properties in apple orchards. Soil samples studied were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil as for reference. The mean Cu concentrations of orchard soils significantly increased with increasing orchard ages ranging from 21.8 to 141 mg kg−1, and the CaCl2-extractable soil Cu concentrations varied from 0.00 to 4.26 mg kg−1. The soil mean Cmic values varied from 43.6 to 116 mg kg−1 in the orchard soils, and were lower than the value of the reference soil (144 mg kg−1). The ratio of soil Cmic to total organic C (Corg) increased from 8.10 to 18.3 mg Cmic g−1 Corg with decreasing orchard ages, and was 26.1 mg Cmic g−1 Corg for the reference soil. A significant correlation was observed between total- or CaCl2-extractable soil Cu and soil Cmic or Cmic/Corg, suggesting that the soil Cu was responsible for the significant reductions in Cmic and Cmic/Corg. The three enzyme activity assays also showed the similar phenomena, and declined with the increasing orchard ages. The mean soil C mineralization rates were elevated from 110 to 150 mg CO2-C kg−1 soil d−1 compared with the reference soil (80 mg CO2-C kg−1 soil d−1), and the mean specific respiration rate of the reference soil (0.63 mg CO2-C mg−1 biomass C d−1) was significantly smaller than the orchard soils from 1.19 to 3.55 mg CO2-C mg−1 biomass C d−1. The soil C mineralization rate and the specific respiration rate can be well explained by the CaCl2-extractable soil Cu. Thus, the long-term application of copper-based fungicides has shown adverse effects on soil microbial and enzyme properties. 相似文献
17.
《国际水土保持研究(英文)》2020,8(1):15-25
Gully erosion is one of the most important forms of land degradation in many regions of the world. Understanding the process of gully erosion therefore is important for better management of the watersheds prone to gully erosion. However, many different aspects of gully erosion, like hydrological behavior, are still not fully understood. The present study investigates the spatial distribution of soil moisture content (SMC), as one of the hydrological factors, at different depths and points across the cross section in the vicinity of the headcut of three gullies located in the Kalat County, Khorasan Razavi Province, Iran. SMCs were measured at depths of 10, 20, 30, 50, 70 and 100 cm at each seven points across the study cross sections one to three days after occurrence of three rain events. Two sampling points were symmetrically located at a distance of 50 cm outside the gully banks, two at the vertex of the sidewalls, two in the middle of the sidewalls and one at the center of gully cross section. SMCs were measured using a weighted method. Results of the study revealed a broad range of changes in SMCs at various depths and points. The minimum and maximum SMCs were found to be about 2% and 38%, respectively, for the study period and gullies under consideration. The coefficient of variation (CV) had drastic changes for various gullies and storm events from 2 to 107%. Results further indicated that SMC moved from the sidewalls towards the floor of the cross section. Accordingly, the maximum SMC for storm events was associated with the point located in the center of gullies, which indicated the role of gully system in draining soil moisture. The findings of this study will help watershed managers understand the important role of gully facies in changing water content of the soil that affects other ecohydrological processes. 相似文献
18.
黄土高原南部人工植被作用下的土壤水分研究 总被引:2,自引:0,他引:2
在大量野外调查和室内测定的基础上,研究了黄土高原南部地区丰水年前后不同人工植被下0~6m土壤水分含量。研究表明,年均降雨量600mm左右的正常年份,该区内杨树林、法国梧桐林和中国梧桐林下1.5~4m土层平均含水量约为90g/kg左右,发育了弱的土壤干化层,4~6m土层平均含水量约为120g/kg,水分状况优于上部土层。麦地和草地下0~6m水分状况良好,未出现土壤干化现象。丰水年充足的降水后所有林木下土壤干层消失,水分得到很好的恢复,说明该区并未形成永久性土壤干层,这为该区人工植被的良好生长提供了必要的条件。但目前加速发展的生态建设及经济林业仍会给该区土壤水分良性循环带来威胁,因此应加强人工植被下土壤水分的长期观测,合理引种、适当栽培,在收益的同时保证生态环境的可持续发展。 相似文献